Das Prinzip der Inklusion und Exklusion

Größe: px
Ab Seite anzeigen:

Download "Das Prinzip der Inklusion und Exklusion"

Transkript

1 Extremal Combinatorics

2 Gliederung Einleitung Inklusion und Exklusion Bonferroni-Ungleichungen Erweiterungen Zusammenfassung

3 Einleitung (I) Prinzip der Inklusion und Exklusion Siebformel Das Sieb des Eratosthenes Verbindet die Kardinalität einer Vereinigung von Mengen mit der Kardinalität von Schnittmengen einiger dieser Mengen (letztere sind oft leichter zu Bestimmen) Bsp.: 2 Mengen A und B A U B = A + B - A B

4 Einleitung (II) Bsp.: 3 Mengen A B C A U B U C = A + B + C - A B - A B - A B + A B C

5 Einleitung (II) Bsp.: 3 Mengen A B C A U B U C = A + B + C - A B - A B - A B + A B C Allgemein: Siebformel

6 Einleitung (III) Name Inklusion und Exklusion Überschätzen, falls k ungerade Unterschätzen, falls k gerade Bonferroni-Ungleichungen Zunächst entdeckt von Ch. Jordan Später auch von Bonferroni Heute: Diverse Erweiterungen und Verbesserungen der Ungleichungen

7 Übersicht Einleitung Inklusion und Exklusion Das Prinzip Anwendungen Bonferroni-Ungleichungen Erweiterungen Zusammenfassung

8 Inklusion und Exklusion: Das Prinzip (I) Schreibweise

9 Inklusion und Exklusion: Das Prinzip (I) Schreibweise Satz 1:

10 Inklusion und Exklusion: Das Prinzip (II) Beweis

11 Inklusion und Exklusion: Das Prinzip (II) Beweis

12 Inklusion und Exklusion: Das Prinzip (II) Beweis

13 Inklusion und Exklusion: Das Prinzip (II) Beweis

14 Inklusion und Exklusion: Das Prinzip (III) Satz 2:

15 Inklusion und Exklusion: Das Prinzip (III) Satz 2: Beweis

16 Inklusion und Exklusion: Das Prinzip (III) Satz 2: Beweis

17 Inklusion und Exklusion: Das Prinzip (IV) Resultat Alternative Schreibweise

18 Inklusion und Exklusion: Anwendungen (I) Wieviele Zahlen 1000 sind durch 3, 5 oder 7 teilbar? Lösung (Satz 2):

19 Inklusion und Exklusion: Anwendungen (I) Wieviele Zahlen < 1000 sind durch 3, 5 oder 7 teilbar? Lösung (Satz 2):

20 Inklusion und Exklusion: Anwendungen (I) Wieviele Zahlen < 1000 sind durch 3, 5 oder 7 teilbar? Lösung (Satz 2):

21 Inklusion und Exklusion: Anwendungen (II) Wieviele Elemente gehören zu allen Ai aber zu keinem Anderen? (Spezialfall: Satz 1)

22 Inklusion und Exklusion: Anwendungen (II) Wieviele Elemente gehören zu allen Ai, i є I aber zu keinem Anderen? (Spezialfall: Satz 1)

23 Inklusion und Exklusion: Anwendungen (II) Wieviele Elemente gehören zu allen Ai, i є I aber zu keinem Anderen? (Spezialfall: Satz 1)

24 Inklusion und Exklusion: Anwendungen (II) Wieviele Elemente gehören zu allen Ai, i є I aber zu keinem Anderen? (Spezialfall: Satz 1)

25 Inklusion und Exklusion: Anwendungen (II) Wieviele Elemente gehören zu allen Ai, i є I aber zu keinem Anderen? (Spezialfall: Satz 1)

26 Inklusion und Exklusion: Anwendungen (III) Derangement-Zahlen Derangement = Permutation ohne Fixpunkt Wie groß ist die Anzahl der Derangements?

27 Inklusion und Exklusion: Anwendungen (III) Derangement-Zahlen Derangement = Permutation ohne Fixpunkt Wie groß ist die Anzahl der Derangements?

28 Inklusion und Exklusion: Anwendungen (III) Derangement-Zahlen Derangement = Permutation ohne Fixpunkt Wie groß ist die Anzahl der Derangements?

29 Inklusion und Exklusion: Anwendungen (III) Derangement-Zahlen Derangement = Permutation ohne Fixpunkt Wie groß ist die Anzahl der Derangements?

