Hydrolyse von Saccharose

Größe: px
Ab Seite anzeigen:

Download "Hydrolyse von Saccharose"

Transkript

1 Hydrolyse von Saccharose Christopher Bronner, Frank Essenberger Freie Universität Berlin Tutorin: Fr. Spreine 11. Juli 2008 Versuchsdurchführung am 8. Juli 2008

2 Inhaltsverzeichnis 1 Vorbereitung Einführung Hydrolyse von Saccharose Reaktionskinetik Optisch aktive Moleküle und Substanzen Nicolsches Prisma Ausnutzen der Polarimetrie im Versuch Temperaturabhängigkeit der Geschwindigkeitskonstanten Literaturwerte Messprotokoll Aufbau Messung bei 26.5 C Messung von α E Messung bei 34.5 C Auswertung Bestimmung der Geschwindigkeitskonstanten Bestimmung von Frequenzfaktor und Aktivierungsenergie Diskussion 11 2

3 1 Vorbereitung 1.1 Einführung In diesem Versuch wollen wir die Geschwindigkeitskonstanten bei zwei unterschiedlichen Temperaturen sowie Aktivierungsenergie und Frequenzfaktor für die Hydrolyse von Saccharose bestimmen. Dabei verwenden wir die optische Aktivität von Saccharose und Invertzucker. Durch Änderung des Polarisationswinkels kann kontaktlos auf die Konzentration der Reaktanten geschlossen werden und so eine zeitabhängige Messung durchgeführt werden. 1.2 Hydrolyse von Saccharose In unserem Versuch betrachten wir die Hydrolyse von Saccharose, die durch Salzsäure homogen katalysiert 1 wird. C 12 H 22 O }{{ 12 +H } 2 O + HCl C 6 H 12 O 6 + C }{{} 6 H 12 O 6 +HCl }{{} Saccharose Glucose Fructose Glucose und Fructose werden gemeinsam als Invertzucker (Abkürzung I) bezeichnet. Sowohl Glucose als auch Fructose liegen in zwei chiralen Formen (D und L) vor, die unterschiedliche Polarisationen hervorrufen. Bei der obigen Reaktion entstehen nur D-Glucose und D-Fructose. Der Unterschied zwischen Fructose und Glucose liegt lediglich in der Position des doppelt-gebundenen Sauerstoffatoms (und eines H- und eines OH-Rests), während die Summenformeln identisch sind. Abbildung 1: Strukturformeln von Saccharose, (D- u. L-) Glucose und (D- u. L-) Fructose. 1.3 Reaktionskinetik Die Geschwindigkeit einer chemischen Reaktion ist gekennzeichnet durch die Reaktionsgeschwindigkeit v, die als Ableitung der Konzentration eines Reaktionsteilnehmers nach der Zeit definiert ist. v := ± 1 ν A d[a] dt, worin das Vorzeichen positiv für Produkte und negativ für Edukte ist und ν A der stöchiometrische Faktor des entsprechenden Stoffes. Andererseits findet man empirische Gesetzmäßigkeiten für die Abhängigkeit der Reaktionsgeschwindigkeit von den Konzentrationen der Reaktionspartner der Form v [A] n A [B] n B... (1) Für bzw. aus Elementarreaktionen können diese Zusammenhänge sogar exakt abgeleitet werden. Als Proportionalitätsfaktor führt man die Reaktionsgeschwindigkeitskonstante k ein. Bei mehreren Reaktionspfaden (z.b. parallele oder sequentielle Reaktionen) kann Gl. (1) auch eine Summe aus mehreren Termen mit unterschiedlichen Geschwindigkeitskonstanten sein. In unserem Versuch ist dies nicht der Fall. Die daraus entstehende Differentialgleichung nennt man Geschwindigkeitsgleichung. ± 1 d[a] = k[a] n A [B] n B... ν A dt 1 Von homogener Katalyse spricht man, wenn Edukte und Katalysator im selben Aggregatzustand vorliegen. 3

4 Im folgenden wenden wir diesen Formalismus auf die oben beschriebene Reaktion an. Wir führen die Abkürzung S für Saccharose ein. Das Geschwindigkeitsgesetzt lautet nun v = d[s] dt = k[s][hcl] γ. Da es sich bei HCl um einen Katalysator handelt, ändert sich seine Konzentration nicht; es handelt sich um eine Reaktion pseudo-erster Ordnung. d[s] dt = k[s], wobei k := k[hcl] γ. Die Lösung dieser Gleichung ist ein exponentieller Abfall der Saccharose-Konzentration. [S] = [S] 0 e kt. Unter Verwendung der Umsatzvariablen x := [S] 0 [S] und nach Umformung erhält man eine im Hinblick auf die Auswertung nützliche Darstellung. 1.4 Optisch aktive Moleküle und Substanzen ln [S] 0 x [S] 0 = kt (2) Bei einem optisch aktiven Molekül wird das Licht, welches auf das Molekül trifft, um einen Winkel gedreht. Dieser Winkel hängt von der räumlichen Orientierung des Moleküls zur Einfallsrichtung des Lichts ab. Falls das gedrehte Licht auf ein weiteres (anders gedrehtes) Molekül trifft, wird es um einen anderen Winkel weiter gedreht. Wichtig ist nun, dass Spiegelbilder des aktiven Moleküls in die entgegengesetzte Richtung drehen als ihre Urbider. In einer Substanz sind enorm viele ( 10 23) optisch aktive Moleküle vorhanden, deren räumlichen Orientierungen statistisch verteilt sind, d.h. ein gedrehter Strahl wird mit Sicherheit auch auf Spiegelbilder, falls diese durch räumliche Drehungen (thermische Bewegung) erzeugt werden können, treffen. Dadurch kommt im Mittel keine Drehung zu stande. Optisch aktive Substanzen besitzen ein chirales Zentrum, d.h. ihr Bild und Spiegelbild lassen sich nicht durch Drehung zur Deckung bringen. Dadurch kommt im Mittel eine Drehung der Polarisation zustande. Dieses Zentrum ist notwendig für die Drehung der Polarisation. Abbildung 2: Ein Beispiel bei dem Bild und Spiegelbild durch Drehung nicht zur Deckung gebracht werden können. Eine Substanz aus solchen Molekülen wäre doppelbrechend. 1.5 Nicolsches Prisma Ein Nicolsches Prisma ist ein linearer Polarisator, der zwei Strahlen mit senkrecht zueinander stehenden Polarisationen erzeugt. Die optischen Eigenschaften werden dabei durch den verwendeten Kalkspat erzielt, welcher ein optisch doppelbrechendes Matrial ist. Bei solch einem Material hat der senkrecht zur optischen Achse polarisierte Strahl (ordentlicher Strahl) einen anderen Brechungsindex als der senkrecht zum ordentlichen Strahl polarisierte (außerordentlicher Strahl). 4

5 Abbildung 3: Ordentlicher und außerordentlicher Strahl im Vergleich. Auf Grund der unterschiedlichen Brechungsindizes werden die beiden Strahlen im Material unterschiedlich stark abgelenkt, was durch die Formel von Snellius beschrieben wird. n 2 n 1 = sin α 1 sin α 2. Abbildung 4: Erklärung der Größen im Gesetz von Snellius. Wenn nun das Medium 1, Luft (n 1 1), und der Einfallwinkel α 1 sin α 1 = κ 0 fest sind, ergibt sich sin α 2 = κ 0 n 2 wobei n 2 {n 0, n a }. Man sieht also, dass die Winkel im Medium für unterschiedliche n 2 variieren werden. Um die Abhängigkeit der Brechungsindizes zu quantifizieren gibt es den sogenannten Brechzahlellipsoiden, welcher die Abhängigkeit der Brechzahlen des ordentlichen und außerordentlichen Strahls, im Bezug zur optischen Achse und Ausbreitungsrichtung k, angibt. Abbildung 5: Brechzahlellipsoid mit n 0 für den ordentlichen Strahl (senkrecht zur optischer Achse) und n a für den außerordentlichen (senkrecht zum ordentlichen). Im Nicolschen Prisma ist n 0 = c v = 1, 66 und n a = c v = 1, 54. 5

