10 Hilberträume. (b) λx,y = λ x,y für x,y X, λ K. (c) x, y = y, x für x, y X (Komplexe Konjugation nur im Falle K = C)

Größe: px
Ab Seite anzeigen:

Download "10 Hilberträume. (b) λx,y = λ x,y für x,y X, λ K. (c) x, y = y, x für x, y X (Komplexe Konjugation nur im Falle K = C)"

Transkript

1 10 Hilberträume Definition. Sei X ein Vektorraum über K. Eine Abbildung, : X X K heißt Skalarprodukt, falls (a) x 1 + x,y = x 1,y + x,y für x 1,x,y X (b) λx,y = λ x,y für x,y X, λ K (c) x, y = y, x für x, y X (Komplexe Konjugation nur im Falle K = C) (d) x,x 0 und x,x = 0 x = 0 (für x X) X versehen mit einem Skalarprodukt heißt Prähilbertraum Lemma. Sei H ein Prähilbertraum. Es gelten: (a) Cauchy Schwarz-Ungleichung: x,y x,x 1/ y, y 1/ für alle x,y H. (b) Die Abbildung x x,x 1/ =: x ist eine Norm. Beweis. (a) Seien x,y H und λ, λ = 1 so, dass λ x,y = x, y. Betrachte die Funktion p definiert für r R wie folgt: p(r) := x + rλy = x + Re λr x, y + λr y = x + r x, y + r y 0 So ist p(r) ein Polynom zweiten Grades, und es ist nicht negativ. Für die Diskriminante heißt dies 4 x, y 4 y x 0, die gewünschte Ungleichung. (b) Seien x,y H. Wir rechen immer mit Norm-Quadrat : x + y = x + Re x,y + y x + x y + y = ( x + y ), wobei wir die Cauchy-Schwartz-Ungleichung verwendet haben Lemma [Parallelogrammgleichung]. Ein normierter Vektorraum ist ein Prähilbertraum genau dann, wenn für alle x,y H x + y + x y = x + y gilt. Beweis. Nur eine Richtung: Sei H Prähilbertraum. Kurzes Nachrechnen liefert: x + y + x y = x + y, x + y + x y, x y = x + Re x,y + y + x Re x,y + y Definition. Sei H ein Prähilbertraum versehen mit der Norm c := x,x 1/. Ist dieser normierte Vektorraum (H, ) vollständig so heißt es ein Hilbertraum Beispiel. Beispiele von Hilberträumen (a) C d mit Skalarprodukt x,y := d x i y i. (b) l mit Skalarprodukt (x n ),(y n ) := x n y n. (c) L (M,µ) mit Skalarprodukt f,g := M fg dµ. 51

2 5 10. HILBERTRÄUME Definition [Orthogonalität]. Sei H ein Prähilbertraum. (a) Die Vektoren x,y H heißen orthogonal (x y), falls x,y = 0 gilt. (Aus Definition ist es leich zu sehen, dass eine symmetrische Relation ist.) (b) Die Mengen A,B H heißen orthogonal (A B), falls a b für alle a A, b B. (c) Sei M H. Das orthogonale Komplement von M ist definiert durch M := {x H : x M} Satz. (a) x y = x + y = x + y (Pythagoras). (b) M ist ein abgeschlossener Unterraum von H. (c) N,M H, N M = M N (d) M M und lin(m) = M Beweis. (a) Es gilt x + y = x + Re x,y + y = x y wegen x y. (b) Seien x,y M und λ K. Es gilt x+λy,z = x, z +λ y, z = 0+0 für jedes z M. Also ist M ein Unterraum. Konvergiert (x n ) M gegen ein x, so gilt für jedes z M auch die Konvergenz x n,z x,z (wegen Cauchy-Schwartz). Da x n,z = 0 gilt für jedes z M, so gilt x,z =, d.h. x M. (c) Trivial aus Definition. (d) Sei z M. So ist x,y = 0 für jedes y M, d.h. z M. Also M M. Nach c) gilt M lin(m). Ist aber y M so ist wegen Linearität y lin(m), und wie in b zeigt man y lin(m) Satz [Projektionssatz]. Sei H ein Hilbertraum, K H eine abgeschlossene, konvexe Menge und x 0 H. Dann existiert ein eindeutiges x K mit x x 0 = inf y K y x 0. Beweis. OBdA nehmen wir x 0 = 0 und 0 K an (sonst Verschiebung). Existenz: Sei δ := inf y K y. Dann findet man eine Folge (y n ) K mit y n δ. Nach der Parallelogrammgleichung δ yn+ym yn+ym + yn ym = 1 y n + 1 y m δ, d.h. (y n ) ist eine Cauchyfolge. Dann gilt y n y für ein y K, es gilt ferner y = δ. Eindeutigkeit: Seien x 1,x K mit obiger Eigenschaft. Es gilt δ x 1 +x x 1 +x + x 1 x = 1 x x δ, d.h x 1 x = 0 und x 1 = x Lemma. Sei H ein Hilbertraum, Y abgeschlossener Unterraum, x 0 H und x H mit x x 0 = inf y Y y x 0. Dann ist x x 0 Y. Beweis. Angenommen die Behauptung falsch ist, existiert ein y Y mit x x 0,y = β 0. Sei z := x 0 x und λ K mit β λ y, y = 0. Es gilt z λy = z λy, z λy = z λβ λ(β λ y, y ) = z λβ, Dann ist z λy = z β y < z = δ. Dies liefert aber einen Widerspruch, denn z λy = x 0 x λy und x + λy Y.