30 Übersicht Einleitung Inklusion und Exklusion Bonferroni-Ungleichungen Erweiterungen Zusammenfassung

31 Bonferroni-Ungleichungen (I) Die Ungleichungen

32 Bonferroni-Ungleichungen (II) Beweis

33 Bonferroni-Ungleichungen (II) Beweis

34 Bonferroni-Ungleichungen (II) Beweis

35 Bonferroni-Ungleichungen (II) Beweis

36 Übersicht Einleitung Inklusion und Exklusion Bonferroni Ungleichungen Erweiterungen Inklusion und Exklusion Bonferroni-Ungleichungen Anwendungen Zusammenfassung

37 Erweiterungen: Inklusion und Exklusion (I) 5 5 Mengen 2-1 = 31 Schnittmengen U A = A + A + A + A + A i A A - A A - A A - A A statt 31 Terme

38 Erweiterungen: Inklusion und Exklusion (II)

39 Erweiterungen: Inklusion und Exklusion (II) Verwendung von Messfunktionen

40 Erweiterungen: Bonferroni-Ungleichungen (I)

41 Erweiterungen: Bonferroni-Ungleichungen (I)

42 Erweiterungen: Anwendungen (I) µ beispielsweise ein Maß für die Wahrscheinlichkeit eines Ereignisses Wahrscheinlichkeitstheorie Verläßlichkeitsanalyse

43 Übersicht Einleitung Inklusion und Exklusion Bonferroni Ungleichungen Erweiterungen Zusammenfassung

44 Zusammenfassung Berechnung der Kardinalität m.h.v. Kardinalitäten von Schnittmengen Näherung mit Hilfe der Bonferroni- Ungleichungen Exakter durch erweiterte Gleichungen Einsatz von Messfunktionen Bsp.: Wahrscheinlichkeiten

45 Fragen

46 Weitere Anwendungsbeispiele Platziere 3 Paare um einen runden Tisch. Wieviele Möglichkeiten gibt es, dass keiner neben seinem Partner sitzt? sich keine zwei Frauen gegenüber sitzen? Insgesamt gibt es 5! Möglichkeiten, die 6 Personen um den Tisch zu platzieren.

47 Weitere Anwendungsbeispiele keiner neben seinem Partner sitzt?

48 Weitere Anwendungsbeispiele keiner neben seinem Partner sitzt?

49 Weitere Anwendungsbeispiele sich keine zwei Frauen gegenüber sitzen?

50 Weitere Anwendungsbeispiele sich keine zwei Frauen gegenüber sitzen?

51 Weitere Anwendungsbeispiele sich keine zwei Frauen gegenüber sitzen?

52 Weitere Anwendungsbeispiele sich keine zwei Frauen gegenüber sitzen?

53 Weitere Anwendungsbeispiele sich keine zwei Frauen gegenüber sitzen?

54 Ende Danke

55 Weitere Anwendungsbeispiele (II) Graphfärbung mit r Farben

56 Weitere Anwendungsbeispiele (III) A sei nxn Matrix mit Aij є {-1, 0, 1} und Aii = 0. Dann gilt det(a) 0.

1 3 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7

1 3 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1 3 1 3 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1 3 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1 3 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1

Mehr

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0.

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0. 1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem Folg. 2 Sei (Ω, E, P) W.-raum. Seien A, B,A 1,...,A n Ereignisse. Es gelten die folgenden Aussagen: 1. P(A) = 1 P(A). 2. Für das unmögliche Ereignis gilt:

Mehr

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv

Mehr

Mathematik 1, Teil B

Mathematik 1, Teil B FH Oldenburg/Ostfriesland/Wilhelmshaven Fachb. Technik, Abt. Elektrotechnik u. Informatik Prof. Dr. J. Wiebe www.et-inf.fho-emden.de/~wiebe Mathematik 1, Teil B Inhalt: 1.) Grundbegriffe der Mengenlehre

Mehr

Männerpolitische Grundsatzabteilung. Vereinbarkeit von Familie und Beruf aus Männersicht

Männerpolitische Grundsatzabteilung. Vereinbarkeit von Familie und Beruf aus Männersicht Männerpolitische Grundsatzabteilung Vereinbarkeit von Familie und Beruf aus Männersicht Vielen Dank den Sponsoren: Inhaltsverzeichnis 4 Inhaltsverzeichnis 5 Inhaltsverzeichnis 6 Vorwort 7 Danksagung 8

Mehr

2.2 Ereignisse und deren Wahrscheinlichkeit

2.2 Ereignisse und deren Wahrscheinlichkeit 2.2 Ereignisse und deren Wahrscheinlichkeit Literatur: [Papula Bd., Kap. II.2 und II.], [Benning, Kap. ], [Bronstein et al., Kap. 1.2.1] Def 1 [Benning] Ein Zufallsexperiment ist ein beliebig oft wiederholbarer,

Mehr

Maristengymnasium Fürstenzell zuletzt geändert am 10.03.2001 Aufgaben zur Kombinatorik (mit Lösungen)

Maristengymnasium Fürstenzell zuletzt geändert am 10.03.2001 Aufgaben zur Kombinatorik (mit Lösungen) Maristengymnasium Fürstenzell zuletzt geändert am 0.0.00 Aufgaben zur Kombinatorik (mit Lösungen) 0.. Wieviele Möglichkeiten gibt es für Kinder, sich auf einen Schlitten zu setzen, wenn ihn nur davon steuern

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7:

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7: Discrete Probability - Übungen (SS5) Felix Rohrer Wahrscheinlichkeitstheorie 1. KR, Abschnitt 6.1, Aufgabe 5: Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Augensumme von zwei geworfenen Würfeln