6 Im Nicolschen Prisma sind nun zwei Kalkspatprismen mit Kanadabalsam (n k = 1,54) zusammengeklebt. Die Anordnung und die Materialien sind genau so gewählt, dass der ordentliche Strahl beim Übergang zum zweiten Prisma eine Totalreflektion erfährt und an der Prismenwand abgelenkt wird. Auf diese Weise wird Licht einer Polarisation ausgewählt. Abbildung 6: Strahlengang im Nicolschen Prisma. 1.6 Ausnutzen der Polarimetrie im Versuch Im Versuch werden wir die optische Aktivität von Saccharose und Invertzucker ausnutzen, um vom Drehwinkel der Polarisation auf die Konzentration in der Probe zu schließen. Man nimmt dazu zunächst den Gesamtdrehwinkel als Linearkombination der Konzentrationen an. Da [I] = x und [S] = [S] 0 x: α = α m S [S] + α m I [I] α = α m S [S] 0 x (α m S α m I ) (3) Für Anfang und Ende der Reaktion treten die Spezialfälle x = 0 und x = [S] 0 ein, also Stellt man Gl. (3) nach x um, α 0 = α m S [S] 0, α E = α m I [S] 0. x(α) = αm S [S] 0 α αs m αm I und setzt in Gl. (2) ein, erhält man ( ln 1 α ) 0 α α 0 α E also = α 0 α α 0 α E [S] 0, = ln α α E α 0 α E = kt, ln (α α E ) = kt + const. (4) Trägt man also ln (α α E ) über der Zeit auf, erhält man über die Steigung die Geschwindigkeitskonstante der Reaktion. Den Wert für α E bestimmen wir dabei durch eine Hydrolyse bei wesentlich höherer Temperatur, die unter diesen Bedingungen sehr viel schneller abläuft. 1.7 Temperaturabhängigkeit der Geschwindigkeitskonstanten Die Temperaturabhängigkeit von k kann einerseits thermodynamisch, andererseits auch durch Stoßtheorie hergeleitet werden. Dies führt zur Arrhenius-Gleichung Durch Integration erhalten wir d dt ln k = E a RT 2. k = Ae Ea RT, wobei A als Integrationskonstante bzw. Frequenzfaktor eingeführt wird. Mit den beiden Messungen für k bei zwei verschiedenen Temperaturen können wir nun A sowie die Aktivierungsenergie E a bestimmen. 6

7 1.8 Literaturwerte Aus [1] entnahmen wir die Werte k(300 K) = s 1, k(310 K) = s 1, wobei in dem entsprechenden Experiment 0.1molare Salzsäure verwendet wurde. Da wir in unserem Experiment mit 10 ml 3molarer HCl auf 20 ml Saccharose-Lösung arbeiteten, hatten wir 1molare HCl im Reaktionsgemisch. Wegen der Abhängigkeit von der Salzsäurekonzentration, k := k[hcl] γ (wir nehmen an, dass γ = 1 ist) in Abschn. 1.3, ist daher bei unserer Reaktion eine um den Faktor 10 größere Geschwindigkeitskonstante zu erwarten. Ferner fanden wir auf einem Übungsblatt einer früheren Vorlesung die Werte E a = kj mol, A = s 1. 7

8 2 Messprotokoll 2.1 Aufbau In unserem Versuch verwenden wir eine monochromatische Lichtquelle 2, nämlich eine Na-Dampflampe. Deren Licht ist noch nicht polarisiert, sodass wir ein Nicolsches Prisma zur Polarisation verwenden. Hinter diesem Prisma ist ein Hilfsplättchen angebracht, das den Strahl zur Hälfte abdeckt und die Polarisationsrichtung um einen Winkel γ dreht. Es gehen also zwei Strahlen unterschiedlicher Polarisationsrichtung durch die Probe. Beide Strahlen werden gleichermaßen in ihrer Polarisation gedreht, nämlich um den Winkel α. Durch ein zweites Nicolprisma kann dieser Winkel bestimmt werden. Im Strahl, der nicht dem Hilfsplättchen ausgesetzt war, wurde die Polarisation um α gedreht, im anderen Strahl um α + γ. In diesen beiden Stellungen würde das zweite Nicolprisma jeweils in einem der beiden Strahlen maximale Intensität und im anderen Strahl eine geringere Intensität anzeigen. Genau in der Mitte, bei α + γ 2 stimmen die Intensitäten überein. Zur Vereinfachung der Messung werden wir bei jeder Messung diesen Winkel des zweiten Nicolprismas suchen, da die konstante Winkelverschiebung γ 2 irrelevant für unsere Messung ist, da nur die Differenz zweier Winkel betrachtet wird, bei der sich ein addierter Term aufhebt. Abbildung 7: Schema der Versuchsanordnung. Die Kreise mit den Pfeilen symbolisieren die Polarisationsrichtung. 2.2 Messung bei 26.5 C Zuerst haben wir den Polarisationswinkel (von nun an nennen wir die gemessene Größe α + γ 2 schlicht α) für niedrige Temperaturen gemessen. Glücklicherweise blieb die Temperatur während des gesamten Versuchs über konstant. Da es schwierig war, zu beurteilen, wann die Intensität der beiden beobachteten Strahlen gleich war, muss trotz genauem Goniometer ein relativ großer Fehler von α = 0.6 angenommen werden. Der Zeitnullpunkt wurde beim Zugeben des Katalysators HCl zur Zuckerlösung gewählt. 2 Der Polarisationswinkel des ausgehenden Lichts ist temperatur- und wellenlängenabhängig. 8

9 t [s] α [ ] T [ C] ± ± ± ± ± ± ± ± ± ± ± ± Tabelle 1: Erste Messung bei niedriger Temperatur. 2.3 Messung von α E Während der ersten Messung haben wir in einem zweiten Thermostaten ein zweites Gemisch angesetzt und bei 70 C reagieren lassen. Bei dieser hohen Temperatur und 15 min Reaktionsdauer sollte die Reaktion vollständig abgelaufen sein, sodass α E hier gemessen werden kann. Wir haben zuerst α E gemessen, dann den Thermostaten auf 35 C hochgeregelt und auch hier α E gemessen. Wir maßen jeweils dreimal und mittelten, um der Wichtigkeit dieses Wertes Rechnung zu tragen. 2.4 Messung bei 34.5 C T [ C] α E [ ] ± ±0.6 Abbildung 8: α E für die beiden Temperaturen. Hier gingen wir nun mit hochgeheiztem Thermostaten wie bei der vorhergehenden Messung vor. t [s] α [ ] T [ C] ± ± ± ± ± ± ± ± ± ± ± ± Tabelle 2: Zweite Messung bei höherer Temperatur. 9

10 3 Auswertung 3.1 Bestimmung der Geschwindigkeitskonstanten Gemäß Gl. (4) tragen wir ln (α α E ) für beide Temperaturen über der Zeit auf und bestimmen den Anstieg der gefitteten Geraden. 3.5 Messung bei 26.5 C Messung bei 34.5 C ln[α-α E ] Zeit [s] Abbildung 9: Aufgenommene Werte und linearer Fit. Wir erhalten k(26.5 C) = (2.81 ± 0.05) 10 4 s 1, k(34.5 C) = (8.16 ± 0.09) 10 4 s Bestimmung von Frequenzfaktor und Aktivierungsenergie Zur Bestimmung dieser beiden Größen führten wir einen linearen Fit gemäß durch. Wir trugen dazu ln k über 1 RT ln k(t ) = E A RT + ln A auf, was natürlich bei zwei Messwerten recht gewagt ist. 10

