Grundlagen der Bildverarbeitung: Übung 3

Größe: px
Ab Seite anzeigen:

Download "Grundlagen der Bildverarbeitung: Übung 3"

Transkript

1 Grundlagen der Bildverarbeitung: Übung 3 Michael Korn Raum: BC414, Tel.: , michael.korn@uni-due.de Michael Korn (michael.korn@uni-due.de) Grundlagen der Bildverarbeitung: Übung 3 1 / 21

2 Darstellung von Bildern im Frequenzraum mittels der Fourier-Transformation Das Thema dieser Übung ist die Fourier-Transformation von Bildern. Diese ermöglicht es, neben dem Ortsraum auch den Frequenzraum eines Bildes zu betrachten, wodurch sich neue Möglichkeiten der Analyse und Verarbeitung von Bildern ergeben. Michael Korn Grundlagen der Bildverarbeitung: Übung 3 2 / 21

3 Gliederung Verarbeitung und Visualisierung komplexer Felder Durchführen der Fourier-Transformation Erklärung der eindimensionalen Fourier-Transformation Eigenschaften der Fourier-Transformation Michael Korn Grundlagen der Bildverarbeitung: Übung 3 3 / 21

4 Verarbeitung und Visualisierung komplexer Felder Michael Korn Grundlagen der Bildverarbeitung: Übung 3 4 / 21

5 Aufgabe 3.1: Verarbeitung und Visualisierung komplexer Felder Bei der Arbeit mit der Fouriertransformation muss man häufig mit zweidimensionalen Feldern arbeiten, deren Elemente komplexe Zahlen sind. In dieser Aufgabe geht es darum, ein solches Feld zu visualisieren. Michael Korn Grundlagen der Bildverarbeitung: Übung 3 5 / 21

6 Aufgabe 3.1.1: Komplexes Feld laden In den Materialien findest Du die Datei komplexesfeld.png. Diese enthält im ersten Kanal den Realteil (aufsteigend von links nach rechts), im zweiten Kanal den Imaginäranteil (aufsteigend von oben nach unten) und im dritten Kanal einen konstanten Wert. Der Wertebereich in der Datei reicht von 0 bis 255 (8 Bit ohne Vorzeichen) und soll interpretiert werden als Bereich von -1 bis +1 (32 Bit Fließkommazahl, Vec3f). Erstelle ein Programm, welches das Bild lädt und die Umwandlung vornimmt (siehe Kopier-Konstruktoren der Klasse Mat_). Michael Korn (michael.korn@uni-due.de) Grundlagen der Bildverarbeitung: Übung 3 6 / 21

7 Aufgabe 3.1.2: Betragsbild zu komplexem Feld erstellen Erweitere das Programm derart, dass es in einem Graustufenbild den Betrag der komplexen Zahlen ( z = R(z) 2 + I(z) 2 ) in Form von unterschiedlichen Grautönen anzeigt. Der Betrag lässt sich recht einfach mit der Funktion hypot(re,im) berechnen. Schau Dir auch die Funktion carttopolar unter CXCORE Basic Functionality an. Michael Korn (michael.korn@uni-due.de) Grundlagen der Bildverarbeitung: Übung 3 7 / 21

8 Aufgabe 3.1.3: Phasenbild zu komplexem Feld erstellen Erweitere das Programm derart, dass es in einem Farbbild (32 Bit Fließkomma) die Phasen bzw. Winkel der komplexen Zahlen in Form von Farbtönen (0 = rot,..., 359 = violett) anzeigt. Ermittele dazu den Winkel zwischen π und +π mit der Funktion atan2(im,re) und rechne ihn auf den Wertebereich 0 bis 360 um. Speichere den Winkel im ersten Kanal des Farbbildes, und fülle die beiden anderen Kanäle (Sättigung und Helligkeit) mit dem Wert 1. Interpretiere das Bild mit der Funktion cvtcolor um vom HSVin den BGR-Farbraum und zeige es an. Michael Korn (michael.korn@uni-due.de) Grundlagen der Bildverarbeitung: Übung 3 8 / 21

9 Durchführen der Fourier-Transformation Michael Korn Grundlagen der Bildverarbeitung: Übung 3 9 / 21

10 Einschub: Vortrag zur Fourier-Transformation Die detaillierte Erklärung der eindimensionalen Fourier-Transformation soll helfen die Idee hinter der Fourier-Transformation besser zu verstehen. Michael Korn Grundlagen der Bildverarbeitung: Übung 3 10 / 21