3 10. HILBERTRÄUME Satz. Sei Y ein abgeschlossener Unterraum eines Hilbertraums H. Dann H = Y Y. Beweis. Y Y = {0} ist klarm denn y y impliziert y = 0. Der Raum Y ist abgeschlossen und natürlich konvex, also existiert nach dem Projektionssatz für alle x H ein y Y mit x = y + z und z Y (siehe Lemma 10.9) Bemerkung. Die Darstellung x = y + z definiert eine Abbildung P : H Y, x y = Px. Der Operator P ist linear und heißt die Orthogonalprojektion von H auf Y. P ist beschränkt und idempotent, d.h. P = P. Die Linerität von P zeigt man zum Beispiel so: Für x,y H und z Y gilt x Px, y Py Y und damit (x + y) z = (x Px + y Py) + (Px + Py z) Pyth. = x Px + y Py + Px + Py z x + y (Px + Py). Dies gilt auch für z = P(x+y), welches den Abstand dist((x+y),y ) minimisiert. Wir sheen also P(x+y) = Px + Py. Sei jetzt λ K und x H. Analog geht man vor: λx z = λx λpx + λpx z Pyth. = λx λpx + λpx z λx λpx, gilt für alle z Y. Dies liefert P(λx) = λpx. Beweis zum Idempotenz von P: für jedes x H gilt Px Y, d.h. dist(px, Y ) = 0, und somit PPx = Px. Die Beschränktheit von P folgt mit dem Satz von Pythagoras: Es gilt Px Px + x Px = x, und somit P 1. Bemerke noch, dass P = P P, und damit entwede P = 0 oder P = Theorem [Rieszscher Darstellungsatz]. Sei H ein Hilbertraum. Dann existiert zu ϕ H genau ein z H mit ϕ(x) = x,z für alle x H. Weiter gilt ϕ = z. Beweis. Existenz: Für ϕ = 0 wähle z = 0. Sei also im Weiteren ϕ 0. Der Raum ker ϕ ist in H abgeschlossen, und es gilt ker ϕ H, also enthält (ker ϕ) ein z 0 0. Für x H setze y := ϕ(x)z 0 ϕ(z 0 )x. Dann gilt ϕ(y) = ϕ(x)ϕ(z 0 ) ϕ(z 0 )ϕ(x) = 0, d.h. y ker ϕ. Daraus folgt 0 = y, z 0 = ϕ(x)z 0 ϕ(z 0 )x,z 0 = ϕ(x) z 0,z 0 ϕ(z 0 ) x,z 0 und z := ϕ(z 0) z 0,z 0 z 0 ist der gewünschte Vektor. = ϕ(x) = ϕ(z 0) z 0,z 0 x,z 0 für jedes x H, Eindeutigkeit: Seien z 1,z H,ϕ(x) = x,z 1 = x,z für alle x H. Dann gilt z 1 z H = {0}. Die Norm: Der Fall ϕ = 0 ist klar. Da z = z,z = ϕ(z) ϕ z gilt, so erhalten wir z ϕ. Umgekehrt: ϕ(x) = x, z x z = ϕ z. Zusammenfassend ist ϕ = z Bemerkung. (a) Theorem 10.1 kann auch so formuliert werden: die Abbildung Φ : H H, Φ(x) :=,x ist bijektiv, isometrisch und konjugiert linear, d.h. Φ(x + y) = Φ(x) + Φ(y) und Φ(αx) = αφ(x) für alle x,y H und α K.

4 HILBERTRÄUME (b) Als Konsequenz erhalten wir die Reflexivität eines Hilbertraums Definition. Sei a : H H K eine Sesquilinearform, d.h. es gelten: a(x + y, z) = a(x, z) + a(y, z) a(x,y + z) = a(x, y) + a(x,z) a(αx,y) = αa(x,y) a(x, αy) = αa(x, y) (komplexe Konjugierung nur falls K = C) Dann heißt a (a) stetig, falls M > 0 mit a(x,y) M x y für alle x,y H. (b) koerziv, falls α > 0 mit Re a(x,x) α x für alle x H. Bemerkung: In der Vorlesung war die Definition nur mit a(x,x) α x formuliert Theorem [Lax Milgram]. Sei a : H H K eine stetige, koerzive Sesquilinearform auf einem Hilbertraum H. Es existiert genau eine bijektive Abbildung A L (H) mit Desweiteren gilt A M und A 1 1/α. x,ay = a(x,y) für alle x,y H. Beweis. Für y H ist a(,y) H und a(,y) H M y. Nach dem Satz von Riesz 10.1 existiert ein eindeutiges Ay so, dass a(x,y) = x,ay für alle x H und Ay = a(,y) H M y gelten. Wegen der Eindeutigkeit ist y Ay linear. Also A L (H) und A M. A ist injektiv: α x Re a(x,x) = Re x,ax x,ax x Ax = x Ax = ker A = {0}. A ist surjektiv: Zunächst zeigen wir, dass im(a) abgeschlossen ist. Sei Ax n y, dann x n x m 1/α Ax n Ax m 0, d.h. x n ist eine Cauchyfolge, also konvergiert (x n ) gegen ein x H. Aber dann muss Ax n Ax = y gelten, also y im(a). Nun beweisen wir im(a) = H. Nehmen wir das Gegenteil an. Dann existiert ein 0 y im(a), also α y Re a(y, y) = Re y, Ay = 0. Dies ist aber ein Widerspruch Definition [Orthonormalsystem]. Sei H ein Prähilbertraum. Eine Folge (e n ) H heißt Orthogonalsystem, falls e i e j, i j, und Orthonormalsystem (ONS) falls e i = Satz [Besselsche Ungleichung]. Sei H ein Hilbertraum und {e n : n N} ein Orthonormalsystem in H. Dann gilt für alle x H die Ungleichung x,e n x Beweis. Sei N N und x N := x N x,e n e n. Dann x N e j für j = 1,...,N. Also N x,e n x N + N x,e n = x N N Pyth. + x,e n e n = x N + Nun lasse N um die Behauptung zu erhalten. N x, e n e n = x.

5 10. HILBERTRÄUME Beispiel. (a) Betrachte L C (( π,π)) und e k(t) := e ikt, k Z. Dann gilt für k l: e k,e l = π π e i(k l)t dt = d.h. {e k : k Z} ist ein Orthogonalsystem. Normierung: also ist ( 1 π e k ) ein ONS. 1 ( e i(k l)π e i(k l)π) = sin(k l)π = 0, i(k l) k l e k,e k = π π 1 dt = π, (b) In l betrachte e k := (0,0,...,0,1,0...), wobei 1 in dem k-ten Koordinate steht. Dann ist (e k ) ein ONS in l Satz [Gram Schmidt Verfahren]. Sei H ein Hilbertraum und {x n : n N} eine linear unabhängige Teilmenge von H. Dann existiert ein ONS S mit lins = lin{x n : n N}. Beweis. Setze e 1 := x 1 x 1. Betrachte e := x x,e 1 e 1 x x,e 1 e 1, wegen linear Unabhängigkeit dürfen wir durch x x,e 1 e 1 0 dividieren. Es gilt ferner e 1 e. Analog geht es weiter: e k+1 := x k+1 k x k,e i e i x k+1 k x. k,e i e i So definiert man induktiv S := {e 1,e,...}, und man sieht, dass S ein ONS ist. Da x n lins und e n lin{x 1,x,...}, gilt auch lins = lin{x 1,x,...} Beispiel. (a) Die Anwendung des Gram Schmidt Verfahrens auf {1,t,t,...} in L ([ 1,1]) liefert die Legendre- Polynome: e n (t) = n d ) n(t n!( n 1) n. dt (b) Betrachte den Raum L ([ 1,1],(1 t ) 1/ ), wobei f,g := 1 1 dt f(t)g(t). 1 t Das Gram Schmidt-Verfahren angewandt auf {1,t,t,...} ergibt die Chebyshev Polynome: n 1 e n (t) = π n+1 cos(n arccos t). (c) Betrachte den Raum L (R,e t / ), wobei f,g := 1 1 f(t)g(t)e t / dt. Das Gram Schmidt-Verfahren angewandt auf {1,t,t,...} ergibt die Hermite Polynome.