11 ln(k) [ln(hz)] /RT [mol J -1 ] Abbildung 10: Zwei Datenpunkte mit linearem Fit. Da unser Fitprogramm bei zwei Werten partout keinen Fehler ausgeben will, haben wir von Hand eine Grenzgerade in die Fehlerbalken gelegt, um einen vernünftigen Wert für den Fehler zu erhalten. Wir erhalten daraus E A = (102 ± 3) kj mol, A = (1.7 ± 1.9) Hz. Der große Fehler beim Frequenzfaktor kann mit den wenigen Datenpunkten, auf denen dieser Fit basiert, begründet werden. 4 Diskussion Größe Experiment Literatur k bei T = 26.5 C (2.81 ± 0.05) 10 4 s s 1 k bei T = 34.5 C (8.16 ± 0.09) 10 4 s s 1 E A [ kj mol ] 102± A [10 14 Hz] 1.7± Abbildung 11: Vergleich der Ergebnisse mit der Literatur. (Die Literaturwerte für k sind bei geringfügig anderer Temperatur aufgenommen worden, vgl. Abschn. 1.8) Der Vergleich der gemessenen Werte mit der Literatur zeigt deutliche Abweichungen bei der Geschwindigkeitskonstanten, eine leichte Abweichung bei der Aktivierungsenergie und einen übereinstimmenden Frequenzfaktor, dies jedoch auch nur wegen des großen Fehlers. Zwar stimmen die Größenordnungen unserer Ergebnisse, deshalb glauben wir nicht, gröbere experimentelle Fehler gemacht zu haben, aber die Abweichungen sind dennoch unbefriedigend. In Abb. 12 haben wir die Literaturwerte der Reaktionsgeschwindigkeitskonstanten in die Auftragung von Abb. 10 integriert. Es zeigt sich, dass unsere Werte die richtige Steigung, also Aktivierungsenergie aber eine Abweichung beim Frequenzfaktor aufweisen. Allerdings darf diese Einschätzung nur zögerlich gemacht werden, da die Unsicherheit bei zwei Datenpunkten enorm ist. Die Größe unserer Fehlerbalken lässt auf größere systematische Fehler schließen, die wir jedoch nicht zu identifizieren vermögen. Eine mögliche Fehlerquelle ist ein Temperaturdrift vom Thermometer im Thermostaten zur Küvette hin, wodurch unsere Zuordnung zu den Temperaturen verfälscht würde. 11

12 Auch Verunreinigungen in der Küvette sind recht wahrscheinlich, da ein richtiges Ausspülen schwierig war. So könnten noch vorhandene Glucose- und Fructose-Moleküle die Messung durch ihre optische Aktivität verfälschen Messung Literaturwerte ln(k) [ln(hz)] /RT [mol J -1 ] Abbildung 12: Vergleich der gemessenen Geschwindigkeitsverteilungen mit den Literaturwerten. Literatur [1] E. Tombari, et al.: J. Phys. Chem. B, Vol. 111, No. 3 (2007)

Fragen zum Versuch 11a Kinetik Rohrzuckerinversion:

Fragen zum Versuch 11a Kinetik Rohrzuckerinversion: Fragen zum Versuch 11a Kinetik Rohrzuckerinversion: 1. Die Inversion von Rohrzucker ist: a. Die Umwandlung von Rohrzucker in Saccharose b. Die katalytische Spaltung in Glucose und Fructose c. Das Auflösen

Mehr

Fragen zum Versuch Kinetik:

Fragen zum Versuch Kinetik: Fragen zum Versuch Kinetik: 1. Die Inversion von Rohrzucker ist: a. Die Umwandlung von Rohrzucker in Saccharose b. Die katalytische Spaltung in Glucose und Fructose c. Das Auflösen von Rohrzucker im Wasser

Mehr

ROHRZUCKERINVERSION RZ

ROHRZUCKERINVERSION RZ ROHRZUCKERINVERSION RZ Praktikanten: Matthias Jasch, Mirjam Eisele Gruppennummer: 129 Betreuer: Andreas Dreizler 1. AUFGABENSTELLUNG Ziel des Versuches ist es, mit Hilfe eines Polarimeters die säurekatalysierte

Mehr

Praktikum Physikalische Chemie I 30. Januar Aktivierungsenergie. Guido Petri Anastasiya Knoch PC111/112, Gruppe 11

Praktikum Physikalische Chemie I 30. Januar Aktivierungsenergie. Guido Petri Anastasiya Knoch PC111/112, Gruppe 11 Praktikum Physikalische Chemie I 30. Januar 2016 Aktivierungsenergie Guido Petri Anastasiya Knoch PC111/112, Gruppe 11 1 Aufgabenstellung Für die Reaktion von Saccharose mit Wasser zu Glucose und Fructose

Mehr

Praktikumsprotokoll Physikalisch-Chemisches Anfängerpraktikum

Praktikumsprotokoll Physikalisch-Chemisches Anfängerpraktikum Praktikumsprotokoll Physikalisch-Chemisches Anfängerpraktikum Tobias Schabel Datum des Praktikumstags: 28.10.2005 Matthias Ernst Protokoll-Datum: 1.11.2005 Gruppe A-11 Assistent: D. Santi 2. Versuch: RI

Mehr

Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1. Spezifische Drehung von gelöstem Rohrzucker - Rohrzuckerinversion

Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1. Spezifische Drehung von gelöstem Rohrzucker - Rohrzuckerinversion Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1 A 33 Spezifische Drehung von gelöstem Rohrzucker - Rohrzuckerinversion Aufgabe: 1. Bestimmen Sie den Drehwinkel für Rohrzucker für

Mehr

2. Bestimmen Sie die Geschwindigkeitskonstante k der Rohrzuckerinversion in s -1.

2. Bestimmen Sie die Geschwindigkeitskonstante k der Rohrzuckerinversion in s -1. Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1 A 33 Spezifische Drehung von gelöstem Rohrzucker - Rohrzuckerinversion Aufgabe: 1. Bestimmen Sie den Drehwinkel α für Rohrzucker für

Mehr

Praktikum SC Optische Aktivität und Saccharimetrie

Praktikum SC Optische Aktivität und Saccharimetrie Praktikum SC Optische Aktivität und Saccharimetrie Hanno Rein, Florian Jessen betreut durch Gunnar Ritt 19. Januar 2004 1 Vorwort In den meiste Fällen setzt man bei verschiedensten Rechnungen stillschweigend

Mehr

Versuch: Inversion von Saccharose

Versuch: Inversion von Saccharose Versuch: Inversion von Saccharose Die Geschwindigkeit einer chemischen Reaktion (gemessen z. B. durch die zeitliche Abnahme der Konzentration des Ausgangsstoffes A) hängt allgemein vom Produkt der Konzentrationen

Mehr

Physikalische Chemie Praktikum. Kinetik: Inversionsgeschwindigkeit der Saccharose

Physikalische Chemie Praktikum. Kinetik: Inversionsgeschwindigkeit der Saccharose Hochschule Emden / Leer Physikalische Chemie Praktikum Kinetik: Inversionsgeschwindigkeit der Saccharose Vers.Nr.7 Mai 2017 Allgemeine Grundlagen Reaktionsgeschwindigkeit, Geschwindigkeitskonstante k,

Mehr

Versuch O08: Polarisation des Lichtes

Versuch O08: Polarisation des Lichtes Versuch O08: Polarisation des Lichtes 5. März 2014 I Lernziele Wellenoptik Longitudinal- und Transversalwellen Elektromagnetische Wellen II Physikalische Grundlagen Nachweismethode Elektromagnetische Wellen

