Kapitel 3. Transportmechanismen. 3.1 Ionosationsmechanismus

Größe: px
Ab Seite anzeigen:

Download "Kapitel 3. Transportmechanismen. 3.1 Ionosationsmechanismus"

Transkript

1 Kapitel 3 Transportmechanismen Ionisationsdetektoren spielen in der Elementarteilchenphysik eine zentrale Rolle, sie waren die ersten Geräte überhaupt, mit denen Strahlung nachgewiesen werden konnte. Alle diese Geräte beruhen auf dem Prinzip der Ionisation eines Gases durch die eindringende Strahlung, die dabei entstehenden Ionisationselektronen und Ionen werden aufgesammelt und als elektrisches Signal beobachtet. Das historisch wichtigste Beispiel ist das Geiger-Müller-Zählrohr. Deshalb sollen zunächst der Ionisationsprozess sowie die Transportphänomene von Elektronen in Gasen diskutiert werden. 3.1 Ionosationsmechanismus Der Energieverlust geladener Teilchen in einem Medium wird im Wesentlichen durch Anregung und Ionisation, bei der ein freies Elektron und ein Ion entstehen, bestimmt. Die Anregung eines Atomes X durch ein geladenes Teilchen p X + p X + p (3.1) ist ein resonanter Prozess, der die Übertragung einer bestimmten Energieportion verlangt. Dabei beträgt der typische Wirkungsquerschnitt für den Anregungspozess in Edelgasen σ cm 2. Obwohl kein Elektron frei wird und kein Ion entsteht, kann dieser Prozess in weiteren Reaktionen auch zur Ionisation beitragen. Der Ionisationsprozess X + p X + + p + e (3.2) ist kein resonanter Prozess und verlangt deshalb auch keinen bestimmten diskreten Energieübertrag. Obwohl der Wirkungsquerschnitt der Ionisation mit σ cm 2 etwas größer als der der Anregung ist, dominieren im Allgemeinen wegen des relaiv hohen Energieschwellwertes die Anregungsprozesse. Die Elektronen und Ionen, die durch den Prozess 3.2 durch die eintreffende Strahlung selbst entstehen, werden als Primärionisation bezeichnet. Bei einem Teil dieser Ionisationen wird so viel Energie auf die Elektronen übertragen, dass diese wiederum selbst ionisierend wirken. Diese Elektronen werden als δ-elektronen bezeichnet,

2 3.2 Transportmechanismen von Elektronen und Ionen in Gasen 59 die durch sie verursachten Ionisationsprozesse nennt man Sekundärionisation. Dieser sekundärer Prozess hält solange an, bis der Ionisationsschwellwert unterschritten wird Mittlere Anzahl produzierter Ionenpaare Der Ionisationsprozess ist statistischer Natur, zwei einfallende Teilchen produzieren in der Regel nicht dieselbe Anzahl an Elektronen-Ionenpaaren. Bei einem bestimmten Energieverlust kann die mittlere Zahl der Elektron-Ionenpaaren nicht aus dem Quotienten aus Energieverlust und Ionisationspotenial bestimmt werden, da immer ein Teil der Energie in Anregungsprozessen absorbiert wird. Es zeigt sich, dass bei Gasen dieser Wert von der Grössenordnung 1 Elektron-Ionpaar pro 30 ev an Energieverlust beträgt. Überraschenderweise hängt dieser Wert nicht wesentlich von der Art des ionisierenden Teilchens und nur schwach von der Art des Ionisationsgases ab. 3.2 Transportmechanismen von Elektronen und Ionen in Gasen Für die Entwicklung und den Bau von Ionisationsdetektoren ist das Verständnis der Bewegungsmechanismen von Elektronen und Ionen essentiell, da sich daraus die Anforderungen an die Betriebsbedingungen ergeben. Die Phänomene können in der Regel mit der klassischen kinetischen Gastheorie beschrieben werden, und umfassen im Wesentlichen die Diffusion und das Driftverhalten im elektromagnetischen Feld Diffusion Wenn kein elektrisches Feld anwesend ist, diffundieren die von der Strahlung erzeugten Elektronen und Ionen ausgehend von ihrem Erzeugungsort gleichmäßig und isotrop in alle Raumrichtungen. Während des Prozesses erfahren sie Vielfachstreuung mit den Gasmolekülen und verlieren dabei ihre Energie. Somit erreichen sie schnell ein thermisches Gleichgewicht mit den Gasmolekülen und rekombinieren. Bei thermischen Energien wird die Geschwindigeit der Ladungen durch eine Maxwellverteilung beschrieben, welche eine mittlere Geschwindigkeit von v M = 8kT πm (3.3) mit der Boltzmannkonstanten k und bei der Temperatur T für ein Teilchen der Masse m liefert. Aufgrund der kleinen Masse des Elektrons ist deren mittlere Geschwindigkeit wesentlich größer als die der Ionen. Bei Zimmertemperatur ist v M (e ) 10 6 cm/s v M (A + ) 10 4 cm/s