6 HILBERTRÄUME Definition. (a) Sei X ein normierter Vektorraum. Eine Folge (x n ) X heißt eine Schauder-Basis in X, falls für alle x X genau eine Folge (α n ) K mit n j=1 α jx j x existiert (oder X ist endlichdimensional und (x n ) ist eine algebraische Basis in X). (b) Sei H ein Hilbertraum und (e n ) H ein Orthonormalsystem. Ist (e n ) ein Schauderbasis, dann heißt (e n ) Orthonormalbasis. Bemerkung: Man kann auch überabzählbare Orthonormalbasen auch definieren Satz. Sei H ein Hilbertraum und (e n ) ein Orthonormalsystem in H. Äquivalent sind: (a) (e n ) ist eine Orthonormalbasis in H (b) lin{e n : n N} ist dicht in H (c) x = x,e n e n für alle x H. (d) x,y = x,e n y, e n für alle x,y H. (e) x = x, e n für alle x X. Beweis. (a) (b): Definition. (b) (c): Sei x H und x n = N n α nie i x. Sei N > N n. Dann gilt x N x,e i e i = dist(x,lin{e1,...,e N }) dist(x,lin{e 1,...,e Nn }) x x n 0. (c) (d): Stetigkeit von,y. (d) (e): Setze y = x. n (e) (c): x x,e i e i = x j=1 n n x,e i e i,e j = x,e j x,e j + x,e j 0. (c) (a): Es ist nur die Eindeutigkeit der Darstellung zu beweisen. Falls 0 = α ie i gilt, gilt auch 0 = α i e i,e j = α i e i,e j = α j. j=1 n Beispiel. (a) Trigonometrische Polynome in L ([ π,π]) formen eine ONB. (b) Normierte Legendre-Polynome in L ([ 1,1]) formen eine ONB Korollar. Jeder separable Hilbertraum H besitzt eine Orthonormalbasis. Falls H separabel und unendlichdimensional ist, so ist H isometrisch isomorph zu l. Beweis. (a) Sei {x i : i N} eine dichte Teilmenge in H und H n := lin{x 1,...,x n }. Sei P n die Orthogonalprojektion auf H n. Setze ẽ n := x n P n 1 x n, N := {n N : ẽ n 0} und e n := ẽ n / ẽ n für n N und e n := 0 sonst. Dann e n H n H n 1, also ist (e n) n N ein Orthonormalsystem. Da lin{e 1,...e n } = H n, folgt die Dichtheit von lin{e n : n N} in H, also ist (e n ) n N eine Orthonormalbasis. (b) Sei dim H = und (e n ) eine ONB. Dann gilt für alle x H, x = x,e n e n. Betrachte Φ : H l, x ( x,e n ) n N. Dann ist Φ(x),Φ(y) l = x,y und Φ ist eine bijektive, lineare Isometrie.

7 10. HILBERTRÄUME Bemerkung. Jeder Hilbertraum H besitzt eine Orthonormalbasis (nicht unbedingt abzählbar!), d.h. eine dichte Teilmenge S H mit x y für x,y S, x y und x = 1. Beweis. Idee: verwende Zorn-Lemma um ein maximales ONS zu erhalten. Dies wird eine ONB sein.

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω 5. Hilberträume Definition 5.1. Sei H ein komplexer Vektorraum. Eine Abbildung, : H H C heißt Skalarprodukt (oder inneres Produkt) auf H, wenn für alle x, y, z H, α C 1) x, x 0 und x, x = 0 x = 0; ) x,

Mehr

3 Vektorräume abstrakt

3 Vektorräume abstrakt Mathematik I für inf/swt Wintersemester / Seite 7 Vektorräume abstrakt Lineare Unabhängigkeit Definition: Sei V Vektorraum W V Dann heißt W := LH(W := Menge aller Linearkombinationen aus W die lineare

Mehr

= ( n x j x j ) 1 / 2

= ( n x j x j ) 1 / 2 15 Skalarprodukte 77 15 Skalarprodukte 15.1 Einführung. a) Ab jetzt sei stets K = R oder K = C, da Wurzeln eine wichtige Rolle spielen werden. b) Nach dem Satz des Pythagoras ist die Länge eines Vektors

Mehr

Satz 2.3. Jeder lineare normierte Raum wird durch Einführung einer Metrik

Satz 2.3. Jeder lineare normierte Raum wird durch Einführung einer Metrik Kapitel Lineare normierte Räume.1 Allgemeiner Überblick Definition.1. Eine Menge X, in der über einem Zahlenkörper K (K = R oder K = C) die Addition und λ-multiplikation mit den üblichen Verbindungsaxiomen

Mehr

72 Orthonormalbasen und Konvergenz im quadratischen Mittel

72 Orthonormalbasen und Konvergenz im quadratischen Mittel 72 Orthonormalbasen und Konvergenz im quadratischen Mittel 30 72 Orthonormalbasen und Konvergenz im quadratischen Mittel Wir untersuchen nun die Konvergenz von Fourier-Reihen im quadratischen Mittel in

Mehr

Kapitel 5. Vektorräume mit Skalarprodukt

Kapitel 5. Vektorräume mit Skalarprodukt Kapitel 5 Vektorräume mit Skalarprodukt 119 120 Kapitel V: Vektorräume mit Skalarprodukt 5.1 Elementare Eigenschaften des Skalarprodukts Dienstag, 20. April 04 Wollen wir in einem Vektorraum wie in der

Mehr

Lösungsvorschlag zu den Hausaufgaben der 8. Übung

Lösungsvorschlag zu den Hausaufgaben der 8. Übung FAKULTÄT FÜR MATHEMATIK Prof Dr Patrizio Ne Frank Osterbrink Johannes Lankeit 9503 Lösungsvorschlag zu den Hausaufgaben der 8 Übung Hausaufgabe : Beweise den Satz über die Parallelogrammgleichung Sei H

Mehr

Skalarprodukt, Norm & Metrik

Skalarprodukt, Norm & Metrik Skalarprodukt, Norm & Metrik Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 11. Mai 2016 Stefan Ruzika 5: Skalarprodukt, Norm & Metrik 11. Mai 2016 1 / 13 Gliederung 1

Mehr

Differentialgleichungen und Hilberträume Sommersemester 2014 Übungsblatt 11

Differentialgleichungen und Hilberträume Sommersemester 2014 Übungsblatt 11 Institut für Analysis Prof. Dr. Wolfgang Reichel Dipl.-Math. Anton Verbitsky Aufgabe 1 Differentialgleichungen und Hilberträume Sommersemester 14 Übungsblatt 11 5 Punkte In dieser Aufgabe geht es um die