Mehr

Wissenschaftliches Arbeiten Quantitative Methoden

Wissenschaftliches Arbeiten Quantitative Methoden Wissenschaftliches Arbeiten Quantitative Methoden Prof. Dr. Stefan Nickel WS 2008 / 2009 Gliederung I. Motivation II. III. IV. Lesen mathematischer Symbole Wissenschaftliche Argumentation Matrizenrechnung

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

5 Zwei spieltheoretische Aspekte

5 Zwei spieltheoretische Aspekte 5 Zwei spieltheoretische Aspekte In diesem Kapitel wollen wir uns mit dem algorithmischen Problem beschäftigen, sogenannte Und-Oder-Bäume (kurz UOB) auszuwerten. Sie sind ein Spezialfall von Spielbäumen,

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Christian Serpé Universität Münster 14. September 2011 Christian Serpé (Universität Münster) 14. September 2011 1 / 56 Gliederung 1 Motivation Beispiele Allgemeines Vorgehen 2 Der Vektorraum R n 3 Lineare

Mehr

Was ist Mathematik? Kinderuni Wien 2008 7. Juli 2008. Gabriela Schranz-Kirlinger. Technische Universität Wien

Was ist Mathematik? Kinderuni Wien 2008 7. Juli 2008. Gabriela Schranz-Kirlinger. Technische Universität Wien Was ist Mathematik? Gabriela Schranz-Kirlinger Kinderuni Wien 2008 7. Juli 2008 Technische Universität Wien Kinderuni: Was ist Mathematik? 7/7/2008 p.1/29 MATHEMATIK ist Zählen und Rechnen ist eine Sprache

Mehr

4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung

4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung 4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung In vielen Anwendungen treten lineare Gleichungssysteme auf, die eine unterschiedliche Anzahl von Gleichungen und Unbekannten besitzen: Ax

Mehr

Themen: Kubische Gleichungen, Ungleichungen, Induktion

Themen: Kubische Gleichungen, Ungleichungen, Induktion Lo sungen zu U bungsblatt Mathematik fu r Ingenieure Maschinenbauer und Sicherheitstechniker), 1. Semester, bei Prof. Dr. G. Herbort im WiSe1/14 Dipl.-Math. T. Pawlaschyk, 05.11.1 Themen: Kubische Gleichungen,

Mehr

2. Rechnen mit Wahrscheinlichkeiten

2. Rechnen mit Wahrscheinlichkeiten 2. Rechnen mit Wahrscheinlichkeiten 2.1 Axiome der Wahrscheinlichkeitsrechnung Die Wahrscheinlichkeitsrechnung ist ein Teilgebiet der Mathematik. Es ist üblich, an den Anfang einer mathematischen Theorie

Mehr

Mengen und Abbildungen

Mengen und Abbildungen Mengen und Abbildungen Der Mengenbegriff Durchschnitt, Vereinigung, Differenzmenge Kartesisches Produkt Abbildungen Prinzip der kleinsten natürlichen Zahl Vollständige Induktion Mengen und Abbildungen

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

Matrizen und Determinanten

Matrizen und Determinanten Matrizen und Determinanten 1 Matrizen und Determinanten 1 Einführung in den Matrizenbegriff Zur Beschreibung und Lösung vieler physikalischer Probleme ist die Vektorrechnung vonnöten Durch Verwendung von

Mehr

Iterative Verfahren, Splittingmethoden

Iterative Verfahren, Splittingmethoden Iterative Verfahren, Splittingmethoden Theodor Müller 19. April 2005 Sei ein lineares Gleichungssystem der Form Ax = b b C n, A C n n ( ) gegeben. Es sind direkte Verfahren bekannt, die ein solches Gleichungssystem

Mehr

Satz 16 (Multiplikationssatz)

Satz 16 (Multiplikationssatz) Häufig verwendet man die Definition der bedingten Wahrscheinlichkeit in der Form Damit: Pr[A B] = Pr[B A] Pr[A] = Pr[A B] Pr[B]. (1) Satz 16 (Multiplikationssatz) Seien die Ereignisse A 1,..., A n gegeben.

Mehr

Inklusion und Exklusion

Inklusion und Exklusion Inklusion und xklusion ufgaben ufgabe 1: Wie groß ist die nzahl der natürlichen Zahlen zwischen 1 und 100 (jeweils einschließlich), die weder durch 2 noch durch 3 teilbar sind? ufgabe 2: Wie groß ist die

Mehr

Wahrscheinlichkeitstheorie. Zapper und

Wahrscheinlichkeitstheorie. Zapper und Diskrete Wahrscheinlichkeitsräume Slide 1 Wahrscheinlichkeitstheorie die Wissenschaft der Zapper und Zocker Diskrete Wahrscheinlichkeitsräume Slide 2 Münzwürfe, Zufallsbits Elementarereignisse mit Wahrscheinlichkeiten

Mehr

Didaktische Grundlagen Arithmetik Vertiefung Übungen 4

Didaktische Grundlagen Arithmetik Vertiefung Übungen 4 Westfälische Wilhelms-Universität Münster Institut für Didaktik der Mathematik und Informatik Dr. Astrid Brinkmann Didaktische Grundlagen Arithmetik Vertiefung Übungen 4 Von allen, die bis jetzt nach Wahrheit

Mehr

Inhaltsverzeichnis Mathematik

Inhaltsverzeichnis Mathematik 1. Mengenlehre 1.1 Begriff der Menge 1.2 Beziehungen zwischen Mengen 1.3 Verknüpfungen von Mengen (Mengenoperationen) 1.4 Übungen 1.5 Übungen (alte BM-Prüfungen) 1.6 Zahlenmengen 1.7 Grundmenge (Bezugsmenge)

Mehr

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.)