3 60 Transportmechanismen Aus der kinetischen Gastheorie erhält man, dass die Verteilung der Ladungen, die während der Zeit t diffundiert sind, gaussartig ist: dn dx = N 0 4πDt e x2 4Dt (3.4) wobei N 0 die totale Anzahl der Ladungen, x die Entferung vom Erzeugungsort und D der Diffusionskoeffizient ist. Die Breite der Verteilung in x ist demnach σ(x) = 2Dt (3.5) und in drei Dimensionen gilt analog für den sphärischen Drift σ(r) = 6Dt (3.6) wobei r der radiale Abstand vom Erzeugungspunkt ist. Beispielsweise ist Streubreite von Ionen in Luft unter Normalbedingungen ungefär 1 mm nach 1 s. Der Diffusionskoeffizient D kann aus der kinetischen Gastheorie hergeleitet werden und ist D = 1 vλ (3.7) 3 wobei λ die mittlere freie Weglänge der Elektronen oder Ionen im Gas ist. Für ein ideales, klassisches Gas ist die λ bei einer Temperatur T und dem Druck p gegeben als λ = 1 kt (3.8) 2 σ 0 p wobei σ 0 der totale Wirkungsquerschnitt der Kollision mit einem Gasmolekül ist. Wenn man in Gl. 3.7 Gl. 3.3 und Gl. 3.8 einsetzt, so erhält man für den Diffusionskoeffizienten D = (kt ) 3 (3.9) π pσ 0 m In Gl. 3.9 werden die Abhängigkeiten von D von den Parameteren des Gases deutlich Drift und Mobilität Bei der Anwesenheit eines elektrischen Feldes werden die durch die Teilchenstrahlung erzeugten Ladungen entlang der Feldlinien zur Anode bzw. zur Kathode beschleunigt. Der Beschleunigung der Ladungen wirken die Kollisionen mit den Gasatomen entgegen, wodurch die maximal erreichbare Geschwindigkeit entlang der Feldrichtung begrenzt wird und sich eine konstante Driftgeschwindigkeit einstellt. Verglichen zu den thermischen Bewegungen ist die Driftgeschwindigkeit relativ klein, nur bei den sehr leichten Elektronen kann sie höher sein. In der kinetischen Gastheorie definiert man die Mobilität µ einer Ladung als µ = v D E (3.10)

4 3.2 Transportmechanismen von Elektronen und Ionen in Gasen 61 wobei v D die Driftgeschwindigkeit und E die elektrische Feldstärke sind. Im Falle von positiven Ionen ist die Driftgeschwindigkeit linear zum Verhältnis E/p bis hin zu relativ großen elektrischen Feldern. Bei einem konstanten Druck folgt daraus, dass die Mobilität konstant bleibt. Bei einer gegebenen Feldstärke E ist demnach die Mobilität µ umgekehrt proportional zum Druck p. In idealen Gasen, bei denen die driftenden Ladungen im thermischen Gleichgewicht bleiben, ergibt sich der folgende Zusammenhang zwischen der Mobilität und der Diffusionskonstante D µ = kt (3.11) e Dies folgt aus klassischen Überlegungen und ist als die Einstein sche Relation bekannt. Anders als bei den positiven Ionen ist die Mobiltät der Elektronen wesentlich größer und abhängig von E. Bei einer typischen Feldstärke von 1 kv/cm bei Normaldurck können Geschwindigkeiten von bis zu 10 6 cm/s vor Eintreten der Saturation erreicht werden. Wenn durch die Zunahme der Driftgeschwindikeit die thermischen Energien überschritten werden, kann davon auch die Diffusionsrate beeinflusst werden (Abb. 3.1) Beweglichkeit von Ionen und Elektronen Im äußeren elektrischen Feld erhalten die Ionen neben der thermischen Geschwindigkeit eine überlagerte Driftgeschwindigkeit, die ihrer Bewegung eine Vorzugsrichtung gibt. Die mittlere kinetische Energie eines Ions unterscheidet sich allerdings nur unwesentlich von deren thermischer Energie, da das schwere Ion beim Stoß mit dem etwa gleich schweren Gasatom im Mittel die Hälfte seiner Energie verliert. Die Beweglichkeit von Ionen µ + sollt daher in guter Näherung unabhängig vom äußeren angelegten Feld sein. Bei einer Driftkammer misst man die Zeit, die zwischen dem Teilchendurchgang und der Signalproduktion vergeht, um aus dieser Information den Ort der Teilchenbahn zu bestimmen. Die Beweglichkeit der Elektronen legt hier die Zeitdauer fest t = t(anode) t(teilchen) = L v D (3.12) wobei L der Abstand von dem Produktionsort (zur Zeit t(teilchen)) des Ionenpaares zur Anode ist. Die Driftgeschwindigkeit v D der Elektronen wird aus der allgemeinen Bewegungsgleichung eines Elektrons im E- und B-Feld abgeleitet: m d v dt = e E + e( v B) + Q(t) (3.13) wobei Q(t) ein stochastisches zeitabhängiges Rauschen aufgrund der Stöße mit den Gasatomen sei. Wir können in guter Näherung annehmen, dass die E und B Felder zwischen zwei Stößen konstant seien und mitteln über ein Zeitintervall, dass viel größer als die Zeit zwischen zwei Stößen sei: v D = v und erhalten dann aus Gl O = m d v dt = e( E + v B ) m τ v D (3.14)

5 62 Transportmechanismen wobei Q(t) durch einen Reibungterm angenähert wurde. Für die Driftgeschwindigkeit erhält man dann mit der Larmor-Frequenz ω L = eb m Aufösung nach v D liefert dann endlich v D = µ E + ω τ v D B (3.15) v D = µ E 1 + ω 2 τ 2 ( ˆ E + ωτ ˆ E ˆ B + ω 2 τ 2 ( ˆ E ˆ B) ˆ B ) (3.16) Im Fall von B = 0 wird Gl zu v D = µ E. Man untescheidet nun zwei Arten von Gasen: einerseits Gase, deren Atome wenige niederenergetische Anregungsniveaus besitzen, und die Elektronen bei Stöß kaum Energie verlieren können (T kt, heiße Gase) und anderseits Gase, mit vielen niederenergetischen Freiheitsgraden, in denen die Elektronen ihre gewonnene Energie durch Stöße verlieren können (T kt, kalte Gase). Bei heißen Gasen ist die Driftgeschwindigkeit wegen µ τ 1 σ( E ) nicht konstant, hingegen gilt bei kalten Gasen µ = const.. Dies ist in Abb. 3.1 dargestellt. Abbildung 3.1: Driftgeschwindigkeit v D von Elektronen als Funktion der angelegten Feldstärke. Offensichtlich wird die Richtung der Driftgeschwindigkeit v D durch die Anwesenheit von E- und B-Feldern derart beeinflusst, daß v D eine Komponente parallel und eine senkrecht zur Richtung von E und B hat. Falls, wie es beim Bau von Driftkammer üblich ist, das E-Feld senkrecht zum B-Feld gewählt wird, so erhält v D einen Winkel α L zur Richtung des E-Feldes, den sogenannten Lorentzwinkel und ändert ihren Betrag. Mit Gl folgt dann in disem Falle mit tan α = ω τ v D = µ E = tan α = v 1 + ω2 τ 2 D B E (3.17)