Mehr

Ferienkurs Analysis 3. Ari Wugalter März 2011

Ferienkurs Analysis 3. Ari Wugalter März 2011 Ari Wugalter 07. - 08. März 2011 1 1 Hilberträume Im ersten Kapitel wollen wir uns mit den grundlegenden Eigenschaften von Hilberträumen beschäfitgen. Hilberträume habe die herausragende Eigenschaft, dass

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

42 Orthogonalität Motivation Definition: Orthogonalität Beispiel

42 Orthogonalität Motivation Definition: Orthogonalität Beispiel 4 Orthogonalität 4. Motivation Im euklidischen Raum ist das euklidische Produkt zweier Vektoren u, v IR n gleich, wenn die Vektoren orthogonal zueinander sind. Für beliebige Vektoren lässt sich sogar der

Mehr

ist reelles lineares Funktional. x(t) ϕ(t) dt ist reelles lineares Funktional für alle ϕ L 2 (0, 1).

ist reelles lineares Funktional. x(t) ϕ(t) dt ist reelles lineares Funktional für alle ϕ L 2 (0, 1). Kapitel 4 Stetige lineare Funktionale 4.1 Der Satz von Hahn - Banach Definition 4.1. Sei X ein linearer normierter Raum über dem Körper K (R oder C). Ein linearer Operator f : X K heißt (reelles oder komplexes)

Mehr

1 Euklidische und unitäre Vektorräume

1 Euklidische und unitäre Vektorräume 1 Euklidische und unitäre Vektorräume In diesem Abschnitt betrachten wir reelle und komplexe Vektorräume mit Skalarprodukt. Dieses erlaubt uns die Länge eines Vektors zu definieren und (im Fall eines reellen

Mehr

Schauderbasen und das Beispiel der Riesz-Basen auf Hilberträumen

Schauderbasen und das Beispiel der Riesz-Basen auf Hilberträumen Schauderbasen und das Beispiel der Riesz-Basen auf ilberträumen Bernhard Stiftner 0. Dezember 0 Inhaltsverzeichnis Allgemeines zu Schauderbasen Spezielle Schauderbasen auf ilberträumen 8 3 Literatur 8

Mehr

Aufgabe 1.1 (Hilberträume). Sei H ein Hilbertraum und V H ein beliebiger Unterraum. Kreuzen Sie an, welche der folgenden Aussagen zutreffen:

Aufgabe 1.1 (Hilberträume). Sei H ein Hilbertraum und V H ein beliebiger Unterraum. Kreuzen Sie an, welche der folgenden Aussagen zutreffen: Musterlösung 1 Hilberträume Aufgabe 1.1 (Hilberträume). Sei H ein Hilbertraum und V H ein beliebiger Unterraum. Kreuzen Sie an, welche der folgenden Aussagen zutreffen: Die durch das Skalarprodukt induzierte

Mehr

$Id: hilbert.tex,v /06/21 13:11:01 hk Exp hk $

$Id: hilbert.tex,v /06/21 13:11:01 hk Exp hk $ $Id: hilbert.tex,v 1.5 2013/06/21 13:11:01 hk Exp hk $ 7 Hilberträume In der letzten Sitzung hatten wir die Theorie der Hilberträume begonnen, und sind gerade dabei einige vorbereitende elementare Grundtatsachen

Mehr

Einführung in die Grundlagen der Numerik

Einführung in die Grundlagen der Numerik Einführung in die Grundlagen der Numerik Institut für Numerische Simulation Rheinische Friedrich-Wilhelms-Universität Bonn Wintersemester 2014/2015 Normierter Vektorraum Sei X ein R-Vektorraum. Dann heißt

Mehr

43 Unitäre Vektorräume

43 Unitäre Vektorräume 43 Unitäre Vektorräume 43 1 Zusammenfassung In diesem Paragrafen werden die gleichen Themen wie in 41 abgehandelt, jetzt allerdings für den komplexen Fall. Die Aussagen entsprechen sich weitgehend, daher

Mehr

Orthogonalreihendarstellung eines zentrierten Gauß-Prozesses

Orthogonalreihendarstellung eines zentrierten Gauß-Prozesses Orthogonalreihendarstellung eines zentrierten Gauß-Prozesses Thomas Steinle Seminar Zufällige Felder Universität Ulm 18. November, 2008 Einleitung Inhalt Einleitung Wiederholung und Themenvorstellung Wichtiges

Mehr

Funktionalanalysis. Martin Brokate. 1 Normierte Räume 2. 2 Hilberträume Das Prinzip der gleichmäßigen Beschränktheit 31

Funktionalanalysis. Martin Brokate. 1 Normierte Räume 2. 2 Hilberträume Das Prinzip der gleichmäßigen Beschränktheit 31 Funktionalanalysis Martin Brokate Inhaltsverzeichnis 1 Normierte Räume 2 2 Hilberträume 2 3 Das Prinzip der gleichmäßigen Beschränktheit 31 4 Fortsetzung, Reflexivität, Trennung 36 5 Kompakte Mengen in

Mehr

9 Vektorräume mit Skalarprodukt

9 Vektorräume mit Skalarprodukt 9 Skalarprodukt Pink: Lineare Algebra 2014/15 Seite 79 9 Vektorräume mit Skalarprodukt 9.1 Normierte Körper Sei K ein Körper. Definition: Eine Norm auf K ist eine Abbildung : K R 0, x x mit den folgenden

Mehr

Übungen zur Funktionalanalysis Lösungshinweise Blatt 4

Übungen zur Funktionalanalysis Lösungshinweise Blatt 4 Übungen zur Funktionalanalysis Lösungshinweise Blatt 4 Aufgabe 13 Wie üblich sei l 1 = {x : N K x n < } mit Norm x l 1 = x n und l = {x : N K sup n N x n < } mit x l = sup n N x n Für die Unterräume d

Mehr

8 1. GEOMETRIE DIFFERENZIERBARER MANNIGFALTIGKEITEN

8 1. GEOMETRIE DIFFERENZIERBARER MANNIGFALTIGKEITEN 8 1. GEOMETRIE DIFFERENZIERBARER MANNIGFALTIGKEITEN (vi) Konvergenz von Folgen ist in topologischen Räumen folgendermaßen definiert: Ist (a n ) M eine Folge, so heißt sie konvergent gegen a M, wenn es

Mehr

Unter einem reellen inneren Produktraum verstehen wir einen Vektorraum V über

Unter einem reellen inneren Produktraum verstehen wir einen Vektorraum V über 9 Innere Produkte In diesem Kapitel betrachten wir immer Vektorräume über dem Körper der reellen Zahlen R oder dem Körper der komplexen Zahlen C. Definition 9.1: Sei V ein Vektorraum über R. Ein inneres

Mehr

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).