Mehr

Lösungen 10 (Kinetik)

Lösungen 10 (Kinetik) Chemie I WS 2003/2004 Lösungen 10 (Kinetik) Aufgabe 1 Verschiedenes 1.1 Als Reaktionsgeschwindigkeit v c wird die Ableitung der Konzentration eines Reaktanden A nach der Zeit t, dividiert durch dessen

Mehr

Bestimmung der Reaktionsgeschwindigkeitskonstanten der Inversion von Rohrzucker in Abhängigkeit von der Temperatur

Bestimmung der Reaktionsgeschwindigkeitskonstanten der Inversion von Rohrzucker in Abhängigkeit von der Temperatur Übungen in physikalischer Chemie für Studierende der Pharmazie Versuch Nr.: 9 Version 2016 Kurzbezeichnung: Rohrzuckerinversion Bestimmung der Reaktionsgeschwindigkeitskonstanten der Inversion von Rohrzucker

Mehr

Polarisationsapparat

Polarisationsapparat 1 Polarisationsapparat Licht ist eine transversale elektromagnetische Welle, d.h. es verändert die Länge der Vektoren des elektrischen und magnetischen Feldes. Das elektrische und magnetische Feld ist

Mehr

Hydrolyse von Saccharose

Hydrolyse von Saccharose K1 Hydrolyse von Saccharose Bitte bringen Sie zur Auswertung der Daten ein Laptop mit installierter Software Igor Pro mit. 1 Aufgabenstellung 1. Polarimetrische Untersuchung des zeitlichen Verlaufs der

Mehr

Institut für Physikalische und Theoretische Chemie Physikalisch-Chemisches Praktikum für Studenten L2

Institut für Physikalische und Theoretische Chemie Physikalisch-Chemisches Praktikum für Studenten L2 Institut für Physikalische und Theoretische Chemie Physikalisch-Chemisches Praktikum für Studenten L2 10. Temperaturabhängigkeit der Reaktionsgeschwindigkeit: Arrhenius-Beziehung Thema In diesem Versuch

Mehr

425 Polarisationszustand des Lichtes

425 Polarisationszustand des Lichtes 45 Polarisationszustand des Lichtes 1. Aufgaben 1.1 Bestimmen Sie den Polarisationsgrad von Licht nach Durchgang durch einen Glasplattensatz, und stellen Sie den Zusammenhang zwischen Polarisationsgrad

Mehr

Allgemeine Chemie für Studierende mit Nebenfach Chemie Andreas Rammo

Allgemeine Chemie für Studierende mit Nebenfach Chemie Andreas Rammo Allgemeine Chemie für Studierende mit Nebenfach Chemie Andreas Rammo Allgemeine und Anorganische Chemie Universität des Saarlandes E-Mail: a.rammo@mx.uni-saarland.de innere Energie U Energieumsatz bei

Mehr

Praktikum II PO: Doppelbrechung und eliptisch polatisiertes Licht

Praktikum II PO: Doppelbrechung und eliptisch polatisiertes Licht Praktikum II PO: Doppelbrechung und eliptisch polatisiertes Licht Betreuer: Norbert Lages Hanno Rein praktikum2@hanno-rein.de Florian Jessen florian.jessen@student.uni-tuebingen.de 26. April 2004 Made

Mehr

Einführungspraktikum O5 Polarimetrie

Einführungspraktikum O5 Polarimetrie Einführungspraktikum O5 Polarimetrie Julien Kluge 8. Oktober 2015 Student: Julien Kluge (564513) Partner: Emily Albert (564536) Betreuer: Moritz Futscher Raum: 315 Messplatz: hpr02287 INHALTSVERZEICHNIS

Mehr

Rohrzuckerinversion [ ] [ ] [ ] Grundlagen. Mechanismus und Kinetik

Rohrzuckerinversion [ ] [ ] [ ] Grundlagen. Mechanismus und Kinetik Grundlagen Rohrzuckerinversion Grundlagen Mechanismus und Kinetik Die Saccharose ist ein α-d-glucopyranosyl-β-d-fructofuranosid, ist also aus einer αdglucose und einer βdfructose aufgebaut. Die Fructose

Mehr

Vorlesung Physik für Pharmazeuten PPh - 10a. Optik

Vorlesung Physik für Pharmazeuten PPh - 10a. Optik Vorlesung Physik für Pharmazeuten PPh - 10a Optik 15.01.2007 1 Licht als elektromagnetische Welle 2 E B Licht ist eine elektromagnetische Welle 3 Spektrum elektromagnetischer Wellen: 4 Polarisation Ein

Mehr

Rohrzuckerinversion (Polarimetrie)

Rohrzuckerinversion (Polarimetrie) Stand: 1/212 1 Rohrzuckerinversion (Polarimetrie) Theoretische Grundlagen Informieren Sie sich über die Stereochemie der Glucose und Fructose, über ihre Ketten- und Ringstrukturen, über die Mutarotation

Mehr

Chemie Protokoll. Versuch 2 3 (RKV) Reaktionskinetik Esterverseifung. Stuttgart, Sommersemester 2012

Chemie Protokoll. Versuch 2 3 (RKV) Reaktionskinetik Esterverseifung. Stuttgart, Sommersemester 2012 Chemie Protokoll Versuch 2 3 (RKV) Reaktionskinetik Esterverseifung Stuttgart, Sommersemester 202 Gruppe 0 Jan Schnabel Maximilian Möckel Henri Menke Assistent: Durmus 20. Mai 202 Inhaltsverzeichnis Theorie

Mehr

AUSWERTUNG: POLARISATION

AUSWERTUNG: POLARISATION AUSWERTUNG: POLARISATION TOBIAS FREY, FREYA GNAM 1. POLARISIERTES LICHT Linear polarisiertes Licht. Die linear polarisierte Welle wurde mit Hilfe eines Polarisationsfilters erzeugt, wobei weißes Licht

Mehr

Grundlagen der Kinetik

Grundlagen der Kinetik Kapitel 1 Grundlagen der Kinetik In diesem Kapitel werden die folgenden Themen kurz wiederholt: Die differenziellen und integralen Geschwindigkeitsgesetze von irreversiblen Reaktionen., 1., und. Ordnung

Mehr

PRAKTIKUM DER TECHNISCHEN CHEMIE I PRAKTIKUMSPROTOKOLL. WiSe 2015/2016. Versuch 6. Adiabatischer Batch-Reaktor

PRAKTIKUM DER TECHNISCHEN CHEMIE I PRAKTIKUMSPROTOKOLL. WiSe 2015/2016. Versuch 6. Adiabatischer Batch-Reaktor PRAKTIKUM DER TECHNISCHEN CHEMIE I PRAKTIKUMSPROTOKOLL WiSe 2015/2016 Versuch 6 Adiabatischer Batch-Reaktor Rami Saoudi (356563) Guido Petri (364477) Gruppe 29 1. EINFÜHRUNG Es wurde der Temperaturverlauf

Mehr

5 Teilchen treffen Teilchen: Reaktionskinetik

5 Teilchen treffen Teilchen: Reaktionskinetik 5 Teilchen treffen Teilchen: Reaktionskinetik 5.1 Elementarreaktionen und Mehrschritt-Reaktionen Wassergasreaktion: H 2 O + CO CO 2 + H 2 Dies ist lediglich der makroskopisch sichtbare Ablauf der Reaktion.