11 Aufgabe 3.2: Durchführen der Fourier-Transformation OpenCV ermöglicht die Durchführung der Fourier-Transformation. Das ermittelte Frequenzspektrum soll in dieser Aufgabe basierend auf Aufgabenteil 3.1 angezeigt werden. Michael Korn Grundlagen der Bildverarbeitung: Übung 3 11 / 21

12 Aufgabe 3.2.1: Komplexe Wellen Die bei der Fourier-Transformation verwendeten Basisfunktionen sind x u komplexe Wellen der Form e i2π( W + y v H ). Zerlegt in Real- und Imaginärteil ergibt sich cos(2π( x u + y v x u )) + i sin(2π( + y v )). Erstelle ein Bild einer W H W H komplexen Welle mit (u;v) = (5;17) und einer Größe von Pixeln. Der Koordinatenursprung soll in der Bildmitte des Bildes liegen. Michael Korn (michael.korn@uni-due.de) Grundlagen der Bildverarbeitung: Übung 3 12 / 21

13 Aufgabe 3.2.2: Frequenzspektrum erzeugen Wandele das Bild der komplexen Welle in das 32-Bit-Fließ-kommaformat um. Verwende die Funktion dft mit Flag DFT_COMPLEX_OUTPUT, um die Fourier-Transformation durchzuführen. Michael Korn Grundlagen der Bildverarbeitung: Übung 3 13 / 21

14 Aufgabe 3.2.3: Betrags- und Phasenbild anzeigen Benutze die in Aufgabe und erstellten Programmteile, um das Spektrum der komplexen Welle anzuzeigen. Eventuell musst Du das Betragsspektrum durch Verwendung der Funktion normalize aufhellen. Michael Korn Grundlagen der Bildverarbeitung: Übung 3 14 / 21

15 Eigenschaften der Fourier-Transformation Michael Korn Grundlagen der Bildverarbeitung: Übung 3 15 / 21

16 Aufgabe 3.3: Eigenschaften / Anwendung Michael Korn (michael.korn@uni-due.de) Grundlagen der Bildverarbeitung: Übung 3 16 / 21

17 Aufgabe 3.3: Eigenschaften der Fourier-Transformation Welche Eigenschaften hat die Fourier-Transformation? Wenn man sich die mathematischen Formeln ansieht, kann man einige Eigenschaften vorhersagen, andere vermuten. Die letzte Aufgabe führt einige Eigenschaften vor. Dazu findest Du diverse Bilder in den mitgelieferten Materialien. Michael Korn Grundlagen der Bildverarbeitung: Übung 3 17 / 21

18 Aufgabe 3.3.1: Überlagerung In den Dateien Ueberlagerung_???.bmp finden sich drei Objekte: ein Rechteck, ein Kreis und ein schiefstehendes Rechteck. Die letzte Datei enthält eine Kombination/Überlagerung der drei anderen Dateien. Wenn Du Dir die Formel für die Fourier-Transformation ansiehst, was erwartest Du, wie die Spektren der drei Einzelbilder in das Kombinationsbild eingehen? Teste Deine Vermutung mit dem in Aufgabe 3.2 erstellten Programm. Michael Korn Grundlagen der Bildverarbeitung: Übung 3 18 / 21

19 Aufgabe 3.3.2: Translation Wie reagieren die Spektren auf Verschiebungen im Bild? Verwende dazu die Dateien Translation_???.bmp. Michael Korn Grundlagen der Bildverarbeitung: Übung 3 19 / 21

20 Aufgabe 3.3.3: Rotation Was ändert sich, wenn das Bild rotiert. Schau Dir dazu die Dateien Rotation_???.bmp an. Michael Korn Grundlagen der Bildverarbeitung: Übung 3 20 / 21

21 Aufgabe 3.3.4: Skalierung Zuletzt kannst Du mit den Dateien Skalierung_???.bmp nachvollziehen, wie sich die Größe von Strukturen auf das Frequenzspektrum auswirkt. Michael Korn Grundlagen der Bildverarbeitung: Übung 3 21 / 21

Computer/Robot-Vision: Übung 1

Computer/Robot-Vision: Übung 1 Computer/Robot-Vision: Übung 1 Michael Korn Raum: BC 414, Tel.: 0203-379 - 3583, E-Mail: michael.korn@uni-due.de Michael Korn (michael.korn@uni-due.de) Computer/Robot-Vision: Übung 1 1 / 24 Digitale Bilder