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.) 3. Untergruppen 19 3. Untergruppen Nachdem wir nun einige grundlegende Gruppen kennengelernt haben, wollen wir in diesem Kapitel eine einfache Möglichkeit untersuchen, mit der man aus bereits bekannten

Mehr

y x x y ( 2x 3y + z x + z

y x x y ( 2x 3y + z x + z Matrizen Aufgabe Sei f R R 3 definiert durch ( ) x 3y x f = x + y y x Berechnen Sie die Matrix Darstellung von f Aufgabe Eine lineare Funktion f hat die Matrix Darstellung A = 0 4 0 0 0 0 0 Berechnen Sie

Mehr

Würfel-Aufgabe Bayern LK 2006

Würfel-Aufgabe Bayern LK 2006 Würfel-Aufgabe Bayern LK 2006 Die Firma VEGAS hat ein neues Gesellschaftsspiel entwickelt, bei dem neben Laplace-Würfeln auch spezielle Vegas-Würfel verwendet werden, die sich äußerlich von den Laplace-Würfeln

Mehr

1 Axiomatische Definition von Wahrscheinlichkeit

1 Axiomatische Definition von Wahrscheinlichkeit Schülerbuchseite 174 176 Lösungen vorläufig und Unabhängigkeit 1 Axiomatische Definition von Wahrscheinlichkeit S. 174 1 Ein Schätzwert für die Wahrscheinlichkeit von Sau kann nur mithilfe der relativen

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Komplexe Zahlen 5 Lineare Algebra 6 Lineare Programme 2 Grundlegende

Mehr

2. Die Satzgruppe des Pythagoras

2. Die Satzgruppe des Pythagoras Grundwissen Mathematik 9. Klasse Seite von 17 1.4 Rechnen mit reellen Zahlen a) Multiplizieren und Dividieren von reellen Zahlen + Es gilt: a b = a b mit ab R, 0 Beispiele: 18 = 36 = 6 14 14 7 = = a a

Mehr

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen.

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen. Dieses Quiz soll Ihnen helfen, Kapitel 2.5-2. besser zu verstehen. Frage Wir betrachten ein Würfelspiel. Man wirft einen fairen, sechsseitigen Würfel. Wenn eine oder eine 2 oben liegt, muss man 2 SFr zahlen.

Mehr

Die Fakultät. Thomas Peters Thomas Mathe-Seiten 2. Mai 2010

Die Fakultät. Thomas Peters Thomas Mathe-Seiten  2. Mai 2010 Die Fakultät Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 2. Mai 200 Dieser Artikel gibt die Definition der klassischen Fakultät und führt von dort aus zunächst zu der Anwendung in Taylor-Reihen

Mehr

7 Die Determinante einer Matrix

7 Die Determinante einer Matrix 7 Die Determinante einer Matrix ( ) a11 a Die Determinante einer 2 2 Matrix A = 12 ist erklärt als a 21 a 22 det A := a 11 a 22 a 12 a 21 Es ist S 2 = { id, τ}, τ = (1, 2) und sign (id) = 1, sign (τ) =

Mehr

Basistext Lineare Gleichungssysteme. Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=%

Basistext Lineare Gleichungssysteme. Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=% Basistext Lineare Gleichungssysteme Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=% Mit zwei Unbekannten gibt es die allgemeine Form:! #+% '=( Gelten mehrere dieser Gleichungen

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 2.3 One-Time Pads und Perfekte Sicherheit 1. Perfekte Geheimhaltung 2. One-Time Pads 3. Strombasierte Verschlüsselung Wie sicher kann ein Verfahren werden? Ziel ist

Mehr

Algorithmen mit konstantem Platzbedarf: Die Klasse REG

Algorithmen mit konstantem Platzbedarf: Die Klasse REG Algorithmen mit konstantem Platzbedarf: Die Klasse REG Sommerakademie Rot an der Rot AG 1 Wieviel Platz brauchen Algorithmen wirklich? Daniel Alm Institut für Numerische Simulation Universität Bonn August

Mehr

Grundbegriffe der Wahrscheinlichkeitstheorie

Grundbegriffe der Wahrscheinlichkeitstheorie KAPITEL 1 Grundbegriffe der Wahrscheinlichkeitstheorie 1. Zufallsexperimente, Ausgänge, Grundmenge In der Stochastik betrachten wir Zufallsexperimente. Die Ausgänge eines Zufallsexperiments fassen wir

Mehr

Mathematik für Bauingenieure

Mathematik für Bauingenieure Mathematik für Bauingenieure von Kerstin Rjasanowa 1. Auflage Mathematik für Bauingenieure Rjasanowa schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Hanser München 2006 Verlag C.H.