Mehr

INVERSION DES ROHRZUCKERS

INVERSION DES ROHRZUCKERS INVERSION DES ROHRZUCKERS. Versuchsplatz Komponenten: - Thermostat - Polarimeter - zerlegbare Küvette - Thermometer 2. Allgemeines zum Versuch Im Rahmen der Reaktionskinetik wird der zeitliche Ablauf von

Mehr

endotherme Reaktionen

endotherme Reaktionen Exotherme/endotherme endotherme Reaktionen Edukte - H Produkte Exotherme Reaktion Edukte Produkte + H Endotherme Reaktion 101 Das Massenwirkungsgesetz Das Massenwirkungsgesetz Gleichgewicht chemischer

Mehr

Bestimmung der Geschwindigkeitskonstanten einer Esterverseifung

Bestimmung der Geschwindigkeitskonstanten einer Esterverseifung Versuchsprotokoll: Bestimmung der Geschwindigkeitskonstanten einer Esterverseifung Gruppe 10 29.06.2013 Patrik Wolfram TId:20 Alina Heidbüchel TId:19 1 Inhaltsverzeichnis 1 Einleitung... 3 2 Theorie...

Mehr

PROTOKOLL ZUM VERSUCH SACCHARIMETRIE. Inhaltsverzeichnis Ziel 1

PROTOKOLL ZUM VERSUCH SACCHARIMETRIE. Inhaltsverzeichnis Ziel 1 PROTOKOLL ZUM VERSUCH SACCHARIMETRIE CHRIS BÜNGER Inhaltsverzeichnis 1. Versuchsbeschreibung 1 1.1. Ziel 1 1.2. Aufgabe 1 1.3. Das Polarimeter 2 1.4. Konzentration von Lösungen 3 2. Versuchsdurchführung

Mehr

Grundlagen: Die Zersetzung von Ameisensäure in konzentrierter Schwefelsäure verläuft nach folgendem Mechanismus:

Grundlagen: Die Zersetzung von Ameisensäure in konzentrierter Schwefelsäure verläuft nach folgendem Mechanismus: A 35: Zersetzung von Ameisensäure Aufgabe: Für die Zersetzung von Ameisensäure in konzentrierter Schwefelsäure sind die Geschwindigkeitskonstante bei 30 und 40 C sowie der präexponentielle Faktor und die

Mehr

= Durchschnittliche Bildungs- Geschwindigkeit [mol/s] = Durchschnittliche Verbrauchs- Geschwindigkeit [mol/s]

= Durchschnittliche Bildungs- Geschwindigkeit [mol/s] = Durchschnittliche Verbrauchs- Geschwindigkeit [mol/s] Ache2 Kapitel 14: Chemische Kinetik (Geschwindigkeit) Reaktionsgeschwindigkeit Beeinflussung: 1. Aggregatszustände der Reaktanten: Je öfters Moleküle zusammenstossen, desto schneller reagieren sie. (Oberflächenvergrösserung

Mehr

3.3 Polarisation und Doppelbrechung. Ausarbeitung

3.3 Polarisation und Doppelbrechung. Ausarbeitung 3.3 Polarisation und Doppelbrechung Ausarbeitung Fortgeschrittenenpraktikum an der TU Darmstadt Versuch durchgeführt von: Mussie Beian, Florian Wetzel Versuchsdatum: 8.6.29 Betreuer: Dr. Mathias Sinther

Mehr

Versuch Polarisiertes Licht

Versuch Polarisiertes Licht Versuch Polarisiertes Licht Vorbereitung: Eigenschaften und Erzeugung von polarisiertem Licht, Gesetz von Malus, Fresnelsche Formeln, Brewstersches Gesetz, Doppelbrechung, Optische Aktivität, Funktionsweise

Mehr

NG Brechzahl von Glas

NG Brechzahl von Glas NG Brechzahl von Glas Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik und Wellenoptik.......... 2 2.2 Linear polarisiertes

Mehr

Universität Ulm Grundpraktikum Physikalische Chemie Versuch Nr. 24 Temperaturabhängigkeit von Gleichgewichts- und Geschwindigkeitskonstanten

Universität Ulm Grundpraktikum Physikalische Chemie Versuch Nr. 24 Temperaturabhängigkeit von Gleichgewichts- und Geschwindigkeitskonstanten Universität Ulm Grundpraktikum Physikalische Chemie Versuch Nr. 24 Temperaturabhängigkeit von Gleichgewichts- und Geschwindigkeitskonstanten 1. Grundlagen 1.1. Vorkenntnisse Informieren Sie sich vor Durchführung

Mehr

Polarisation durch Reflexion

Polarisation durch Reflexion Version: 27. Juli 2004 Polarisation durch Reflexion Stichworte Erzeugung von polarisiertem Licht, linear, zirkular und elliptisch polarisiertes Licht, Polarisator, Analysator, Polarisationsebene, optische

Mehr

Aufgabe 2.1: Wiederholung: komplexer Brechungsindex

Aufgabe 2.1: Wiederholung: komplexer Brechungsindex Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Jens Repp / Eric Parzinger Kontakt: jens.repp@wsi.tum.de / eric.parzinger@wsi.tum.de Blatt 2, Besprechung: 23.04.2014 / 30.04.2014

Mehr

Grundkurs IIIa für Studierende der Physik, Wirtschaftsphysik und Physik Lehramt

Grundkurs IIIa für Studierende der Physik, Wirtschaftsphysik und Physik Lehramt Grundkurs IIIa für Studierende der Physik, Wirtschaftsphysik und Physik Lehramt Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Hecht, Perez, Tipler, Gerthsen

Mehr

Reaktionskinetik: - Geschwindigkeit chemischer Reaktionen - Untersuchung (bzw. Bestimmung) der Reaktionsmechanismen. c(a) t. v = -

Reaktionskinetik: - Geschwindigkeit chemischer Reaktionen - Untersuchung (bzw. Bestimmung) der Reaktionsmechanismen. c(a) t. v = - REAKTIONSKINETIK 1 Reaktionskinetik Reaktionskinetik: - Geschwindigkeit chemischer Reaktionen - Untersuchung (bzw. Bestimmung) der Reaktionsmechanismen Anwendung: - Vorgänge in den lebenden Organismen

Mehr

Richtung von spontanem Prozeßablauf und Veränderung der G in Abhängigkeit vom Vorzeichen der Enthalpie und der Entropie

Richtung von spontanem Prozeßablauf und Veränderung der G in Abhängigkeit vom Vorzeichen der Enthalpie und der Entropie Richtung von spontanem Prozeßablauf und Veränderung der G in Abhängigkeit vom Vorzeichen der Enthalpie und der Entropie H S G= H-T S Prozeß 1. (-) (+) (-) immer exergonisch, erfolgt spontan bei allen Temperaturen

Mehr

PC I Thermodynamik und Transportprozesse. Kapitel 7. Kinetik. PC I-Kap :27 1

PC I Thermodynamik und Transportprozesse. Kapitel 7. Kinetik. PC I-Kap :27 1 20.07.2006 11:27 1 PC I Thermodynamik und Transportprozesse Kapitel 7 Kinetik Reaktionsgeschwindigkeit 20.07.2006 11:27 2 Messung der Reaktionsgeschwindigkeit. Die Konzentration des Edukts A ist als Funktion

Mehr

Weitere Eigenschaften von Licht

Weitere Eigenschaften von Licht Weitere Eigenschaften von Licht In welcher Richtung (Ebene) schwingen die Lichtwellen? Querwelle (Transversalwelle)? Längswelle (Longitudinalwelle)? Untersuchung! Betrachtung einer Seilwelle (Querwelle):

Mehr

Verseifungsgeschwindigkeit eines Esters

Verseifungsgeschwindigkeit eines Esters A 32 Verseifungsgeschwindigkeit eines Esters Aufgabe: Man bestimme die Geschwindigkeitskonstante k der Methylacetatverseifung bei 2 verschiedenen Temperaturen und berechne daraus den Vorfaktor sowie die

Mehr

Grundkurs IIIa für Studierende der Physik, Wirtschaftsphysik und Physik Lehramt

Grundkurs IIIa für Studierende der Physik, Wirtschaftsphysik und Physik Lehramt Grundkurs IIIa für Studierende der Physik, Wirtschaftsphysik und Physik Lehramt Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Hecht, Perez, Tipler, Gerthsen