Mehr

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ): Komplexe Zahlen Definition 1. Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen (a, b). Wir nennen a den Realteil von z und b den Imaginärteil von z, geschrieben a = Re z, b = Im z. Komplexe

Mehr

Übung: Computergrafik 1

Übung: Computergrafik 1 Prof. Dr. Andreas Butz Prof. Dr. Ing. Axel Hoppe Dipl.-Medieninf. Dominikus Baur Dipl.-Medieninf. Sebastian Boring Übung: Computergrafik 1 Fouriertransformation Organisatorisches Neue Abgabefrist für Blatt

Mehr

Die Fourier-Transformation

Die Fourier-Transformation 1/20 Die Fourier-Transformation 2/20 Die FT ermittelt aus dem Signal von überlagerten Schwingungen welche Frequenzen enthalten sind FT 3/20 Von der folgenden Schwingung soll die Frequenz ermittelt werden

Mehr

YOUNG SCIENTISTS. 4 dimensionale komplexe Zahlen in der Computergrafik. Bastian Weiß 19. Mai 2017 INSTITUT FÜR ANGEWANDTE GEOMETRIE

YOUNG SCIENTISTS. 4 dimensionale komplexe Zahlen in der Computergrafik. Bastian Weiß 19. Mai 2017 INSTITUT FÜR ANGEWANDTE GEOMETRIE YOUNG SCIENTISTS 4 dimensionale komplexe in der Computergrafik Bastian Weiß 19. Mai 2017 INSTITUT FÜR ANGEWANDTE GEOMETRIE Programm Vorbereitung (Wiederholung) Komplexe Vektoren Quaternionen Quaternionen

Mehr

Crash-Kurs Komplexe Zahlen

Crash-Kurs Komplexe Zahlen 1 Definitionen: j, C, z Im Körper R der reellen Zahlen besitzt die lineare Gleichung ax + b = 0 (a, bεr; a 0) stets eine Lösung. Die quadratische Gleichung ax 2 + bx + c = 0 führt zu der Lösungsformel

Mehr

2D-Fourieranalyse und Farbräume

2D-Fourieranalyse und Farbräume 2D-Fourieranalyse und Farbräume Industrielle Bildverarbeitung, Vorlesung No. 12 1 M. O. Franz 09.01.2008 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Burger & Burge, 2005. Übersicht

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Fourier-Transformation Graphische DV und BV, Regina Pohle, 8. Fourier-Transformation 1 Einordnung in die Inhalte der Vorlesung Einführung

Mehr

VII Komplexe Zahlen. Propädeutikum Holger Wuschke. 24. September 2018

VII Komplexe Zahlen. Propädeutikum Holger Wuschke. 24. September 2018 Propädeutikum 2018 24. September 2018 Darstellung Rechengesetze Erweiterung der reellen Zahlen um eine imaginäre Einheit. Ursprung: Lösung der Gleichung x 2 + 1 = 0 Komplexe Zahlen C := {a + i b a, b R}

Mehr

LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN

LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN Fakultät Mathematik Institut für Numerische Mathematik LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN 6. Komplexe Zahlen Prof. Dr. Gunar Matthies Wintersemester 2017/18 G. Matthies Lineare

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

Digitale Bildverarbeitung (DBV)

Digitale Bildverarbeitung (DBV) Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie Email: heinz juergen.przybilla@hs bochum.de Tel. 0234 32 10517 Sprechstunde: Montags 13 14 Uhr und nach Vereinbarung

Mehr

Übungen Mathematik I, M

Übungen Mathematik I, M Übungen Mathematik I, M Übungsblatt, Lösungen (Stoff aus Mathematik 0).0.0. Berechnen Sie unter Verwendung des binomischen Lehrsatzes ( x + y) 7 Lösung: Nach dem binomischen Lehrsatz ist ( x + y) 7 = 7

Mehr

Grundlagen der Bildverarbeitung: Übung 1

Grundlagen der Bildverarbeitung: Übung 1 Grundlagen der Bildverarbeitung: Übung 1 Michael Korn Raum: BC 414, Tel.: 0203-379 - 3583, E-Mail: michael.korn@uni-due.de Michael Korn (michael.korn@uni-due.de) GBV: Übung 1 1 / 24 Digitale Bilder Michael