Mehr

Signalverarbeitung 2. Volker Stahl - 1 -

Signalverarbeitung 2. Volker Stahl - 1 - - 1 - Hidden Markov Modelle - 2 - Idee Zu klassifizierende Merkmalvektorfolge wurde von einem (unbekannten) System erzeugt. Nutze Referenzmerkmalvektorfolgen um ein Modell Des erzeugenden Systems zu bauen

Mehr

Routing Algorithmen. Begriffe, Definitionen

Routing Algorithmen. Begriffe, Definitionen Begriffe, Definitionen Routing (aus der Informatik) Wegewahl oder Verkehrslenkung bezeichnet in der Telekommunikation das Festlegen von Wegen für Nachrichtenströme bei der Nachrichtenübermittlung über

Mehr

Venndiagramm, Grundmenge und leere Menge

Venndiagramm, Grundmenge und leere Menge Venndiagramm, Grundmenge und leere Menge In späteren Kapitel wird manchmal auf die Mengenlehre Bezug genommen. Deshalb sollen hier die wichtigsten Grundlagen und Definitionen dieser Disziplin kurz zusammengefasst

Mehr

Leitfaden Lineare Algebra: Determinanten

Leitfaden Lineare Algebra: Determinanten Leitfaden Lineare Algebra: Determinanten Die symmetrische Gruppe S n. Eine Permutation σ der Menge S ist eine bijektive Abbildung σ : S S. Ist S eine endliche Menge, so reicht es zu verlangen, dass σ injektiv

Mehr

Vorbereitungskurs Mathematik

Vorbereitungskurs Mathematik Vorbereitungskurs Mathematik Grundlagen für das Unterrichtsfach Mathematik für die Fachhochschulreifeprüfung Zweijährige Höhere Berufsfachschule Berufsoberschule I Duale Berufsoberschule Inhalt 0. Vorwort...

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Kern- und Schulcurriculum Mathematik Klasse 7/8. Stand Schuljahr 2009/10

Kern- und Schulcurriculum Mathematik Klasse 7/8. Stand Schuljahr 2009/10 Kern- und Schulcurriculum Mathematik Klasse 7/8 Stand Schuljahr 2009/10 Klasse 7 UE 1 Prozent- und Zinsrechnung Anteile in Prozent Grundaufgaben der Prozentrechnung Promille Prozentuale Änderungen Zinsen

Mehr

Beispiellösungen zu Blatt 7

Beispiellösungen zu Blatt 7 µathematischer κorrespondenz- zirkel Mathematisches Institut Georg August Universität Göttingen Aufgabe Beispiellösungen zu Blatt 7 Die handelsüblichen Papierformate DIN A0, DIN A usw. haben folgende praktische

Mehr

Lehrwerk: Lambacher Schweizer, Klett Verlag

Lehrwerk: Lambacher Schweizer, Klett Verlag Thema I: Lineare und lineare Gleichungen 1. Lineare 2. Aufstellen von linearen Funktionsgleichungen 3. Nullstellen und Schnittpunkte 1. Klassenarbeit Thema II: Reelle 1. Von bekannten und neuen 2. Wurzeln

Mehr

Musterlösung zur Probeklausur zur Kombinatorik

Musterlösung zur Probeklausur zur Kombinatorik UNIVERSITÄT ULM Institut für Zahlentheorie und Wahrscheinlichkeitstheorie Musterlösung zur Probeklausur zur Kombinatorik Prof. Dr. Helmut Maier, Hans- Peter Reck Gesamtpunktzahl: 00 Punkte Freitag,. Dezember

Mehr

2 Mengenlehre. Definition: Unter einer Menge M versteht man die Zusammenfassung von unterscheidbaren Objekten (den Elementen) zu einem Ganzen.

2 Mengenlehre. Definition: Unter einer Menge M versteht man die Zusammenfassung von unterscheidbaren Objekten (den Elementen) zu einem Ganzen. Mengenlehre 2 Mengenlehre Definition: Unter einer Menge M versteht man die Zusammenfassung von unterscheidbaren Objekten (den Elementen) zu einem Ganzen. Üblicherweise werden Mengen mit Großbuchstaben

Mehr

Grundlagen der Mengenlehre

Grundlagen der Mengenlehre mathe plus Grundlagen der Mengenlehre Seite 1 1 Grundbegriffe Grundlagen der Mengenlehre Def 1 Mengenbegriff nach Georg Cantor (1845-1918) Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener

Mehr

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48 Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48 Grundbegriffe der Informatik Einheit 12: Erste Algorithmen in Graphen Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009

Mehr

Kombinatorik BEISPIEL: WIE VIELE MÖGLICHKEITEN GIBT ES, EINE DREISTELLIGE ZAHL MIT DEN ZIFFERN 3

Kombinatorik BEISPIEL: WIE VIELE MÖGLICHKEITEN GIBT ES, EINE DREISTELLIGE ZAHL MIT DEN ZIFFERN 3 Kombinatorik Die Kombinatorik beschäftigt sich damit, verschiedene mögliche Auswahlen und Anordnungen von Elementen aus endlichen Mengen zu untersuchen. Insbesondere wird die Anzahl dieser berechnet. BEISPIEL:

Mehr

9 Die Normalverteilung

9 Die Normalverteilung 9 Die Normalverteilung Dichte: f(x) = 1 2πσ e (x µ)2 /2σ 2, µ R,σ > 0 9.1 Standard-Normalverteilung µ = 0, σ 2 = 1 ϕ(x) = 1 2π e x2 /2 Dichte Φ(x) = 1 x 2π e t2 /2 dt Verteilungsfunktion 331 W.Kössler,

Mehr

JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen

JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen ELEMENTE DER MATHEMATIK 5 Schroedel Verlag Argumentieren Problemlösen Modellieren Werkzeuge Arithmetik/ Algebra Funktionen Geometrie

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 5 Hilfsmittel aus der Kombinatorik 7 Bedingte

Mehr

Aufgabenblatt: Binomische Formeln

Aufgabenblatt: Binomische Formeln Aufgabenblatt: Binomische Formeln Aufgabe : a) (c + t) b) (x + ) c) ( + z) d) (g m) e) ( a ) f) (a b) g) (b a) h) (k m) i) (m k) Aufgabe : a) (p + q)(p q) b) (c + d)(c d) c) (x + )( x) d) (u + )( u ) e)

Mehr

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH )

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH ) Grundlegende Bemerkungen : Der Begriff des Vektors wurde in den vergangenen Jahren im Geometrieunterricht eingeführt und das mathematische Modell des Vektors wurde vor allem auch im Physikunterricht schon

Mehr

Beispiellösungen zu Blatt 111

Beispiellösungen zu Blatt 111 µ κ Mathematisches Institut Georg-August-Universität Göttingen Beispiellösungen zu Blatt 111 Aufgabe 1 Ludwigshafen hat einen Bahnhof in Dreiecksform. Markus, Sabine und Wilhelm beobachten den Zugverkehr

Mehr

Laser-Doppler-Anemometrie

Laser-Doppler-Anemometrie Ein laseroptisches Messverfahren zur berührungslosen Messung von Strömungsgeschwindigkeiten Laserfernerkundung Beispiel: LIDAR LIght Detection And Ranging siehe www.uni-hohenheim.de/www120 Aerosole Temperatur

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 0.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

K8 Stetige Zufallsvariablen Theorie und Praxis

K8 Stetige Zufallsvariablen Theorie und Praxis K8 Stetige Zufallsvariablen Theorie und Praxis 8.1 Theoretischer Hintergrund Wir haben (nicht abzählbare) Wahrscheinlichkeitsräume Meßbare Funktionen Zufallsvariablen Verteilungsfunktionen Dichten in R

Mehr

Mathematik für BWL-Bachelor: Übungsbuch

Mathematik für BWL-Bachelor: Übungsbuch Heidrun Matthäus Wolf-Gert Matthäus Mathematik für BWL-Bachelor: Übungsbuch Ergänzungen für Vertiefung und Training STUDIUM VIEWEG+ TEUBNER Inhaltsverzeichnis AI Mathematisches Handwerkszeug: Beispiele

Mehr

Wirtschaftsstatistik I [E1]

Wirtschaftsstatistik I [E1] 040571-1 WMS: Wirtschaftsstatistik 1 :: WiSe07/08 Wirtschaftsstatistik I [E1] Schwab, Harald 1 harald.schwab@univie.ac.at http://homepage.univie.ac.at/harald.schwab October 7, 2007 1 Sprechstunde: MO 17-18h

Mehr

Thema aus dem Bereich Algebra Gleichungen III

Thema aus dem Bereich Algebra Gleichungen III Thema aus dem Bereich Algebra - 2.3 Gleichungen III Inhaltsverzeichnis 1 Quadrierte Gleichungen mit einer Unbekannten 2 2 Wurzelgleichungen 3 2.1 Definition einer Wurzelgleichung................................

Mehr

Beispiel vor dem Beweis:

Beispiel vor dem Beweis: Beispiel vor dem Beweis: Beispiel vor dem Beweis: A = ¼3 6 2 3 11 2½ Beispiel vor dem Beweis: 2½ 2½ ¼3 6 A = 2 3 11 311 E 12 A = 3 6 Beispiel vor dem Beweis: 2½ 2½ ¼3 6 A = 2 3 11 311 E 12 A = 3 6 3 11

Mehr

4 Lineare Algebra (Teil 2): Quadratische Matrizen

4 Lineare Algebra (Teil 2): Quadratische Matrizen 4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,

Mehr

Leitidee Messen geeignete Größeneinheiten auswählen und mit ihnen rechnen

Leitidee Messen geeignete Größeneinheiten auswählen und mit ihnen rechnen Mathematik Klasse 9 Inhalt/Thema von Maßstab Band 5 1. Grundkenntnisse Rechnen mit Brüchen und Dezimalbrüchen Rechnen mit Größen Proportionale und umgekehrt proportionale Zuordnungen, Dreisatz Prozent-