Mehr

Besprechung am

Besprechung am PN2 Einführung in die Physik für Chemiker 2 Prof. J. Lipfert SS 2016 Übungsblatt 10 Übungsblatt 10 Besprechung am 27.6.2016 Aufgabe 1 Interferenz an dünnen Schichten. Weißes Licht fällt unter einem Winkel

Mehr

Vorlesung Physik für Pharmazeuten PPh Optik

Vorlesung Physik für Pharmazeuten PPh Optik Vorlesung Physik für Pharmazeuten PPh - 10 Optik 02.07.2007 Wiederholung : Strom und Magnetismus B = µ 0 N I l Ampère'sche Gesetz Uind = d ( BA) dt Faraday'sche Induktionsgesetz v F L = Q v v ( B) Lorentzkraft

Mehr

Praktikum - Physikalische Chemie I 14. Januar Reaktion 2. Ordnung. Guido Petri Anastasiya Knoch PC111/112, Gruppe 11

Praktikum - Physikalische Chemie I 14. Januar Reaktion 2. Ordnung. Guido Petri Anastasiya Knoch PC111/112, Gruppe 11 Praktikum - Physikalische Chemie I 14. Januar 2016 Reaktion 2. Ordnung Guido Petri Anastasiya Knoch PC111/112, Gruppe 11 Aufgabenstellung Die Reaktionsgeschwindigkeit von der Hydrolyse von Essigsäureacetatester

Mehr

Polarisation und Doppelbrechung Versuchsauswertung

Polarisation und Doppelbrechung Versuchsauswertung Versuche P2-11 Polarisation und Doppelbrechung Versuchsauswertung Marco A. Harrendorf und, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 04.07.2011 1 Inhaltsverzeichnis

Mehr

1 Lambert-Beersches Gesetz

1 Lambert-Beersches Gesetz Physikalische Chemie II Lösung 6 23. Oktober 205 Lambert-Beersches Gesetz Anhand des idealen Gasgesetzes lässt sich die Teilchenkonzentration C wie folgt ausrechnen: C = N V = n N A V pv =nrt = N A p R

Mehr

Gegenstand der letzten Vorlesung

Gegenstand der letzten Vorlesung Gegenstand der letzten Vorlesung Reaktionsgeschwindigkeit Reaktionsordnung Molekularität Reaktion 0., 1.,. Ordnung Reaktion pseudo-erster Ordnung Aktivierungsenergie Temperaturabhängigkeit der Geschwindigkeitskonstanten

Mehr

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg Institut für Physikalische Chemie Albert-Ludwigs-Uniersität Freiburg Lösungen zum 11. Übungsblatt zur Vorlesung Physikalische Chemie I SS 214 Prof. Dr. Bartsch 11.1 L a) Die Bildungsgeschwindigkeit on

Mehr

1 Translationszustandssumme

1 Translationszustandssumme 1 Translationszustandssumme Um die Gleichung für die dreidimensionale Translationszustandssumme (Gl. (4.89c) im Skript) ( ) 2πmkB T 3/2 q t,3d V h 2 (1) aus der Gleichung für die Zustandsdichte ρ(e) m

Mehr

Optische Aktivität und Spiegelbildisomerie

Optische Aktivität und Spiegelbildisomerie Optische Aktivität und Spiegelbildisomerie Die optische Aktivität gibt Aufschluß über die chemische Struktur Zusammenfassung Dieses Script ist eine Einführung in die Spiegelbildisomerie von Molekülen.

Mehr

1 Halbwertszeit einer allgemeinen Reaktion m-ter Ordnung

1 Halbwertszeit einer allgemeinen Reaktion m-ter Ordnung Physikalische Chemie II Lösung 5 6. Oktober 25 Halbwertszeit einer allgemeinen Reaktion m-ter Ordnung Für c = c B =... = c gilt c (t) = c B (t) =... = c(t) und das Geschwindigkeitsgesetz lautet dc(t) =

Mehr

Versuch Nr. 22. Fresnelformeln

Versuch Nr. 22. Fresnelformeln Grundpraktikum der Physik Versuch Nr. 22 Fresnelformeln Versuchsziel: Die Fresnelformeln beschreiben, in welcher Weise sich ein polarisierter oder unpolarisierter Lichtstrahl verhält, wenn er auf die Grenzfläche

Mehr

Fresnelsche Formeln und Polarisation

Fresnelsche Formeln und Polarisation Physikalisches Praktikum für das Hauptfach Physik Versuch 25 Fresnelsche Formeln und Polarisation Wintersemester 2005 / 2006 Name: Mitarbeiter: EMail: Gruppe: Daniel Scholz Hauke Rohmeyer physik@mehr-davon.de

Mehr

Aufgabe: Man bestimme die Geschwindigkeitskonstante für den Zerfall des Diacetonalkohols bei 293 und 303 K.

Aufgabe: Man bestimme die Geschwindigkeitskonstante für den Zerfall des Diacetonalkohols bei 293 und 303 K. A 31 Zersetzung von Diacetonalkohol Aufgabe: Man bestimme die Geschwindigkeitskonstante für den Zerfall des Diacetonalkohols bei 293 und 303 K. Grundlagen: Diacetonalkohol (ρ (20 C) = 0,931 g/cm 3 ) zerfällt

Mehr

Schmelzdiagramme Kornelia Schmid & Jelena Cikoja Gruppe 150. Schmelzdiagramme

Schmelzdiagramme Kornelia Schmid & Jelena Cikoja Gruppe 150. Schmelzdiagramme Schmelzdiagramme 1. Aufgabenstellung: Im Versuch sollen die Schmelzpunkte von 7 Gemischen unterschiedlicher Zusammensetzung aus den Komponenten Biphenyl (A) und Naphthalin (B) bestimmt werden. Anschließend

Mehr

Versuch P2-11: Polarisation & Doppelbrechung

Versuch P2-11: Polarisation & Doppelbrechung Versuch P2-11: Polarisation & Doppelbrechung Auswertung: Gruppe Mi-25: Bastian Feigl Oliver Burghardt Aufgabe 1: Wir haben das optische System wie in der Vorbereitung überlegt aufgebaut. Wir maßen den

Mehr

4.3 Reaktionsgeschwindigkeit und Katalysator

4.3 Reaktionsgeschwindigkeit und Katalysator 4.3 Reaktionsgeschwindigkeit und Katalysator - Neben der thermodynamischen Lage des chemischen Gleichgewichts ist der zeitliche Ablauf der Reaktion, also die Geschwindigkeit der Ein- Einstellung des Gleichgewichts,

Mehr

[A] = c(a) in den Einheiten mol/l (1) Eine tiefgestellte Null wie bei [A] 0 zeigt an, dass es sich um eine Anfangskonzentration

[A] = c(a) in den Einheiten mol/l (1) Eine tiefgestellte Null wie bei [A] 0 zeigt an, dass es sich um eine Anfangskonzentration 1 Ableitung des Massenwirkungsgesetzes Mit dem Umfüllexperiment haben wir herausgefunden, dass die Stoffmengen oder die Stoffmengenkonzentrationen im Gleichgewicht auf einen Grenzwert zulaufen. Außerdem

Mehr

Aufgabe: Untersuchung der Kinetik der Zersetzung von Harnstoff durch Urease.