6 3.3 Lawinenbildung 63 Bei einem Driftfeld von E = 500 V und einer daraus resultierenden Driftgeschwindigkeit von v D = 3.5 cm/µs ändert sich deren Betrag bei der Anwesenheit eines Magnetfeldes von B = 1.5 T zur vd B = 2.4 cm/µs und der Lorentzwinkel beträgt α L = 46. Daraus ist ersichtlich, dass aufgrund seiner Größe der Lorentzwinkel bei der Planung von Driftkammern immer mitberücksichtigt werden muss. 3.3 Lawinenbildung Eine Vervielfachung der ionisierenden Primärladung in Gasdetektoren erhält man, wenn die durch die Primärionisation entstandenen Elektronen genügend Energie aus dem angelegten Feld erhalten, so dass sie selbst wiederum ionisierend wirken können. Die ionisierenden Sekundärelektronen produzieren dann ihrerseits Tertiärelektronen und so fort. Dieser Prozess resultiert in einer Lawinenbildung. Die Verteilung der Ionisationswahrscheinlichkeit ist in Abb. 3.2 gezeigt. Wegen der höheren Mobilität der Elektronen hat die Lawine die Form eines Flüssigkeitströpfchens, bei dem sich die Elekronen in der Nähe des Bauches gruppieren und das langsamere Ion hinterherläuft (Abb. 3.3) Abbildung 3.2: Ionisationswahrscheinlickeit als Funktion der Elektronenergie T e. Wenn λ die mittlere freie Weglänge für eine Sekundärionisation sei, dann ist α = 1/λ die Ionisationswahrscheinlichkeit pro Weglänge. Wenn n Elekronen vorhanden sind, werden in einer Wegstrecke von dx dn = n α dx (3.18)

7 64 Transportmechanismen neue Eletronen produziert. Durch Integration erhält man die totale Anzahl der auf der Strecke x produzierten Elektronen n = n 0 e α x (3.19) wobei n 0 dann zu die ursprüngliche Zahl der Elekronen ist. Der Verstärkungsfaktor wird M = n n 0 = e α x (3.20) Im Allgemeinen ist α bei nicht gleichförmigen elektrischen Feldern eine Funktion von x: 2 M = e α(x) dx 1 (3.21) Während die Verstärkung von Gl ohne Grenze anwachsen kann, ist der Verstärkungsfaktor aus physikalischen Gründen auf M < 10 8 oder α x < 20 beschränkt (Raether-Limite), ansonsten würde es zu Funkenbildung kommen. Da für die Driftgeschwindigkeiten gilt v D (e v D (Ion) erhält man unter Berücksichtigung der Diffusion und Streuung eine tropfenartige Lawinenform (Townsend-Lawine, Abb. 3.3). Der Verstärkungsfaktor ist von fundamentaler Bedeutung für den Bau von Proportionalzählern. Aus diesem Grunde wurden viele theoretische Modelle zur Bestimmung von α in verschiedenen Gasen entwickelt. Eines der älteren Modelle von Rose und Korff liefert dafür α p = A e Bp E (3.22) wobei A und B empirische Gaskonstanten sind.

8 3.3 Lawinenbildung 65 Anode Abbildung 3.3: Ausbildung einer Ladungslawine in der Nähe des Anodendrahtes.

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung 4 Quantenphänomene Aufgabe 1: Photoeffekt 1 Ein monochromatischer Lichtstrahl trifft auf eine Kalium-Kathode

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 11. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 11. 06.

Mehr

Praktikumsprotokoll. Versuch Nr. 703 Das Geiger-Müller-Zählrohr. Frank Hommes und Kilian Klug

Praktikumsprotokoll. Versuch Nr. 703 Das Geiger-Müller-Zählrohr. Frank Hommes und Kilian Klug Praktikumsprotokoll Versuch Nr. 703 Das Geiger-Müller-Zählrohr und Durchgeführt am: 20 April 2004 Inhaltsverzeichnis 1 Einleitung 3 2 Theoretische Hintergründe 3 2.1 Spannungsabhängigkeit.......................

Mehr

Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im E Feld Kopetschke 2011 Teilchenbahnen im elektrischen Querfeld

Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im E Feld Kopetschke 2011 Teilchenbahnen im elektrischen Querfeld Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im E Feld Kopetschke 011 Teilchenbahnen im elektrischen Querfeld 1) Elektronen starten an der negativen Platte eines Kondensators (d = 5 mm, U = 300 V) und

Mehr

Klassische Theoretische Physik: Elektrodynamik

Klassische Theoretische Physik: Elektrodynamik Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu (Deutsche Übersetzung: Jens Erler) Argelander-Institut für Astronomie Auf dem Hügel 71 kbasu@astro.uni-bonn.de Website: www.astro.uni-bonn.de/tp-l

Mehr

Experimentalphysik V - Kern- und Teilchenphysik Vorlesungsmitschrift. Dozent: Prof. K. Jakobs Verfasser: R. Gugel

Experimentalphysik V - Kern- und Teilchenphysik Vorlesungsmitschrift. Dozent: Prof. K. Jakobs Verfasser: R. Gugel Experimentalphysik V - Kern- und Teilchenphysik Vorlesungsmitschrift Dozent: Prof. K. Jakobs Verfasser: R. Gugel 12. Februar 2013 Teilchen werden durch ihre Wechselwirkung mit Materie, d.h. dem Detektormaterial,

Mehr

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld.