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

Kapitel 12. Lineare Abbildungen und Matrizen

Kapitel 12. Lineare Abbildungen und Matrizen Kapitel 12 Lineare Abbildungen und Matrizen Lineare Abbildungen f : R n R m Wir wissen schon: Eine lineare Abbildung f : R n R m ist eindeutig durch ein n-tupel von Vektoren v 1, v 2,, v n des R m bestimmt

Mehr

2 Mengen und Abbildungen

2 Mengen und Abbildungen 2.1 Mengen Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen. Die Objekte heiÿen Elemente. Ist M eine Menge und x ein Element von M so schreiben wir x M. Wir sagen auch:

Mehr

Axiomatische Beschreibung der ganzen Zahlen

Axiomatische Beschreibung der ganzen Zahlen Axiomatische Beschreibung der ganzen Zahlen Peter Feigl JKU Linz peter.feigl@students.jku.at 0055282 Claudia Hemmelmeir JKU Linz darja@gmx.at 0355147 Zusammenfassung Wir möchten in diesem Artikel die ganzen

Mehr

Seminar der WE AlZAGK. Glatte Zahlen

Seminar der WE AlZAGK. Glatte Zahlen Seminar der WE AlZAGK WiSe 200/ Glatte Zahlen von Sonja Riedel Mail: sriedel@math.uni-bremen.de Motivation Glatte Zahlen sind, grob gesagt, Zahlen, die nur kleine Primfaktoren besitzen. Sie werden in vielen

Mehr

Permutation und Kombination

Permutation und Kombination Permutation und Kombination Aufgaben Aufgabe 1 Wie viele verschiedene Wörter lassen sich durch Umstellen der Buchstaben aus den Wörtern a. Mississippi, b. Larissa, c. Stuttgart, d. Abrakadabra, e. Thorsten,

Mehr

Anzahl möglicher Anordnungen bei 3 Elementen

Anzahl möglicher Anordnungen bei 3 Elementen Anzahl möglicher Anordnungen bei 3 Elementen Man kann die Anzahl möglicher Anordnungen der drei Buchstaben A, B und C mit einem Baumdiagramm bestimmen. 3 2 6 verschiedene Anordnungen Permutationen Die

Mehr

Wir beginnen mit der Definition eines metrischen Raumes, der in diesem Kapitel von zentraler Bedeutung ist. x, y, z X (Dreiecksungleichung).

Wir beginnen mit der Definition eines metrischen Raumes, der in diesem Kapitel von zentraler Bedeutung ist. x, y, z X (Dreiecksungleichung). Kapitel 4 Metrische Räume und Stetigkeit 4.1 Metrische und normierte Räume 4.2 Folgen in metrischen Räumen 4.3 Offene und abgeschlossene Mengen 4.4 Stetige Funktionen 4.5 Grenzwerte von Funktionen 4.6

Mehr

Wie beweise ich etwas? 9. Juli 2012

Wie beweise ich etwas? 9. Juli 2012 Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Wie beweise ich etwas? 9. Juli 2012 1 Was ist ein Beweis? 1.1 Ein Beispiel Nimm einen Stift und ein Blatt Papier und zeichne fünf

Mehr

Themen. Unified Modelling Language (UML) Assoziation. Aggregation. Komposition

Themen. Unified Modelling Language (UML) Assoziation. Aggregation. Komposition Themen Unified Modelling Language (UML) Assoziation Aggregation Komposition Unified Modeling Language (UML) Geschichte der Methodik Quelle: www.pearson-studium.de Unified Modeling Language (UML) Stichwort:

Mehr

Iterative Methods for Improving Mesh Parameterizations

Iterative Methods for Improving Mesh Parameterizations Iterative Methods for Improving Mesh Parameterizations Autoren: Shen Dong & Michael Garland, SMI 07 Nicola Sheldrick Seminar Computergrafik April 6, 2010 Nicola Sheldrick (Seminar Computergrafik)Iterative

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I 22. Februar 2008

KLAUSUR ZUR LINEAREN ALGEBRA I 22. Februar 2008 KLAUSUR ZUR LINEAREN ALGEBRA I. Februar 008 MUSTERLÖSUNG Diese Klausur wurde je nach Sitzreihe in zwei verschiedenen Versionen geschrieben. Die andere Version unterscheidet sich von der vorliegenden jedoch

Mehr

Kombinatorik. Cusanus-Gymnasium Wittlich Permutationen. Wie viele Möglichkeiten gibt es 10 Personen in eine Reihe auf 10 Sitze zu setzen?