Mehr

6. Normale Abbildungen

6. Normale Abbildungen SKALARPRODUKE 1 6 Normale Abbildungen 61 Erinnerung Sei V ein n-dimensionaler prä-hilbertraum, also ein n-dimensionaler Vektorraum über K (R oder C) versehen auch mit einer Skalarprodukt, ra K Die euklidische

Mehr

Von Skalarprodukten induzierte Normen

Von Skalarprodukten induzierte Normen Von Skalarprodukten induzierte Normen Niklas Angleitner 4. Dezember 2011 Sei ein Skalarproduktraum X,, gegeben, daher ein Vektorraum X über C bzw. R mit einer positiv definiten Sesquilinearform,. Wie aus

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

4.3 Reelle Skalarprodukte, Hermitesche Formen, Orthonormalbasen

4.3 Reelle Skalarprodukte, Hermitesche Formen, Orthonormalbasen 196 KAPITEL 4. VEKTORRÄUME MIT SKALARPRODUKT 4. Reelle Skalarprodukte, Hermitesche Formen, Orthonormalbasen In diesem Abschnitt betrachten wir Vektorräume über IR und über C. Ziel ist es, in solchen Vektorräumen

Mehr

7 Lineare Abbildungen und Skalarprodukt

7 Lineare Abbildungen und Skalarprodukt Mathematik II für inf/swt, Sommersemester 22, Seite 121 7 Lineare Abbildungen und Skalarprodukt 71 Vorbemerkungen Standard Skalarprodukt siehe Kap 21, Skalarprodukt abstrakt siehe Kap 34 Norm u 2 u, u

Mehr

4 Lineare Abbildungen Basisdarstellungen

4 Lineare Abbildungen Basisdarstellungen 4 Lineare Abbildungen Basisdarstellungen (4.1) Seien V,W endlich dimensionale K-Vektorräume, und sei T : V W linear. Sei {v 1,...,v } Basis von V und {w 1,...,w M } Basis von W. Sei T (v j ) = M a kj w

Mehr

Rangsatz. d.) (2P) Formulieren Sie den

Rangsatz. d.) (2P) Formulieren Sie den Probeklausur Lineare Algebra I am 14.11.09 Die Klausur ist in drei Teile unterteilt, die grob als Definitions-, Rechenund Beweisteil bezeichnet werden können (optisch durch Linien getrennt). In jedem Teil

Mehr

Euklidische und unitäre Vektorräume

Euklidische und unitäre Vektorräume Kapitel 7 Euklidische und unitäre Vektorräume In diesem Abschnitt ist der Körper K stets R oder C. 7.1 Definitionen, Orthonormalbasen Definition 7.1.1 Sei K = R oder C, und sei V ein K-Vektorraum. Ein

Mehr

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1 24 14 Metrische Räume 14.1 R n als euklidischer Vektorraum Die Menge R n = {(x 1,..., x n ) x i R} versehen mit der Addition und der skalaren Multiplikation x + y = (x 1 + y 1,..., x n + y n ) λx = (λx

Mehr

7.2 Die adjungierte Abbildung

7.2 Die adjungierte Abbildung 7.2 Die adjungierte Abbildung Definition 7.2.1 Eine lineare Abbildung f : V K heißt lineares Funktional oder Linearform. (Diese Definition gilt für beliebige K-Vektorräume, nicht nur für innere Produkträume.)

Mehr

31: Normierte Vektorräume

31: Normierte Vektorräume 31: Normierte Vektorräume Für eine systematische Behandlung von Grenzwert-Prozessen für Funktionenfolgen benötigen wir die allgemeine Definition der normierten Vektorräume und einen passenden Abstandsbegriff.

Mehr

68 Hilberträume - Grundbegriffe

68 Hilberträume - Grundbegriffe - 235-68 Hilberträume - Grundbegriffe In 21 haben wir uns ausführlich mit R und C Vektorräumen mit Skalarprodukt beschäftigt, dort allerdings hauptsächlich mit endlichdimensionalen Vektorräumen. Im Folgenden

Mehr

Zusammenfassung Analysis 2

Zusammenfassung Analysis 2 Zusammenfassung Analysis 2 1.2 Metrische Räume Die Grundlage metrischer Räume bildet der Begriff des Abstandes (Metrik). Definition 1.1 Ein metrischer Raum ist ein Paar (X, d), bestehend aus einer Menge

Mehr

Eigenschaften kompakter Operatoren

Eigenschaften kompakter Operatoren Eigenschaften kompakter Operatoren Denition Seien X, Y normierte Räume und sei A : X Y linear. Dann heiÿt A kompakt (vollstetig), wenn für jede beschränkte Menge B X die Menge A(B) kompakt ist. Eigenschaften

Mehr

Konvergenz im quadratischen Mittel - Hilberträume

Konvergenz im quadratischen Mittel - Hilberträume CONTENTS CONTENTS Konvergenz im quadratischen Mittel - Hilberträume Contents 1 Ziel 2 1.1 Satz........................................ 2 2 Endlich dimensionale Vektorräume 2 2.1 Defintion: Eigenschaften

Mehr

4 Fehlerabschätzungen und Konvergenz der FEM

4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 153 Es sei V der Lösungsraum und V N V ein endlich dimensionaler Unterraum. Weiters sei u V die exakte Lösung und

Mehr

11.2 Orthogonalität. Wintersemester 2013/2014

11.2 Orthogonalität. Wintersemester 2013/2014 Universität Konstanz Fachbereich Mathematik und Statistik Wintersemester 2013/2014 Markus Scheighofer Lineare Algebra I 11.2 Orthogonalität Definition 11.2.1. Seien V ein K-Vektorraum mit Skalarprodukt

Mehr

Aufgaben zu Kapitel 20

Aufgaben zu Kapitel 20 Aufgaben zu Kapitel 20 Aufgaben zu Kapitel 20 Verständnisfragen Aufgabe 20 Sind die folgenden Produkte Skalarprodukte? (( R ) 2 ( R 2 )) R : v w,, v v 2 w w 2 (( R ) 2 ( R 2 )) R : v w, 3 v v 2 w w + v

Mehr

10.2. SELBSTADJUNGIERTE OPERATOREN 67

10.2. SELBSTADJUNGIERTE OPERATOREN 67 10.2. SELBSTADJUNGIERTE OPERATOREN 67 10. Spektralsatz 10.1. Spektrum. Sei K entweder R oder C. Definition 10.1.1. Sei X ein Banachraum und T L(X,X) L(X). (i) Die Menge ρ(t) K aller rellen oder komplexen

Mehr

4.4 Hermitesche Formen

4.4 Hermitesche Formen 44 Hermitesche Formen Wie üblich bezeichnen wir das komplex konjugierte Element von ζ = a + bi C (a, b R) mit ζ = a bi Definition 441 Sei V ein C-Vektorraum Eine hermitesche Form (HF) auf V ist eine Abbildung

Mehr

Vollständiger Raum, Banachraum

Vollständiger Raum, Banachraum Grundbegriffe beschränkte Menge Cauchyfolge Vollständiger Raum, Banachraum Kriterium für die Vollständigkeit Präkompakte Menge Kompakte Menge Entropiezahl Eigenschaften kompakter und präkompakter Mengen

Mehr

Merkblatt zur Funktionalanalysis

Merkblatt zur Funktionalanalysis Merkblatt zur Funktionalanalysis Literatur: Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen. Teubner, 986. Knabner, P., Angermann, L.: Numerik partieller Differentialgleichungen.