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld. Induktion Die elektromagnetische Induktion ist der Umkehrprozess zu dem stromdurchflossenen Leiter, der ein Magnetfeld erzeugt. Bei der Induktion wird in einem Leiter, der sich in einem Magnetfeld bewegt,

Mehr

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Institut für Experimentelle Kernphysik Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Prof. Dr. T. Müller Dr. F. Hartmann Blatt 4 - letzte Übung in

Mehr

Physik VI Plasmaphysik

Physik VI Plasmaphysik Physik VI Plasmaphysik Physik VI Plasmaphysik Inhaltsübersicht 1. Charakteristik des Plasmazustandes 2. Experimentelle Grundlagen der Plasmaphysik 3. Thermodynamische Gleichgewichtsplasmen 4. Plasmen im

Mehr

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein

Mehr

= 6,63 10 J s 8. (die Plancksche Konstante):

= 6,63 10 J s 8. (die Plancksche Konstante): 35 Photonen und Materiefelder 35.1 Das Photon: Teilchen des Lichts Die Quantenphysik: viele Größen treten nur in ganzzahligen Vielfachen von bestimmten kleinsten Beträgen (elementaren Einheiten) auf: diese

Mehr

Systematisierung Felder und Bewegung von Ladungsträgern in Feldern

Systematisierung Felder und Bewegung von Ladungsträgern in Feldern Systematisierung Felder und Bewegung von Ladungsträgern in Feldern Systematisierung Feld Unterschiede: Beschreibung Ursache Kräfte auf elektrisches Feld Das elektrische Feld ist der besondere Zustand des

Mehr

UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger

UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger Statistik der Elektronen und Löcher in Halbleitern Die klassische Theorie der Leitungselektronen in Metallen ist nicht anwendbar auf die Elektronen

Mehr

Kinematik & Dynamik. Über Bewegungen und deren Ursache Die Newton schen Gesetze. Physik, Modul Mechanik, 2./3. OG

Kinematik & Dynamik. Über Bewegungen und deren Ursache Die Newton schen Gesetze. Physik, Modul Mechanik, 2./3. OG Kinematik & Dynamik Über Bewegungen und deren Ursache Die Newton schen Gesetze Physik, Modul Mechanik, 2./3. OG Stiftsschule Engelberg, Schuljahr 2016/2017 1 Einleitung Die Mechanik ist der älteste Teil

Mehr

16 Elektromagnetische Wellen

16 Elektromagnetische Wellen 16 Elektromagnetische Wellen In den folgenden Kapiteln werden wir uns verschiedenen zeitabhängigen Phänomenen zuwenden. Zunächst werden wir uns mit elektromagnetischen Wellen beschäftigen und sehen, dass

Mehr

Spezifische Ladung des Elektrons

Spezifische Ladung des Elektrons Spezifische Ladung des Elektrons 1. Aufgaben 1. Die von einer Spule (a) und von einer Helmholtz-Spulenanordnung (b) erzeugte magnetische Flußdichte ist längs der Rotationssymmetrieachse zu messen und grafisch

Mehr

v q,m Aufgabensammlung Experimentalphysik für ET

v q,m Aufgabensammlung Experimentalphysik für ET Experimentalphysik für ET Aufgabensammlung 1. E-Felder Auf einen Plattenkondensator mit quadratischen Platten der Kantenlänge a und dem Plattenabstand d werde die Ladung Q aufgebracht, bevor er vom Netz

Mehr

Problem 1: Die Parabelmethode von Joseph John Thomson

Problem 1: Die Parabelmethode von Joseph John Thomson Problem 1: Die Parabelmethode von Joseph John Thomson Bei einer Internetrecherche für eine Arbeit über Isotope haben Sie den folgenden Artikel von J. J. Thomson gefunden, der in den Proceedings of The

Mehr

3. Kapitel Der Compton Effekt

3. Kapitel Der Compton Effekt 3. Kapitel Der Compton Effekt 3.1 Lernziele Sie können erklären, wie die Streuung von Röntgenstrahlen an Graphit funktioniert. Sie kennen die physikalisch theoretischen Voraussetzungen, die es zum Verstehen

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas Thermodynamik Teilgebiet der klassischen Physik. Wir betrachten statistisch viele Teilchen. Informationen über einzelne Teilchen werden nicht gewonnen bzw.

Mehr

Elektronen in Metallen. Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Daniel Gillo Datum:

Elektronen in Metallen. Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Daniel Gillo Datum: Elektronen in Metallen Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Datum: 1.01.14 Gliederung 1. Einleitung 1.1 Elektronen 1. Metalle. Drude-Modell.1 Ohm'sches Gesetz. Grenzen

Mehr

CMB Echo des Urknalls. Max Camenzind Februar 2015

CMB Echo des Urknalls. Max Camenzind Februar 2015 CMB Echo des Urknalls Max Camenzind Februar 2015 Lemaître 1931: Big Bang des expandierenden Universums Big Bang : Photonenhintergrund + Neutrinohintergrund 3-Raum expandiert: dx a(t) dx ; Wellenlängen

Mehr

Vakuum und Gastheorie

Vakuum und Gastheorie Vakuum und Gastheorie Jan Krieger 9. März 2005 1 INHALTSVERZEICHNIS 0.1 Formelsammlung.................................... 2 0.1.1 mittlere freie Weglänge in idealen Gasen................... 3 0.1.2 Strömungsleitwerte

Mehr

2.4 Stoßprozesse. entweder nicht interessiert o- der keine Möglichkeit hat, sie zu untersuchen oder zu beeinflussen.

2.4 Stoßprozesse. entweder nicht interessiert o- der keine Möglichkeit hat, sie zu untersuchen oder zu beeinflussen. - 52-2.4 Stoßprozesse 2.4.1 Definition und Motivation Unter einem Stoß versteht man eine zeitlich begrenzte Wechselwirkung zwischen zwei oder mehr Systemen, wobei man sich für die Einzelheiten der Wechselwirkung

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? Ideale und reale Spannungsquellen Kirchhoffsche Regeln Parallelschaltung und Reihenschaltungen von Widerständen Amperemeter

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Feldbegriff und Feldlinienbilder. Elektrisches Feld. Magnetisches Feld. Kraft auf Ladungsträger im elektrischen Feld

Feldbegriff und Feldlinienbilder. Elektrisches Feld. Magnetisches Feld. Kraft auf Ladungsträger im elektrischen Feld Feldbegriff und Feldlinienbilder Elektrisches Feld Als Feld bezeichnet man den Bereich um einen Körper, in dem ohne Berührung eine Kraft wirkt beim elektrischen Feld wirkt die elektrische Kraft. Ein Feld

Mehr

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel 11. Elektrodynamik 11.5.4 Das Amperesche Gesetz 11.5.5 Der Maxwellsche Verschiebungsstrom 11.5.6 Magnetische Induktion 11.5.7 Lenzsche Regel 11.6 Maxwellsche Gleichungen 11.7 Elektromagnetische Wellen

Mehr

Physik 1. Kinematik, Dynamik.