Kombinatorik. Cusanus-Gymnasium Wittlich Permutationen. Wie viele Möglichkeiten gibt es 10 Personen in eine Reihe auf 10 Sitze zu setzen? Permutationen Wie viele Möglichkeiten gibt es 10 Personen in eine Reihe auf 10 Sitze zu setzen? 1. Sitz : 10 Möglichkeiten 2. Sitz : 9 Möglichkeiten 3. Sitz : 8 Möglichkeiten. 9. Sitz : 2 Möglichkeiten

Mehr

Wissensbasierte Systeme

Wissensbasierte Systeme WBS4 Slide 1 Wissensbasierte Systeme Vorlesung 4 vom 03.11.2004 Sebastian Iwanowski FH Wedel WBS4 Slide 2 Wissensbasierte Systeme 1. Motivation 2. Prinzipien und Anwendungen 3. Logische Grundlagen 4. Suchstrategien

Mehr

1 Das Lemma von Burnside und seine Anwendungen

1 Das Lemma von Burnside und seine Anwendungen Das Lemma von Burnside und seine Anwendungen Mit dem Lemma von Burnside lassen sich Zählprobleme lösen, bei denen Symmetrien eine Rolle spielen. Betrachten wir als einführendes Beispiel die Anzahl der

Mehr

Einige grundsätzliche Überlegungen:

Einige grundsätzliche Überlegungen: Einige grundsätzliche Überlegungen: 1) Die Wahl der Unbekannten, x, y, z, oder a, b, c oder α, β, γ oder m, n, o. etc. richten sich nach den Beispielen und sind so zu wählen, dass sie am besten zu jenen

Mehr

Repetitionsaufgaben Wurzelgleichungen

Repetitionsaufgaben Wurzelgleichungen Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen

Mehr

Gliederung. Links-Rechts-Zerlegung Elimination faktorisiert A = L R. Determinante Inverse. Kleinste Quadrate. Lösung durch. Links-Rechts- Zerlegung

Gliederung. Links-Rechts-Zerlegung Elimination faktorisiert A = L R. Determinante Inverse. Kleinste Quadrate. Lösung durch. Links-Rechts- Zerlegung Matrixzerlegungen. 7. Vorlesung 170004 Numerische Methoden I Clemens Brand 29. April 2010 Gliederung Elimination faktorisiert A = L R Die A = L R Faktorisieren: Zerlege A in ein Produkt (einfacherer) Angenommen,

Mehr

2 für 1: Subventionieren Fahrgäste der 2. Klasse bei der Deutschen Bahn die 1. Klasse?

2 für 1: Subventionieren Fahrgäste der 2. Klasse bei der Deutschen Bahn die 1. Klasse? 2 für 1: Subventionieren Fahrgäste der 2. Klasse bei der Deutschen Bahn die 1. Klasse? Felix Zesch November 5, 2016 Abstract Eine kürzlich veröffentlichte These lautet, dass bei der Deutschen Bahn die

Mehr

є 0 2

є 0 2 1 3 0 2 0 6 0 8 0 6 0 0 0 2 б є 0 2 0 5! 0 6 є, 0 4 0 9 0 6 0 9 є 0 9 0 9 0 8 0 2 0 5 0 9. 0 1 є 0 3 є 0 8 0 2 0 1 є 0 2 0 6 є 0 7 0 6 0 5 0 5 0 2 0 0 0 7 0 9 0 9 0 2 0 0 0 1 є 0 9 0 8 є 0 1 0 6 0 9 0

Mehr

Kapitel 5. Stochastik

Kapitel 5. Stochastik 76 Kapitel 5 Stochastik In diesem Kapitel wollen wir die Grundzüge der Wahrscheinlichkeitstheorie behandeln. Wir beschränken uns dabei auf diskrete Wahrscheinlichkeitsräume Ω. Definition 5.1. Ein diskreter

Mehr

Brückenkurs Elementarmathematik

Brückenkurs Elementarmathematik Brückenkurs Elementarmathematik IV. Ungleichungen November 13, 2013 Inhalt 1 Ungleichungen 2 Umformungen von Ungleichungen 2.1 Äquivalenzumformungen 2.2 Addition und Multiplikation von Ungleichungen 3

Mehr

Mathematik I Prüfung für den Übertritt aus der 9. Klasse

Mathematik I Prüfung für den Übertritt aus der 9. Klasse Aufnahmeprüfung 015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 9. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Prof. Dr. Michael Havbro Faber 28.05.2009 1 Korrektur zur letzten Vorlesung Bsp. Fehlerfortpflanzung in einer Messung c B a 2 2 E c Var c a b A b 2 2 2 n h( x)

Mehr

Beispiel 2 ([1], Ex ) Sei jxj = m, jy j = n. Wieviele Funktionen f : X! Y

Beispiel 2 ([1], Ex ) Sei jxj = m, jy j = n. Wieviele Funktionen f : X! Y Kombinatorik Nach [1], Chap.4 (Counting Methods and the Pigeonhole Principle). Multiplikationsprinzip Beispiel 1 Wieviele Wörter der Länge 4 kann man aus den Buchstaben A,B,C,D,E bilden,... 1. wenn Wiederholungen

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14

Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 2. April

Mehr

Programm des Hauptseminars Symmetrie

Programm des Hauptseminars Symmetrie Programm des Hauptseminars Symmetrie Prof. Dr. Irene Bouw Universität Ulm Institut für Reine Mathematik SS 2008 irene.bouw at uni-ulm.de Vortrag 1: Einführung (2 Personen) Dieser Vortrag soll eine Einführung

Mehr