Mehr

12. R n als EUKLIDISCHER VEKTORRAUM

12. R n als EUKLIDISCHER VEKTORRAUM 12. R n als EUKLIDISCHER VEKTORRAUM 1 Orthogonalität in der Ebene. Die Vektoren in der Ebene, die (im üblichen Sinne) senkrecht zu einem Vektor x = (x 1, x 2 ) T stehen, lassen sich leicht angeben. Sie

Mehr

Mathematik für Anwender II

Mathematik für Anwender II Prof Dr H Brenner Osnabrück SS 22 Mathematik für Anwender II Vorlesung Euklidische Vektorräume Im Anschauungsraum kann man nicht nur Vektoren addieren und skalieren, sondern ein Vektor hat auch eine Länge,

Mehr

Skalarprodukt. Das gewöhnliche Skalarprodukt ist für reelle n-tupel folgendermaßen erklärt: Sind. und v := reelle n-tupel, dann ist

Skalarprodukt. Das gewöhnliche Skalarprodukt ist für reelle n-tupel folgendermaßen erklärt: Sind. und v := reelle n-tupel, dann ist Orthogonalität p. 1 Skalarprodukt Das gewöhnliche Skalarprodukt ist für reelle n-tupel folgendermaßen erklärt: Sind u := u 1 u 2. u n reelle n-tupel, dann ist und v := v 1 v 2. v n u v := u 1 v 1 + u 2

Mehr

Analytische Geometrie

Analytische Geometrie 21 Vorlesungen über Analytische Geometrie für Lehramtstudierende der Schulformen Grund-, Mittel- und Realschule Jens Jordan Universität Würzburg, Wintersemster 2015/16 Hier kommt noch ein schönes Bildchen

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. SS 6 9.4.6 Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum. Übungsblatt Aufgabe

Mehr

also ist Sx m eine Cauchyfolge und somit konvergent. Zusammen sagen die Sätze 11.1 und 11.2, dass B (X) ein abgeschlossenes zweiseitiges

also ist Sx m eine Cauchyfolge und somit konvergent. Zusammen sagen die Sätze 11.1 und 11.2, dass B (X) ein abgeschlossenes zweiseitiges 11. Kompakte Operatoren Seien X, Y Banachräume, und sei T : X Y ein linearer Operator. Definition 11.1. T heißt kompakt, enn T (B) eine kompakte Teilmenge von Y ist für alle beschränkten Mengen B X. Wir

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 34 Die Diagonalisierbarkeit von Isometrien im Komplexen Satz 34.1. Es sei V ein endlichdimensionaler C-Vektorraum

Mehr

1 Hilbertraum. 1.1 Denition und einführende Beispiele. Im Folgenden sei K {R, C}.

1 Hilbertraum. 1.1 Denition und einführende Beispiele. Im Folgenden sei K {R, C}. 1 1 Hilbertraum Im Folgenden sei K {R, C}. 1.1 Denition und einführende Beispiele Denition 1.1 (inneres Produkt, Skalarprodukt) Ein inneres Produkt auf einem K-Vektorraum V ist eine positiv denite hermitesche

Mehr

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w =

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w = 1 v Die Länge Def. Sei (V,, ) ein Euklidscher Vektorraum. Für jeden Vektor v V heißt die Zahl v,v die Länge von v und wird v bezeichnet. Bemerkung. Die Länge des Vektors ist wohldefiniert, da nach Definition

Mehr

ϕ k (t)ψ j (s) 2 ds)dt < folgt ϕ k (t)ψ j (s) δ j1,j 2 und daher handelt es sich um ein Orthonormalsystem in L 2 (Ω 1 Ω 2 ).

ϕ k (t)ψ j (s) 2 ds)dt < folgt ϕ k (t)ψ j (s) δ j1,j 2 und daher handelt es sich um ein Orthonormalsystem in L 2 (Ω 1 Ω 2 ). 1) a) Wir wollen zeigen, dass {ϕ k (t)ψ j (s)} j,k N0 eine Orthonormalbasis ist. Beachte dabei zunächst, dass (t, s) ϕ k (t)ψ j (s) für alle j, k N 0 messbare Abbildungen auf Ω 1 Ω 2 sind und da Ω 1 ϕ

Mehr

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009 I. (4 Punkte) Gegeben sei die Menge Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 9 G := { a c b a, b, c R }. (a) Zeigen Sie, dass G zusammen mit der Matrizenmultiplikation eine Gruppe

Mehr

Tutorium 7. Definition. Sei V ein C-Vektorraum. Eine Abbildung, : V V C heißt komplexes Skalarprodukt : det F k > 0 mit F k := (f i,j ) C k k

Tutorium 7. Definition. Sei V ein C-Vektorraum. Eine Abbildung, : V V C heißt komplexes Skalarprodukt : det F k > 0 mit F k := (f i,j ) C k k Skalarprodukte Tutorium 7 Bemerkung. Für jeden komplexen Vektorraum V mit dim V und jede komplexe Bilinearform P auf V findet man einen Vektor v mit P (v, v) =. Es gibt also keine positiv definite Bilinearformen

Mehr

Funktionalanalysis. Wintersemester 2010/2011 Dr. Tomáš Dohnal, Universität Stuttgart. Inhalt der Vorlesung im Detail

Funktionalanalysis. Wintersemester 2010/2011 Dr. Tomáš Dohnal, Universität Stuttgart. Inhalt der Vorlesung im Detail Funktionalanalysis Wintersemester 21/211 Dr. Tomáš Dohnal, Universität Stuttgart Inhalt der Vorlesung im Detail 1. Metrische Räume, normierte Räume und Innenprodukträume; Funktionenräume Metrische Räume

Mehr

([0, 1]) und int K = p 1

([0, 1]) und int K = p 1 126 III. Der Satz von Hahn-Banach und seine Konsequenzen wie man durch Einsetzen unmittelbar erkennt. Zeigen wir noch die Halbstetigkeit von f: Sei(x n ) eine Folge in L p (R) mitx n x in L p (R) und f(x