Physik 1. Kinematik, Dynamik. Physik Mechanik 3 Physik 1. Kinematik, Dynamik. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH Physik Mechanik 5 Themen Definitionen Kinematik Dynamik Physik Mechanik 6 DEFINITIONEN Physik Mechanik 7 Was ist

Mehr

Induktion, Polarisierung und Magnetisierung

Induktion, Polarisierung und Magnetisierung Übung 2 Abgabe: 11.03. bzw. 15.03.2016 Elektromagnetische Felder & Wellen Frühjahrssemester 2016 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Induktion, Polarisierung und Magnetisierung In dieser

Mehr

Magnetische Monopole

Magnetische Monopole Magnetische Monopole Einführung: Aber in der Schule haben wir doch gelernt... Dirac s Idee symmetrischer Maxwell-Gleichungen Konsequenzen aus der Existenz magnetischer Monopole Quantisierung der elektrischen

Mehr

XII. Elektromagnetische Wellen in Materie

XII. Elektromagnetische Wellen in Materie XII. Elektromagnetische Wellen in Materie Unten den wichtigsten Lösungen der makroskopischen Maxwell-Gleichungen (XI.1) in Materie sind die (fortschreitenden) Wellen. Um die zugehörigen Wellengleichungen

Mehr

3.4. Leitungsmechanismen

3.4. Leitungsmechanismen a) Metalle 3.4. Leitungsmechanismen - Metall besteht aus positiv geladenen Metallionen und frei beweglichen Leitungselektronen (freie Elektronengas), Bsp.: Cu 2+ + 2e - - elektrische Leitung durch freie

Mehr

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Ein Kondensator besteht aus zwei horizontal angeordneten, quadratischen

Mehr

2 Grundgrößen und -gesetze der Elektrodynamik

2 Grundgrößen und -gesetze der Elektrodynamik Grundgrößen und -gesetze der Elektrodynamik. Grundgrößen der Elektrodynamik.. Ladung und die dreidimensionale δ-distribution Ladung Q, q Ladungen treten in zwei Variationen auf: positiv und negativ Einheit:

Mehr

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m 2010-11-24 Klausur 2 Kurs 11Ph1e Physik Lösung 1 α-teilchen (=2-fach geladene Heliumkerne) werden mit der Spannung U B beschleunigt und durchfliegen dann einen mit der Ladung geladenen Kondensator (siehe

Mehr

Abiturprüfung Physik, Grundkurs. Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen

Abiturprüfung Physik, Grundkurs. Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen Seite 1 von 6 Abiturprüfung 2012 Physik, Grundkurs Aufgabenstellung: Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen Ein homogenes Magnetfeld in einem

Mehr

Bewegung von Teilchen im elektrischen und magnetischen Feld Schularbeiten bis Oktober 1995

Bewegung von Teilchen im elektrischen und magnetischen Feld Schularbeiten bis Oktober 1995 Bewegung von Teilchen im elektrischen und magnetischen Feld Schularbeiten bis Oktober 1995 1) Ein Elektron (e = 1,6.10-19 C ; m e = 9,1.10-31 kg) mit der Anfangsgeschwindigkeit v o = 2.10 6 m/s durchläuft

Mehr

Aufgabe I: Fusionsreaktor und Sonne

Aufgabe I: Fusionsreaktor und Sonne Europa-Gymnasium Wörth Abiturprüfung 2012 Leistungskurs Physik LK2 Aufgabe I: Fusionsreaktor und Sonne Leistungsfachanforderungen Hilfsmittel Formelsammlung (war im Unterricht erstellt worden) Tabelle

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #42 am

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #42 am Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #42 am 11.07.2007 Vladimir Dyakonov Resonanz Damit vom Sender effektiv Energie abgestrahlt werden

Mehr

Klausur 2 Kurs 12Ph3g Physik

Klausur 2 Kurs 12Ph3g Physik 2009-11-16 Klausur 2 Kurs 12Ph3g Physik Lösung (Rechnungen teilweise ohne Einheiten, Antworten mit Einheiten) Die auf Seite 3 stehenden Formeln dürfen benutzt werden. Alle anderen Formeln müssen hergeleitet

Mehr

Parameterdarstellung einer Funktion

Parameterdarstellung einer Funktion Parameterdarstellung einer Funktion 1-E Eine ebene Kurve Abb. 1-1: Die Kurve C beschreibt die ebene Bewegung eines Teilchens 1-1 Eine ebene Kurve Ein Teilchen bewegt sich in einer Ebene. Eine ebene Kurve

Mehr

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung Die Mechanik besteht aus drei Teilgebieten: Kinetik: Bewegungsvorgänge (Translation, Rotation) Statik: Zusammensetzung und Gleichgewicht von Kräften Dynamik: Kräfte als Ursache von Bewegungen Die Mechanik

Mehr

Theory German (Germany)

Theory German (Germany) Q3-1 Large Hadron Collider (10 Punkte) Lies die allgemeinem Hinweise im separaten Umschlag bevor Du mit der Aufgabe beginnst. Thema dieser Aufgabe ist der Teilchenbeschleuniger LHC (Large Hadron Collider)