Mehr

Computergrafik 2: Filtern im Frequenzraum

Computergrafik 2: Filtern im Frequenzraum Computergrafik 2: Filtern im Frequenzraum Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen

Mehr

Systemtheorie. Vorlesung 20: Eigenschaften der Fourier-Transformation. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 20: Eigenschaften der Fourier-Transformation. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systemtheorie Vorlesung 2: Eigenschaften der Fourier-Transformation Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Fourier-Transformation Eigenschaften der Fourier-Transformation Definitionsgleichungen

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 5.0.005 Uhrzeit: 09:00

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München WiSe 2017 / 2018 Institut für Informatik Univ-Prof Dr Hans-Joachim Bungartz Michael Obersteiner Philipp Samfass Numerisches Programmieren, Übungen 5 Übungsblatt: Diskrete

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München WiSe 2016 / 2017 Institut für Informatik Prof Dr Daniel Cremers Dr Frank Schmidt Nikola Tchipev Michael Rippl Numerisches Programmieren, Übungen 7 Übungsblatt: Diskrete Fourier-Transformation,

Mehr

Digitale Bildverarbeitung - Rechnerübung 3

Digitale Bildverarbeitung - Rechnerübung 3 Digitale Bildverarbeitung - Rechnerübung 3 1. Khoros Zur Durchführung der Rechnerübung wird das Programmpaket KHOROS mit seiner Benutzerschnittstelle Cantata verwendet. Nach der Anmeldung am Rechner durch

Mehr

Objektorientierte Programmierung

Objektorientierte Programmierung P2.1. Gliederung Rechnerpraktikum zu Kapitel 2 Objektorientierte Programmierung C++-Standardbibliothek, Rekursion Beispiel: Fast Fourier Transformation Beispiel: Klasse für komplexe Zahlen Folie 1 P2.2.

Mehr

Brückenkurs Mathematik. Freitag Freitag

Brückenkurs Mathematik. Freitag Freitag Brückenkurs Mathematik Freitag 9.09. - Freitag 13.10.017 Vorlesung 10 Komplexe Zahlen Kai Rothe Technische Universität Hamburg-Harburg Freitag 13.10.017 0 Brückenkurs Mathematik, K.Rothe, Vorlesung 10

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 Komplexe Zahlen Das Auffinden aller Nullstellen von algebraischen Gleichungen ist ein Grundproblem, das in der Physik

Mehr

Anwendungen der Fourier-Entwicklung in der Elektrotechnik 1 / 22

Anwendungen der Fourier-Entwicklung in der Elektrotechnik 1 / 22 Anwendungen der Fourier-Entwicklung in der Elektrotechnik 1 / Unser heutiges Ziel Reaktion eines Netzwerks auf ein periodisches Eingangssignal oder speziell Wie reagiert ein RC-Glied auf periodische Erregung?

Mehr

9. Vorlesung Wintersemester

9. Vorlesung Wintersemester 9. Vorlesung Wintersemester 1 Die Phase der angeregten Schwingung Wertebereich: bei der oben abgeleiteten Formel tan φ = β ω ω ω0. (1) ist noch zu sehen, in welchem Bereich der Winkel liegt. Aus der ursprünglichen

Mehr

Computergraphik I. Das Abtasttheorem. Problem bei räumlicher Abtastung: Oliver Deussen Abtasttheorem 1

Computergraphik I. Das Abtasttheorem. Problem bei räumlicher Abtastung: Oliver Deussen Abtasttheorem 1 Das Abtasttheorem Problem bei räumlicher Abtastung: Oliver Deussen Abtasttheorem 1 Problem bei zeitlicher Abtastung: Oliver Deussen Abtasttheorem 2 Darstellung auf Monitor Was geschieht eigentlich, wenn

Mehr

Komplexe Funktionen. Freitag Vorlesung 1. Kai Rothe. Sommersemester Technische Universität Hamburg-Harburg

Komplexe Funktionen. Freitag Vorlesung 1. Kai Rothe. Sommersemester Technische Universität Hamburg-Harburg Komplexe Funktionen Freitag 13.04.018 Vorlesung 1 Kai Rothe Sommersemester 018 Technische Universität Hamburg-Harburg K.Rothe, komplexe Funktionen, Vorlesung 1 Nullstellen quadratischer Gleichungen Beispiel