Mehr

Analysis IV für Physiker

Analysis IV für Physiker Analysis IV für Physiker nach den Vorlesungen von Prof. Dr. Werner Timmermann (Sommersemester 2008) Herausgegeben von Jeffrey Kelling Felix Lemke Stefan Majewsky Stand: 23. Oktober 2008 Inhaltsverzeichnis

Mehr

Analyis I -Metrische Räume - eine Einführung in die Topologie

Analyis I -Metrische Räume - eine Einführung in die Topologie Analyis I -Metrische Räume - eine Einführung in die Topologie E = E isolierter Punkte x 1 x 2 x 3 E ist abgeschlossen U ɛ (x) x innerer Punkt Ω Häufungspunkte Ω Metrik Metrische Räume Definition Sei X

Mehr

Aufgabe I.1 (4 Punkte) Gegeben seien die Matrix H := und die Menge L := {A R 4 4 A HA = H} Zeigen Sie:

Aufgabe I.1 (4 Punkte) Gegeben seien die Matrix H := und die Menge L := {A R 4 4 A HA = H} Zeigen Sie: Aufgabe I (4 Punkte Gegeben seien die Matrix und die Menge Zeigen Sie: H := L := {A R 4 4 A HA = H} a L ist bezüglich der Matrizenmultiplikation eine Gruppe b Die Matrizen der Form ( E O, O B wobei E R

Mehr

3.3 Skalarprodukte 3.3. SKALARPRODUKTE 153

3.3 Skalarprodukte 3.3. SKALARPRODUKTE 153 3.3. SKALARPRODUKTE 153 Hierzu müssen wir noch die Eindeutigkeit (Unabhängigkeit von der Wahl der Basis bzw. des Koordinatensystems) zeigen. Sei hierzu β eine Bilinearform und q die entsprechende quadratische

Mehr

Musterlösungen zur Linearen Algebra II Weihnachtszettel

Musterlösungen zur Linearen Algebra II Weihnachtszettel Musterlösungen zur Linearen Algebra II Weihnachtszettel Aufgabe. Welche der folgenden Matrizen 3 0 0 A = 0 4, B = 3, C = 0 0 0 6 0 0 0 sind über R und welche über C diagonalisierbar? Bestimmen Sie dazu

Mehr

2 Euklidische Vektorräume

2 Euklidische Vektorräume Sei V ein R Vektorraum. 2 Euklidische Vektorräume Definition: Ein Skalarprodukt auf V ist eine Abbildung σ : V V R, (v, w) σ(v, w) mit folgenden Eigenschaften ( Axiome des Skalarprodukts) (SP1) σ ist bilinear,

Mehr

Klausur zur Höheren Mathematik IV

Klausur zur Höheren Mathematik IV Düll Höhere Mathematik IV 8. 1. 1 Klausur zur Höheren Mathematik IV für Fachrichtung: kyb Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 1 Minuten Erlaubte Hilfsmittel: 1 eigenhändig beschriebene

Mehr

technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller

technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 4.3 und 4.4

Mehr

Henning Krause Lineare Algebra Julia Sauter SS 2017 Klausur mit Lösungsvorschlag Jan Geuenich

Henning Krause Lineare Algebra Julia Sauter SS 2017 Klausur mit Lösungsvorschlag Jan Geuenich Henning Krause Lineare Algebra Julia Sauter SS 27 Klausur 2.9.27 mit Lösungsvorschlag Jan Geuenich Aufgabe (4 Punkte: Sei n N und seien A und B zwei (n n-matrizen über einem Körper K. Wahr Falsch (a Es

Mehr

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Prof Dr Picard, gehalten von Helena Malinowski In vorhergehenden Vorträgen und dazugehörigen

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Dr. Gerhard Mülich Christian Maaß 6.Mai 8 Im letzten Vortrag haben wir gesehen, dass das

Mehr

Der n-dimensionale Raum

Der n-dimensionale Raum Der n-dimensionale Raum Mittels R kann nur eine Größe beschrieben werden. Um den Ort eines Teilchens im Raum festzulegen, werden schon drei Größen benötigt. Interessiert man sich für den Bewegungszustand

Mehr

Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz

Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 23. Mai 2016 Stefan Ruzika 7: Bild, Faser, Kern 23. Mai 2016 1 / 11 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume 4 Basis

Mehr

FUNKTIONALANALYSIS. Carsten Schütt WS 2006/7

FUNKTIONALANALYSIS. Carsten Schütt WS 2006/7 1. Eine Teilmenge K eines topologischen Raumes heißt folgenkompakt, wenn jede Folge in K eine Teilfolge enthält, die in K konvergiert. Die Menge K heißt abzählbar kompakt, wenn jede unendliche Teilmenge

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof Dr H Brenner Osnabrück SS 26 Lineare Algebra und analytische Geometrie II Vorlesung 2 Orthogonalität Mit dem Skalarprodukt kann man die Eigenschaft zweier Vektoren, aufeinander senkrecht zu stehen,

Mehr

Projektionen auf abgeschlossene konvexe Mengen

Projektionen auf abgeschlossene konvexe Mengen Projektionen auf abgeschlossene konvexe Mengen Seminarvortrag von Veronika Pick Seminar Optimierung bei Herrn Prof. Dr. F. Jarre Heinrich-Heine-Universität Düsseldorf SS 2006 1 Vorbemerkung Das Seminarthema

Mehr

Lösung zu Serie 18. Lineare Algebra D-MATH, HS Prof. Richard Pink

Lösung zu Serie 18. Lineare Algebra D-MATH, HS Prof. Richard Pink Lineare Algebra D-MATH, HS 201 Prof. Richard Pink Lösung zu Serie 18 1. Sei V,, ein endlich-dimensionaler unitärer Vektorraum. Zeige, dass zu jeder Sesquilinearform f : V V C eine eindeutige lineare Abbildung

Mehr

Lösung 7: Bilinearformen

Lösung 7: Bilinearformen D-MATH Lineare Algebra II FS 207 Dr. Meike Akveld Lösung 7: Bilinearformen. a). Seien u, u 2 V, λ K, dann gelten nach Voraussetzung: L v (u + λu 2 ) =β(v, u + λu 2 ) = β(v, u ) + β(v, λu 2 ) =β(v, u )

Mehr

12 Biholomorphe Abbildungen

12 Biholomorphe Abbildungen 12 Biholomorphe Abbildungen 2 Funktionenräume Wir erinnern zunächst an den Weierstraßschen Konvergenzsatz : 2.1 Satz. Sei G C ein Gebiet, (f n ) eine Folge holomorpher Funktionen auf G, die auf G kompakt

Mehr

10 Unitäre Vektorräume

10 Unitäre Vektorräume 10 Unitäre Vektorräume Pink: Lineare Algebra 2014/15 Seite 98 10 Unitäre Vektorräume Die Theorie komplexer Vektorräume mit Skalarprodukt folgt denselben Linien wie die Theorie reeller Vektorräume mit Skalarprodukt;