Mehr

Schnecke auf expandierendem Ballon

Schnecke auf expandierendem Ballon Schnecke auf expandierendem Ballon Kann in einem sich expandierenden Uniersum das Licht einer Galaxie auch die Punkte erreichen, die sich on ihr mit mehr als Lichtgeschwindigkeit entfernen? 1 Als einfaches

Mehr

2. Klausur in K1 am

2. Klausur in K1 am Name: Punkte: Note: Ø: Physik Kursstufe Abzüge für Darstellung: Rundung:. Klausur in K am 7.. 00 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: e =,60

Mehr

Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG

Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG 3 G8_Physik_2011_Ph11_Loe Seite 1 von 7 Ph 11-1 Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG 1) a) b) - - + + + c) In einem Homogenen elektrischen Feld nimmt das Potential in etwa linear. D.h. Es sinkt

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2009-2 Name : Vorname : Matrikelnummer : Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe

Mehr

Dieter Suter Physik B3

Dieter Suter Physik B3 Dieter Suter - 421 - Physik B3 9.2 Radioaktivität 9.2.1 Historisches, Grundlagen Die Radioaktivität wurde im Jahre 1896 entdeckt, als Becquerel feststellte, dass Uransalze Strahlen aussenden, welche den

Mehr

Thermische Isolierung mit Hilfe von Vakuum. 9.1.2013 Thermische Isolierung 1

Thermische Isolierung mit Hilfe von Vakuum. 9.1.2013 Thermische Isolierung 1 Thermische Isolierung mit Hilfe von Vakuum 9.1.2013 Thermische Isolierung 1 Einleitung Wieso nutzt man Isolierkannen / Dewargefäße, wenn man ein Getränk über eine möglichst lange Zeit heiß (oder auch kalt)

Mehr

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und

Mehr

Detektoren in der Hochenergiephysik

Detektoren in der Hochenergiephysik Detektoren in der Hochenergiephysik Sommersemester 2005 Univ.Doz.DI.Dr. Manfred Krammer Institut für Hochenergiephysik der ÖAW, Wien Bearbeitung der VO-Unterlagen: DI.Dr. D. Rakoczy Inhalt 1. Einleitung

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physik.uni-muenchen.de 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr

Elektrizitätslehre 2.

Elektrizitätslehre 2. Elektrizitätslehre. Energieumwandlung (Arbeit) im elektrischen Feld Bewegung einer Ladung gegen die Feldstärke: E s Endposition s Anfangsposition g W F Hub s r F Hub r Fq FHub Eq W qes W ist unabhängig

Mehr

Aufgabe 2.1: Wiederholung: komplexer Brechungsindex

Aufgabe 2.1: Wiederholung: komplexer Brechungsindex Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Jens Repp / Eric Parzinger Kontakt: jens.repp@wsi.tum.de / eric.parzinger@wsi.tum.de Blatt 2, Besprechung: 23.04.2014 / 30.04.2014

Mehr

3.7.1 Polarisationsfolien Polarisationsfolien haben hohe Elektronenbeweglichkeit entlang einer Richtung y in der Ebene der Folie. Analog zum Durchgang

3.7.1 Polarisationsfolien Polarisationsfolien haben hohe Elektronenbeweglichkeit entlang einer Richtung y in der Ebene der Folie. Analog zum Durchgang Prof. Ch. Berger, Physik f. Maschinenbauer, WS 02/03 11. Vorlesung 3.6 Spektralapparate Im Prinzip kann die Bestimmung von Wellenlangen durch Beugung am Spalt erfolgen. Eine wesentlich bessere Auosung

Mehr

Der Magnus-Effekt. Rotierender Körper in äußerer Strömung: Anwendungen:

Der Magnus-Effekt. Rotierender Körper in äußerer Strömung: Anwendungen: Der Magnus-Effekt Rotierender Körper in äußerer Strömung: Ohne Strömung: Körper führt umgebendes Medium an seinen Oberflächen mit Keine resultierende Gesamtkraft. ω Mit Strömung: Geschwindigkeiten der

Mehr

Elektromagnetische Felder und Wellen. Klausur Herbst Aufgabe 1 (5 Punkte) Aufgabe 2 (3 Punkte) Aufgabe 3 (5 Punkte) Aufgabe 4 (12 Punkte) Kern

Elektromagnetische Felder und Wellen. Klausur Herbst Aufgabe 1 (5 Punkte) Aufgabe 2 (3 Punkte) Aufgabe 3 (5 Punkte) Aufgabe 4 (12 Punkte) Kern Elektromagnetische Felder und Wellen Klausur Herbst 2000 Aufgabe 1 (5 Punkte) Ein magnetischer Dipol hat das Moment m = m e z. Wie groß ist Feld B auf der z- Achse bei z = a, wenn sich der Dipol auf der

Mehr

Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz

Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz KRG NW, Physik Klasse 10, Kräfte auf Ladungen, Kondensator, Fachlehrer Stahl Seite 1 Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz Kraft auf eine Probeladung q im elektrischen Feld (homogen,

Mehr

Übungsblatt 3 - Lösungen

Übungsblatt 3 - Lösungen Übungsblatt 3 - Lösungen zur Vorlesung EP2 (Prof. Grüner) im 2010 3. Juni 2011 Aufgabe 1: Plattenkondensator Ein Kondensator besteht aus parallelen Platten mit einer quadratischen Grundäche von 20cm Kantenlänge.