Mehr

Lösungsblatt 2 Signalverarbeitung und Klassifikation

Lösungsblatt 2 Signalverarbeitung und Klassifikation Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 06 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Lösungsblatt Signalverarbeitung und Klassifikation Aufgabe : Faltung

Mehr

Schnelle Fouriertransformation (FFT)

Schnelle Fouriertransformation (FFT) Schnelle Fouriertransformation (FFT) Inhaltsverzeichnis 1 Schnelle Fouriertransformation (FFT)... 3 1.1 Das Realtime-Konzept der Goldammer-Messkarten... 3 1.2 Das Abtasttheorem oder Regeln für die Abtastung

Mehr

Quadratische Funktion - Übungen

Quadratische Funktion - Übungen Quadratische Funktion - Übungen 1a) "Verständnisfragen" zu "Scheitel und Allgemeine Form" - mit Tipps. Teilweise: Trotz der Tipps nicht immer einfach! Wir haben die Formeln: Allgemeine Form: y = a x 2

Mehr

Mathematik = x 2 + x 2 = x + x 2 25x = 146 x =

Mathematik = x 2 + x 2 = x + x 2 25x = 146 x = 1 Prof. Dr. Matthias Gerdts Dr. Sven-Joachim Kimmerle Wintertrimester 014 Mathematik 1 + Übung 1 Gleichungen mit Wurzeln Bestimmen Sie alle Lösungen der folgenden Gleichungen. Beachten Sie dabei, dass

Mehr

Diskrete Cosinustransformation (DCT)

Diskrete Cosinustransformation (DCT) Fachbereich Medieninformatik Hochschule Harz Diskrete Cosinustransformation (DCT) Referat Björn Wöldecke 10954 Abgabe: 15.01.2007 Inhaltsverzeichnis Einleitung / Vorwort... 1. Methoden zur Datenreduktion...

Mehr

Bildverarbeitung. Bildvorverarbeitung - Fourier-Transformation -

Bildverarbeitung. Bildvorverarbeitung - Fourier-Transformation - Bildverarbeitung Bildvorverarbeitung - Fourier-Transformation - 1 Themen Methoden Punktoperationen / Lokale Operationen / Globale Operationen Homogene / Inhomogene Operationen Lineare / Nichtlineare Operationen

Mehr

Komplexe Zahlen. Wir beginnen mit Beispielen.

Komplexe Zahlen.   Wir beginnen mit Beispielen. Komplexe Zahlen Wir beginnen mit Beispielen. Wenn man nur ganze Zahlen kennen würde, dann hätte die Gleichung 2x = 5 keine Lösung. Wenn die Grundmenge G = R (= reelle Zahlen) ist, dann hat auch die Gleichung

Mehr

Kapitel 10 Komplexe Zahlen

Kapitel 10 Komplexe Zahlen Komplexe Zahlen Kapitel 10 Komplexe Zahlen Mathematischer Vorkurs TU Dortmund Seite 94 / 112 Komplexe Zahlen Die komplexen Zahlen entstehen aus den reellen Zahlen, indem eine neues Element i (in der Elektrotechnik

Mehr

Bildpunkt auf dem Gitter: Pixel (picture element) (manchmal auch Pel)

Bildpunkt auf dem Gitter: Pixel (picture element) (manchmal auch Pel) 4. Digitalisierung und Bildoperationen 4.1 Digitalisierung (Sampling, Abtastung) Rasterung auf 2D-Bildmatrix mathematisch: Abb. einer 2-dim. Bildfunktion mit kontinuierlichem Definitionsbereich auf digitales

Mehr

Transformation - 3. Für "übliche" Anwendungen in der Geometrie ist es sinnvoll, bei Transformationen eine gleiche

Transformation - 3. Für übliche Anwendungen in der Geometrie ist es sinnvoll, bei Transformationen eine gleiche Transformation - 3 Wiederholung und spezielle Angaben im Zusammenhang mit Kreis-Berechnungen 1. Problemstellung Im Zusammenhang mit der Berechnung von Schnittflächen kann es sinnvoll sein, die Berechnung

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Systemtheorie Teil A - Zeitkontinuierliche Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 6 Musterlösungen Spektrum von Signalen 6. Approximation eines periodischen Signals