Mehr

r i w i (siehe (3.7)). r i v, w i = 0.

r i w i (siehe (3.7)). r i v, w i = 0. Orthogonales Komplement und Orthogonalprojektion Wir betrachten weiterhin einen euklidischen Vektorraum V,,. (6.13) Def.: Ist M V, so heißt das orthogonale Komplement von M. (6.14) Fakt. (i) M ist Untervektorraum

Mehr

Lösungsskizzen der Klausur zur Linearen Algebra im Herbst 2015

Lösungsskizzen der Klausur zur Linearen Algebra im Herbst 2015 sskizzen der Klausur zur Linearen Algebra im Herbst 5 Aufgabe I. Es sei (G, ) eine Gruppe mit neutralem Element e und M {x G x x e}. Zeigen Sie: (a) Ist G kommutativ, so ist M eine Untergruppe von G. (b)

Mehr

Satz 2.8 V sei ein endlichdimensionaler euklidischer Vektorraum. Für jeden Unterraum

Satz 2.8 V sei ein endlichdimensionaler euklidischer Vektorraum. Für jeden Unterraum Orthogonalität 123 Dienstag, 27. April 04 Satz 2.8 V sei ein endlichdimensionaler euklidischer Vektorraum. Für jeden Unterraum U von V gilt dann (a) U + U = V, U U = {0}, U, U = 0. (b) (U ) = U. Wir sagen

Mehr

Vorlesung 27. Der projektive Raum. Wir werden den projektiven Raum zunehmend mit mehr Strukturen versehen.

Vorlesung 27. Der projektive Raum. Wir werden den projektiven Raum zunehmend mit mehr Strukturen versehen. Vorlesung 27 Der projektive Raum Definition 1. Sei K ein Körper. Der projektive n-dimensionale Raum P n K besteht aus allen Geraden des A n+1 K durch den Nullpunkt, wobei diese Geraden als Punkte aufgefasst

Mehr

44 Spektralzerlegung normaler Operatoren im endlichdimensionalen Fall

44 Spektralzerlegung normaler Operatoren im endlichdimensionalen Fall 44 Spektralzerlegung normaler Operatoren im endlichdimensionalen Fall 44 1 Zusammenfassung Dieser Paragraf richtet sich im Aufbau weitgehend nach 42, um den Zerlegungssatz (44.7) analog zum Satz über die

Mehr

1 2. Körpererweiterungen

1 2. Körpererweiterungen 1 2. Körpererweiterungen 1 2. 1. Definition: Sind K, L Körper und i: K L ein Ringhomomorphismus, so ist i injektiv, wir fassen K vermöge i als Unterkörper von L auf, schreiben dafür L K und nennen L eine

Mehr

Extremalpunkte und der Satz von Krein-Milman. 1 Lokalkonvexe topologische Vektorräume

Extremalpunkte und der Satz von Krein-Milman. 1 Lokalkonvexe topologische Vektorräume Extremalpunkte und der Satz von Krein-Milman Seminar zu ausgewählten Kapiteln der Banachraumtheorie Vortrag von Michael Hoffmann 1 Lokalkonvexe topologische Vektorräume Im folgenden betrachten wir stets

Mehr

7. Übungsblatt zur Mathematik II für Inf, WInf

7. Übungsblatt zur Mathematik II für Inf, WInf Fachbereich Mathematik Prof. Dr. Streicher Dr. Sergiy Nesenenko Pavol Safarik SS 2010 27.-31.05.10 7. Übungsblatt zur Mathematik II für Inf, WInf Gruppenübung Aufgabe G24 (Grundlegende Definitionen) Betrachten

Mehr

Analysis I. Guofang Wang Universität Freiburg

Analysis I. Guofang Wang Universität Freiburg Universität Freiburg 30.11.2016 5. Teilmengen von R und von R n Der R n ist eine mathematische Verallgemeinerung: R n = {x = (x 1,..., x n ) : x i R} = } R. {{.. R }. n mal Für x R ist x der Abstand zum

Mehr

4 Fehlerabschätzungen und Konvergenz der FEM

4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 153 Es sei V der Lösungsraum und V N V ein endlich dimensionaler Unterraum. Weiters sei u V die exakte Lösung und

Mehr

Teil 2 LINEARE ALGEBRA II

Teil 2 LINEARE ALGEBRA II Teil 2 LINEARE ALGEBRA II 27 Kapitel VII Euklidische und unitäre Vektorräume Wir beschäftigen uns jetzt mit Vektorräumen, die noch eine zusätzliche Struktur tragen Der Winkel zwischen Vektoren im IR 2

Mehr

Lineare Operatoren auf dem Hilbertraum

Lineare Operatoren auf dem Hilbertraum Lineare Operatoren auf dem Hilbertraum Vorlesung WS 2002/03 Prof. Dr. Gerd Wittstock Universität des Saarlandes FR 6.1 Mathematik Version: 7. Februar 2003 Inhaltsverzeichnis 1 Hilberträume 1 1.1 Sesquilinearformen.............

Mehr

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist: Musterlösung Aufgabe a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [, ] R, die folgendermaßen definiert ist: f(x) := { für x R \ Q für x Q f ist offensichtlich beschränkt. Wir zeigen,

Mehr

Universität Ulm Abgabe: Donnerstag,

Universität Ulm Abgabe: Donnerstag, Universität Ulm Abgabe: Donnerstag, 8.6.9 Jun.-Prof. Dr. D. Mugnolo Manfred Sauter Sommersemester 29 Gesamtpuntzahl: 3+ Lösungen Elemente der Funtionalanalysis: Blatt 6 As for everything else, so for a

Mehr

Übungen zur Diskreten Mathematik I Blatt 6

Übungen zur Diskreten Mathematik I Blatt 6 1 Blatt 6 Aufgabe 19 Es sei M := {n N : n 2} und R := {(n, m) M M : n teilt m}. a) Zeigen Sie, dass R eine Ordnungsrelation auf M ist. b) Überprüfen Sie, ob R eine totale Ordnung auf M ist. c) Zeigen Sie,

Mehr

5 Teilmengen von R und von R n

5 Teilmengen von R und von R n 5 Teilmengen von R und von R n Der R n ist eine mathematische Verallgemeinerung: R n = {x = (x 1,...,x n ) : x i R} = R }... {{ R }. n mal Für x R ist x der Abstand zum Nullpunkt. Die entsprechende Verallgemeinerung

Mehr

Aufgabensammlung Funktionalanalysis 1

Aufgabensammlung Funktionalanalysis 1 Aufgabensammlung Funktionalanalysis 1 Michael Kunzinger, Roland Steinbauer Wintersemester 27/8 (Version 13. Januar 28) Die vorliegende Aufgabensammlung dient als Grundlage für die Übungen zur Funktionalanalysis

Mehr