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Photoeffekt. Einleitung. Zinkplatte

Photoeffekt. Einleitung. Zinkplatte Einleitung Der lichtelektrische Effekt, die Freisetzung von Elektronen aus einer Metalloberfläche beim uftreffen von elektromagnetischer Strahlung, wurde 1839 von lexandre Becquerel erstmals beobachtet

Mehr

Physikalische. Grundlagen. L. Kölling, Fw Minden

Physikalische. Grundlagen. L. Kölling, Fw Minden Physikalische Grundlagen L. Kölling, Fw Minden Radioaktivität kann man weder sehen, hören, fühlen, riechen oder schmecken. Daher muss sie der FA (SB) zumindest verstehen, um im Einsatzfall die erforderlichen

Mehr

Stundenprotokoll vom : Compton Effekt

Stundenprotokoll vom : Compton Effekt Stundenprotokoll vom 9.12.2011: Compton Effekt Zunächst beschäftigten wir uns mit den einzelnen Graphen des Photoeffekts (grün), des Compton-Effekts (gelb) und mit der Paarbildung (blau). Anschließend

Mehr

4.7 Magnetfelder von Strömen Magnetfeld eines geraden Leiters

4.7 Magnetfelder von Strömen Magnetfeld eines geraden Leiters 4.7 Magnetfelder von Strömen Aus den vorherigen Kapiteln ist bekannt, dass auf stromdurchflossene Leiter im Magnetfeld eine Kraft wirkt. Die betrachteten magnetischen Felder waren bisher homogene Felder

Mehr

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Messung von c und e/m Autor: Noé Lutz Assistent:

Mehr

Modelle zur Beschreibung von Gasen und deren Eigenschaften

Modelle zur Beschreibung von Gasen und deren Eigenschaften Prof. Dr. Norbert Hampp 1/7 1. Das Ideale Gas Modelle zur Beschreibung von Gasen und deren Eigenschaften Modelle = vereinfachende mathematische Darstellungen der Realität Für Gase wollen wir drei Modelle

Mehr

LK Lorentzkraft. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April Einführung 2

LK Lorentzkraft. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April Einführung 2 LK Lorentzkraft Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Magnetfeld dünner Leiter und Spulen......... 2 2.2 Lorentzkraft........................

Mehr

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 8. Drehbewegungen 8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 85 8.5 Kinetische Energie der Rotation ti 8.6 Berechnung

Mehr

FK Experimentalphysik 3, Lösung 3

FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter Ein Spalt, der von einer Lichtquelle beleuchtet wird, befindet sich im Abstand von 10 cm vor einem Beugungsgitter (Strichzahl

Mehr

Im ersten Teil dieses Versuchs wird ein Elektronenstrahl im homogenen Magnetfeld untersucht.

Im ersten Teil dieses Versuchs wird ein Elektronenstrahl im homogenen Magnetfeld untersucht. 1. Problem n diesem Versuch lernen Sie die Kraftwirkung eines -Feldes auf eine bewegte Ladung kennen. ies untersuchen sie an zwei Beispielen: unächst untersuchen sie die Auslenkung eines Elektronenstrahls

Mehr

1. Klausur in K2 am

1. Klausur in K2 am Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung:. Klausur in K am 0.0. Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: Schallgeschwindigkeit

Mehr

Physik III Übung 1 - Lösungshinweise

Physik III Übung 1 - Lösungshinweise Physik III Übung 1 - Lösungshinweise Stefan Reutter WiSe 212 Moritz Kütt Stand: 16.11.212 Franz Fujara Aufgabe 1 [P] ermanentmagnete (Diskussion) Benötigt man, um ein Magnetfeld zu erhalten, immer einen

Mehr

Die Entwicklung des Erde-Mond-Systems

Die Entwicklung des Erde-Mond-Systems THEORETISCHE AUFGABE Nr. 1 Die Entwicklung des Erde-Mond-Systems Wissenschaftler können den Abstand Erde-Mond mit großer Genauigkeit bestimmen. Sie erreichen dies, indem sie einen Laserstrahl an einem

Mehr

Übungen: Kraftwirkung in magnetischen Feldern

Übungen: Kraftwirkung in magnetischen Feldern Übungen: Kraftwirkung in magnetischen Feldern Aufgabe 1: Zwei metallische Leiter werden durch einen runden, beweglichen Kohlestift verbunden. Welche Beobachtung macht ein(e) Schüler(in), wenn der Stromkreis

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 27/08/13 Technische Universität München Aufgaben zur Magnetostatik Aufgabe 1 Bestimmen Sie das Magnetfeld eines unendlichen

Mehr

2. Der Temperaturkoeffizient des spezifischen Widerstands α. Die SI-Einheit K -1 ρ = ρ

2. Der Temperaturkoeffizient des spezifischen Widerstands α. Die SI-Einheit K -1 ρ = ρ 7. Elektrische Leitfähigkeit von estkörpern 7.1 Die elektrischen Eigenschaften von Kristallen Die grundlegende Eigenschaften kennzeichnen das elektrische Verhalten von estkörpern: 1. Der spezifische Widerstand

Mehr

1 Lambert-Beersches Gesetz

1 Lambert-Beersches Gesetz Physikalische Chemie II Lösung 6 23. Oktober 205 Lambert-Beersches Gesetz Anhand des idealen Gasgesetzes lässt sich die Teilchenkonzentration C wie folgt ausrechnen: C = N V = n N A V pv =nrt = N A p R

Mehr

Formelsammlung. Lagrange-Gleichungen: q k. Zur Koordinate q k konjugierter Impuls: p k = L. Hamilton-Funktion: p k. Hamiltonsche Gleichungen: q k = H

Formelsammlung. Lagrange-Gleichungen: q k. Zur Koordinate q k konjugierter Impuls: p k = L. Hamilton-Funktion: p k. Hamiltonsche Gleichungen: q k = H Formelsammlung Lagrange-Gleichungen: ( ) d L dt q k L q k = 0 mit k = 1,..., n. (1) Zur Koordinate q k konjugierter Impuls: p k = L q k. (2) Hamilton-Funktion: n H(q 1,..., q n, p 1,..., p n, t) = p k

Mehr

Der lichtelektrische Effekt (Photoeffekt)

Der lichtelektrische Effekt (Photoeffekt) Der lichtelektrische Effekt (Photoeffekt) Versuchsanordnung Zn-Platte, amalgamiert Wulfsches Elektrometer Spannung, ca. 800 V Knappe Erklärung des Versuches Licht löst aus der Zn-Platte Elektronen aus

Mehr

Übungsblatt 4 ( )

Übungsblatt 4 ( ) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 0 Übungsblatt 4 (08.06.0) ) Geladene Kugeln Zwei homogen geladene Eisenkugeln mit den Ladungen Q = q = q = 0, 0µC haben einen

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 04. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 04. 06.