Aufgabe: Untersuchung der Kinetik der Zersetzung von Harnstoff durch Urease. A 36 Michaelis-Menten-Kinetik: Hydrolyse von Harnstoff Aufgabe: Untersuchung der Kinetik der Zersetzung von Harnstoff durch Urease. Grundlagen: a) Michaelis-Menten-Kinetik Im Bereich der Biochemie spielen

Mehr

1 Relaxationskinetik der Neutralisationsreaktion in Wasser

1 Relaxationskinetik der Neutralisationsreaktion in Wasser Physikalische Chemie II Lösung 6 28. Oktober 206 Relaxationskinetik der Neutralisationsreaktion in Wasser. Für die Reaktion A + B definiert man die Auslenkungsvariable x so, dass gilt k a kb 2P [A] = [A]

Mehr

Kinetik: a) Reaktionsgeschwindigkeit (zeitlicher Verlauf) b) Reaktionsweg (Mechanismus)

Kinetik: a) Reaktionsgeschwindigkeit (zeitlicher Verlauf) b) Reaktionsweg (Mechanismus) Kinetik Kinetik: a) Reaktionsgeschwindigkeit (zeitlicher Verlauf) b) Reaktionsweg (Mechanismus) Klassifizierung chem. Reaktionen nach kinetischen Aspekten a) Reaktionsmolekularität: wie viele Teilchen

Mehr

OPTIK. Geometrische Optik Wellen Beugung, Interferenz optische Instrumente

OPTIK. Geometrische Optik Wellen Beugung, Interferenz optische Instrumente Physik für Pharmazeuten OPTIK Geometrische Optik Wellen Beugung, Interferenz optische Instrumente geometrische Optik Wellengleichungen (Maxwellgleichungen) beschreiben "alles" Evolution exakt berechenbar

Mehr

1 Aufwärmen nach den Ferien

1 Aufwärmen nach den Ferien Physikalische Chemie II Lösung 23. September 206 Aufwärmen nach den Ferien. Ermitteln Sie die folgenden Integrale. Partielle Integration mit der Anwendung der generellen Regel f g = fg fg (in diesem Fall

Mehr

Allgemeine Chemie Computer Praktikum Frühjahrssemester Regressions-Tutorial Lineare und nicht-lineare Regression

Allgemeine Chemie Computer Praktikum Frühjahrssemester Regressions-Tutorial Lineare und nicht-lineare Regression 1 Einführung Allgemeine Chemie Computer Praktikum Frühjahrssemester Regressions-Tutorial Lineare und nicht-lineare Regression Datenauswertung In einem naturwissenschaftlichen Experiment werden Sie meist

Mehr

PRAKTIKUM DER TECHNISCHEN CHEMIE I PRAKTIKUMSPROTOKOLL. WiSe 2015/2016. Versuch 4. Betriebspunkte des indirekt gekühlten CSTR

PRAKTIKUM DER TECHNISCHEN CHEMIE I PRAKTIKUMSPROTOKOLL. WiSe 2015/2016. Versuch 4. Betriebspunkte des indirekt gekühlten CSTR PRAKTIKUM DER TECHNISCHEN CHEMIE I PRAKTIKUMSPROTOKOLL WiSe 2015/2016 Versuch 4 Betriebspunkte des indirekt gekühlten CSTR Rami Saoudi (356563) Guido Petri (364477) Gruppe 29 1. EINFÜHRUNG Ziel ist es,

Mehr

Technische Universität Dresden Fachrichtung Physik K.Prokert 09/2001 M. Lange 12/2008. Diffusion. Physikalisches Praktikum. Inhaltsverzeichnis

Technische Universität Dresden Fachrichtung Physik K.Prokert 09/2001 M. Lange 12/2008. Diffusion. Physikalisches Praktikum. Inhaltsverzeichnis Technische Universität Dresden Fachrichtung Physik K.Prokert 9/ M. Lange /8 Physikalisches Praktikum Versuch: DI Diffusion Inhaltsverzeichnis. Aufgabenstellung. Grundlagen 3. Versuchsdurchführung 4. Hinweise

Mehr

3 Teilchen treffen Teilchen: Reaktionskinetik

3 Teilchen treffen Teilchen: Reaktionskinetik 3 Teilchen treffen Teilchen: Reaktionskinetik Die chemische Kinetik oder Reaktionskinetik beschäftigt sich mit der Geschwindigkeit von chemischen Reaktionen. Daneben dient sie zur Aufklärung des Mechanismus

Mehr

Arbeitskreis Kappenberg Reaktion von Marmor mit Salzsäure H 02 Computer im Chemieunterricht (Reaktionskinetik) Gravimetrie

Arbeitskreis Kappenberg Reaktion von Marmor mit Salzsäure H 02 Computer im Chemieunterricht (Reaktionskinetik) Gravimetrie Computer im Chemieunterricht (Reaktionskinetik) Gravimetrie Prinzip: Marmor reagiert mit Salzsäure. Das dabei entweichende Kohlenstoffdioxid führt zu einem Massenverlust, der über eine bestimmte Zeit verfolgt

Mehr

PRISMEN - SPEKTRALAPPARAT

PRISMEN - SPEKTRALAPPARAT Grundpraktikum der Physik Versuch Nr. 20 PRISMEN - SPEKTRALAPPARAT Versuchsziel: Bestimmung der Winkeldispersionskurve und des Auflösungsvermögens von Prismen. brechende Kante Ablenkwinkel einfallendes

Mehr

PROTOKOLL ZUM VERSUCH REFRAKTOMETRIE. Inhaltsverzeichnis

PROTOKOLL ZUM VERSUCH REFRAKTOMETRIE. Inhaltsverzeichnis PROTOKOLL ZUM VERSUCH REFRAKTOMETRIE CHRIS BÜNGER Inhaltsverzeichnis 1. Versuchsbeschreibung 1 1.1. Ziel 1 1.2. Aufgabe 1 1.3. Das Abbé-Refraktometer 1 2. Versuchsdurchführung 3 2.1. Bestimmung der Brechungsindizes

Mehr

Übung 6. Allgemeine Chemie I Herbstsemester O(l) H 3. (g), (4) G 0 R = ( 32.89) kj/mol ( ) kj/mol (5) G 0 R = 101.

Übung 6. Allgemeine Chemie I Herbstsemester O(l) H 3. (g), (4) G 0 R = ( 32.89) kj/mol ( ) kj/mol (5) G 0 R = 101. Übung 6 Allgemeine Chemie I Herbstsemester 01 1. Aufgabe MM Aufgabe 1.10 Wir betrachten zuerst den Fall X = F. Reaktionsgleichung: BX 3 (g) + 3 H O(l) H 3 BO 3 (aq) + 3 HX(g) (X = F oder Cl) G 0 R = i

Mehr

Mutarotation. 1 Aufgabenstellung. 2 Grundlagen. Physikalisch-Chemische Praktika K12

Mutarotation. 1 Aufgabenstellung. 2 Grundlagen. Physikalisch-Chemische Praktika K12 K12 Mutarotation 1 Aufgabenstellung 1. Bestimmung der Geschwindigkeitskonstanten für die Hin- und Rückreaktion bei der Mutarotation von D-Glucose für verschiedene Temperaturen. 2. Ermittlung der Gleichgewichtskonstante

Mehr

Polarisation und optische Aktivität

Polarisation und optische Aktivität Polarisation und optische Aktivität 1 Entstehung polarisiertes Licht Streuung und Brechung einer Lichtwelle Reflexion einer Lichtwelle Emission durch eine polarisierte Quelle z.b. einen schwingenden Dipol

Mehr

α = tan Absorption & Reflexion

α = tan Absorption & Reflexion Absorption & Reflexion Licht wird von Materie absorbiert, und zwar meist frequenzabhängig. Bestrahlt man z.b. eine orange Oberfläche mit weißem Tageslicht, so wird nur jener Farbteil absorbiert, der nicht

Mehr

Molekülsymmetrie und Kristallographie

Molekülsymmetrie und Kristallographie Optische Aktivität Wie schon im Skriptum 5 erwähnt ist es nicht einfach, aus experimentellen Daten auf die Absolutkonfiguration einer chiralen Verbindung zu schließen. In den meisten Fällen verwendet man

Mehr

V 23 Dilatometrische Bestimmung reaktionskinetischer Größen

V 23 Dilatometrische Bestimmung reaktionskinetischer Größen Grundpraktikum Physikalische Chemie V 23 Dilatometrische Bestimmung reaktionskinetischer Größen Überarbeitetes Versuchsskript, L. Kibler, 19.11.2007 1 1. Vorkenntnisse Vor Durchführung des Versuches sollten

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 5. Übungsblatt - 22.November 2010 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (8 Punkte) Ein

Mehr

EinFaCh 2. Studienvorbereitung Chemie. Einstieg in Freibergs anschauliches Chemiewissen Teil 2: Chemische Reaktionskinetik. tu-freiberg.

EinFaCh 2. Studienvorbereitung Chemie. Einstieg in Freibergs anschauliches Chemiewissen Teil 2: Chemische Reaktionskinetik. tu-freiberg. Studienvorbereitung Chemie EinFaCh 2 Einstieg in Freibergs anschauliches Chemiewissen Teil 2: Chemische Reaktionskinetik tu-freiberg.de tu-freiberg.de/fakultaet2/einfach Was bedeutet Chemische Reaktionskinetik?

Mehr

Übungsklausur. Optik und Wellenmechanik (Physik311) WS 2015/2016

Übungsklausur. Optik und Wellenmechanik (Physik311) WS 2015/2016 Übungsklausur Optik und Wellenmechanik (Physik311) WS 2015/2016 Diese Übungsklausur gibt Ihnen einen Vorgeschmack auf die Klausur am 12.02.2015. Folgende Hilfsmittel werden erlaubt sein: nicht programmierbarer

Mehr

Racematspaltung via Clatrate:

Racematspaltung via Clatrate: Racematspaltung Racematspaltung durch Bildung diastereomerer Salze Racematspaltung durch Bildung diastereomerer Lactole Racematspaltung via Clatrate Enzymatische Racematspaltung Racematspaltung via Clatrate:

Mehr

Lichtreflexion. Physikalisches Grundpraktikum IV. Name: Daniel Schick Betreuer: Dr. Hoppe Versuch ausgeführt: Protokoll erstellt:

Lichtreflexion. Physikalisches Grundpraktikum IV. Name: Daniel Schick Betreuer: Dr. Hoppe Versuch ausgeführt: Protokoll erstellt: Physikalisches Grundpraktikum IV Universität Rostock :: Institut für Physik 5 Lichtreflexion Name: Daniel Schick Betreuer: Dr. Hoppe Versuch ausgeführt: 2.4.5 Protokoll erstellt: 22.4.5 1 Ziele: Auseinandersetzen

Mehr

Blitzlichtphotolyse 1

Blitzlichtphotolyse 1 Blitzlichtphotolyse 1 Reaktionskinetik einer Spiropyranbildung WICHTIG: 1. Sie sollten einen USB-Speicherstick o.ä. mitbringen! 2. Lesen Sie sich diese Anleitung VOR dem Tag des Praktikums gut durch. 3.

Mehr

Arbeitskreis Potentiometrische Verfolgung der Hydrolyse F 12 Kappenberg von 2-Chlor-2-methylpropan Seite 1 / 8. Prinzip:

Arbeitskreis Potentiometrische Verfolgung der Hydrolyse F 12 Kappenberg von 2-Chlor-2-methylpropan Seite 1 / 8. Prinzip: Kappenberg von 2-Chlor-2-methylpropan Seite 1 / 8 Prinzip: Die Hydrolyse von tert. Butylchlorid in wässriger Lösung kann mit Hilfe der ph - Wert - Messung verfolgt werden, da dabei Oxoniumionen entstehen.

Mehr

Physikalisches Praktikum 3

Physikalisches Praktikum 3 Datum: 0.10.04 Physikalisches Praktikum 3 Versuch: Betreuer: Goniometer und Prisma Dr. Enenkel Aufgaben: 1. Ein Goniometer ist zu justieren.. Der Brechungsindex n eines gegebenen Prismas ist für 4 markante

Mehr

Reaktion von Marmor mit Salzsäure (Reaktionskinetik)

Reaktion von Marmor mit Salzsäure (Reaktionskinetik) Prinzip Marmor reagiert mit Salzsäure. Das dabei entweichende Kohlenstoffdioxid führt zu einem Massenverlust, der über eine bestimmte Zeit verfolgt und unter reaktionskinetischen Aspekten ausgewertet wird.

Mehr

Laboranten Labormethodik und Physikalische Grundlagen

Laboranten Labormethodik und Physikalische Grundlagen 0.09.06 Brechung Trifft Licht auf die Grenzfläche zweier Stoffe, zweier Medien, so wird es zum Teil reflektiert, zum Teil verändert es an der Grenze beider Stoffe seine Richtung, es wird gebrochen. Senkrecht

Mehr

Versuch O3/O4 - Reflexion polarisierten Lichts / Drehung der Polarisationsebene. Abgabedatum: 24. April 2007

Versuch O3/O4 - Reflexion polarisierten Lichts / Drehung der Polarisationsebene. Abgabedatum: 24. April 2007 Versuch O3/O4 - Reflexion polarisierten Lichts / Drehung der Polarisationsebene Sven E Tobias F Abgabedatum: 24. April 2007 Inhaltsverzeichnis 1 Thema des Versuchs 3 2 Physikalischer Kontext 3 2.1 Reflexionsgesetz............................

Mehr

Physikalische Chemie: Kinetik

Physikalische Chemie: Kinetik Physikalische Chemie: Kinetik Prof. Thiemann SS 22 Protokoll Versuch 9 «Die Bestimmung der Reaktionsordnung einer komplexen Reaktion am Beispiel des Bromat-Zerfalls» 1 Inhalt: 1. Theorie 2. Zusatzfragen

Mehr

Praktikum Optische Technologien, Protokoll Versuch polarisiertes Licht

Praktikum Optische Technologien, Protokoll Versuch polarisiertes Licht Praktikum Optische Technologien, Protokoll Versuch polarisiertes Licht Marko Nonhoff, Christoph Hansen, Jannik Ehlert chris@university-material.de Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht.

Mehr

Versuch K2 Photometrische Messung

Versuch K2 Photometrische Messung Versuch K2 Photometrische Messung Aufgaben: 1. Messung der Extinktion von Mangan(III)-oxalat bei verschiedenen Wellenlängen. 2. Bestimmung der Geschwindigkeitskonstanten des Zerfalls des komplexen Mangan(III)-oxalations

Mehr

Übungen PC - Kinetik - Seite 1 (von 5)

Übungen PC - Kinetik - Seite 1 (von 5) Übungsaufgaben PC: Kinetik 1) Für die Umlagerung von cis- in trans-dichlorethylen wurde die Halbwertszeit 245 min gefunden; die Reaktion gehorcht einem Geschwindigkeitsgesetz erster Ordnung. Wie viel g

Mehr

Thermodynamik & Kinetik

Thermodynamik & Kinetik Thermodynamik & Kinetik Inhaltsverzeichnis Ihr versteht die Begriffe offenes System, geschlossenes System, isoliertes System, Enthalpie, exotherm und endotherm... 3 Ihr kennt die Funktionsweise eines Kalorimeters

Mehr

Einführung in die Chemische Kinetik (Formale Reaktionskinetik)

Einführung in die Chemische Kinetik (Formale Reaktionskinetik) Einführung in die Chemische Kinetik (Formale Reaktionskinetik) 1 Einführung 2 Formale Reaktionskinetik einfacher Reaktionen 2.1 Reaktionsgeschwindigkeit einfacher Reaktionen 2.2 Bestimmung des Geschwindigkeitsgesetzes

Mehr