Mehr

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Unterrichtsmaterial - schriftliche Informationen zu Gasen für Studierende - Folien Fach Schultyp: Vorkenntnisse: Bearbeitungsdauer Thermodynamik

Mehr

Aufgabe 1 - Schiefe Ebene - (10 Punkte)

Aufgabe 1 - Schiefe Ebene - (10 Punkte) - schriftlich Klasse: 4AW (Profil A) - (HuR) Prüfungsdauer: Erlaubte Hilfsmittel: Bemerkungen: 4h Taschenrechner TI-nspire CAS Der Rechner muss im Press-to-Test-Modus sein. Formelsammlung Beginnen Sie

Mehr

1) Brillouin-Streuung zur Ermittlung der Schallgeschwindigkeit

1) Brillouin-Streuung zur Ermittlung der Schallgeschwindigkeit Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Eric Parzinger / Jens Repp Kontakt: eric.parzinger@wsi.tum.de / jens.repp@wsi.tum.de Blatt 3, Besprechung: 7. und 14.5.214

Mehr

Versuch 1.2: Radioaktivität

Versuch 1.2: Radioaktivität 1 Versuch 1.2: Radioaktivität Sicherheitshinweis: Schwangere dürfen diesen Versuch nicht durchführen. Sollten Sie als Schwangere zu diesem Versuch eingeteilt worden sein, so wenden Sie sich zwecks Zuweisung

Mehr

Ferienkurs Experimentalphysik Lösung zur Übung 2

Ferienkurs Experimentalphysik Lösung zur Übung 2 Ferienkurs Experimentalphysik 4 01 Lösung zur Übung 1. Ermitteln Sie für l = 1 a) den Betrag des Drehimpulses L b) die möglichen Werte von m l c) Zeichnen Sie ein maßstabsgerechtes Vektordiagramm, aus

Mehr

Aufgabe Max.Pkt. Punkte Visum 1 Visum Total 60

Aufgabe Max.Pkt. Punkte Visum 1 Visum Total 60 D-MATH/D-PHYS Prof. W. Fetscher Studienjahr HS07 - FS08 ETH Zürich Testklausur, Frühjahr 2008, Physik I+II Füllen Sie als erstes den untenstehenden Kopf mit Name und Legi-Nummer aus. Beachten Sie: Nicht

Mehr

Brückenkurs Physik SS11. V-Prof. Oda Becker

Brückenkurs Physik SS11. V-Prof. Oda Becker Brückenkurs Physik SS11 V-Prof. Oda Becker Überblick Mechanik 1. Kinematik (Translation) 2. Dynamik 3. Arbeit 4. Energie 5. Impuls 6. Optik SS11, BECKER, Brückenkurs Physik 2 Beispiel Morgens um 6 Uhr

Mehr

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus

Mehr

Praktikum II PO: Doppelbrechung und eliptisch polatisiertes Licht

Praktikum II PO: Doppelbrechung und eliptisch polatisiertes Licht Praktikum II PO: Doppelbrechung und eliptisch polatisiertes Licht Betreuer: Norbert Lages Hanno Rein praktikum2@hanno-rein.de Florian Jessen florian.jessen@student.uni-tuebingen.de 26. April 2004 Made

Mehr

Aufgaben zur Vorbereitung der Klausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/

Aufgaben zur Vorbereitung der Klausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/ Aufgaben zur Vorbereitung der Klausur zur Vorlesung inführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS213/14 5.2.213 Aufgabe 1 Zwei Widerstände R 1 =1 Ω und R 2 =2 Ω sind in

Mehr

IV. Elektrizität und Magnetismus

IV. Elektrizität und Magnetismus IV. Elektrizität und Magnetismus IV.5 Elektromagnetische Wellen Physik für Mediziner 1 Elektromagnetische Wellen Physik für Mediziner 2 Wiederholung: Schwingkreis elektrische Feld im Kondensator wird periodisch

Mehr

S. 11 Aufg. A1. S. 11 Aufg. A2

S. 11 Aufg. A1. S. 11 Aufg. A2 S. 11 Aufg. A1 Bestimmen Sie die Stromstärke, die ein Drehspulinstrument anzeigt. Ein Drehspulinstrument ist bei der Anzeige der Stromstärke recht träge. D.h. es zeigt nicht sofort die genaue Stromstärke

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten

Mehr

Klausur 2 Kurs 12Ph1e Physik

Klausur 2 Kurs 12Ph1e Physik 2011-12-07 Klausur 2 Kurs 12Ph1e Physik Lösung 1 In nebenstehendem Termschema eines fiktiven Elements My sind einige Übergänge eingezeichnet. Zu 2 Übergängen sind die zugehörigen Wellenlängen notiert.

Mehr

Der Verlauf der magnetischen Kraftwirkung um einen Magneten wird mit Hilfe von magnetischen Feldlinien beschrieben.

Der Verlauf der magnetischen Kraftwirkung um einen Magneten wird mit Hilfe von magnetischen Feldlinien beschrieben. Wechsel- und Drehstrom - KOMPAKT 1. Spannungserzeugung durch Induktion Das magnetische Feld Der Verlauf der magnetischen Kraftwirkung um einen Magneten wird mit Hilfe von magnetischen Feldlinien beschrieben.

Mehr

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden.

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden. PCG-Grundpraktikum Versuch 8- Reale Gas Multiple-Choice Test Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Reale Gas wird dieses Vorgespräch durch einen Multiple-Choice Test

Mehr

1.2 Grenzen der klassischen Physik Michael Buballa 1

1.2 Grenzen der klassischen Physik Michael Buballa 1 1.2 Grenzen der klassischen Physik 23.04.2013 Michael Buballa 1 1.2 Grenzen der klassischen Physik Die Konzepte klassischer Teilchen und Wellen haben ihren Ursprung in unserer Alltagserfahrung, z.b. Teilchen:

Mehr