Mehr

Mathematischer Vorkurs NAT-ING1

Mathematischer Vorkurs NAT-ING1 Mathematischer Vorkurs NAT-ING1 (02.09. 20.09.2013) Dr. Robert Strehl WS 2013-2014 Mathematischer Vorkurs TU Dortmund Seite 1 / 40 Kapitel 12 Komplexe Zahlen Kapitel 12 Komplexe Zahlen Mathematischer Vorkurs

Mehr

Perlen der Informatik I Wintersemester 2012 Aufgabenblatt 6

Perlen der Informatik I Wintersemester 2012 Aufgabenblatt 6 Technische Universität München WS 2012 Institut für Informatik Prof. Dr. H.-J. Bungartz Prof. Dr. T. Huckle Prof. Dr. M. Bader Kristof Unterweger Perlen der Informatik I Wintersemester 2012 Aufgabenblatt

Mehr

2 Komplexe Zahlen. 2.1 Grundlagen. Aufgabe Aufgabe Aufgabe 2.1.3

2 Komplexe Zahlen. 2.1 Grundlagen. Aufgabe Aufgabe Aufgabe 2.1.3 2 Komplexe Zahlen 2.1 Grundlagen Aufgabe 2.1.1 Sei z 1 = 2 + und =. Stellen Sie a) z 1 +, b) z 1, c) z 1. zeichnerisch dar und berechnen Sie die Werte. Aufgabe 2.1.2 Berechnen Sie die folgenden Werte,

Mehr

WM01 - DEMO - ECDL Image Editing

WM01 - DEMO - ECDL Image Editing Demotest Image Editing Bestanden JA NEIN Vorname Punkte [erforderlich 75%, d.h. 7 von 36] Name WM0 - DEMO - ECDL Image Editing Testlaufwerk: Testordner: WM0-demo-arbeitsdateien. Welches der folgenden ist

Mehr

Zusatzmaterial zur Mathematik I für E-Techniker Übung 2

Zusatzmaterial zur Mathematik I für E-Techniker Übung 2 Mathematik I für E-Techniker C. Erdmann WS 011/1, Universität Rostock,. Vorlesungswoche Zusatzmaterial zur Mathematik I für E-Techniker Übung Wiederholung - Theorie: Komplexe Zahlen (a Wir definieren mit

Mehr

Computergraphik 1 2. Teil: Bildverarbeitung. Fouriertransformation Ende FFT, Bildrestauration mit PSF Transformation, Interpolation

Computergraphik 1 2. Teil: Bildverarbeitung. Fouriertransformation Ende FFT, Bildrestauration mit PSF Transformation, Interpolation Computergraphik 1 2. Teil: Bildverarbeitung Fouriertransformation Ende FFT, Bildrestauration mit PSF Transformation, Interpolation LMU München Medieninformatik Butz/Hoppe Computergrafik 1 SS2009 1 2 Repräsentation

Mehr

Digitale Bilder. Ein Referat von Jacqueline Schäfer und Lea Pohl Am

Digitale Bilder. Ein Referat von Jacqueline Schäfer und Lea Pohl Am Digitale Bilder Ein Referat von Jacqueline Schäfer und Lea Pohl Am 06.05.2015 Inhaltsverzeichnis Einheiten Grafiktypen Bildformate Farbtiefe Farbbilder/ Farbräume Quellen Einführung in die Bildverarbeitung

Mehr

Theorie digitaler Systeme

Theorie digitaler Systeme Theorie digitaler Systeme Vorlesung 2: Fakultät für Elektro- und Informationstechnik, anfred Strohrmann Einführung Frequenzgang zeitkontinuierlicher Systeme beschreibt die Änderung eines Spektrums bei

Mehr

12 Übungen zu Gauß-Algorithmus

12 Übungen zu Gauß-Algorithmus Aufgaben zum Vorkurs B S. 2 Übungen zu Gauß-Algorithmus 2x x 2 = 7x +, 5x 2 = 7 Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: 2x x 2 = x +2x 2 = 2 2x x 2 = 7x +, 5x 2 =, 5 x 2x 2 = x +x 2 = 5 2x +x 2 = 4

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004 4 Signalverarbeitung 4.1! Grundbegriffe! 4.2! Frequenzspektren, Fourier-Transformation! 4.3! Abtasttheorem: Eine zweite Sicht Weiterführende Literatur (z.b.):!! Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens SS2013 Inhalt Fourier Reihen Sehen wir in 2 Wochen Lösung der lin. Dgln.

Mehr

2.9 Die komplexen Zahlen

2.9 Die komplexen Zahlen LinAlg II Version 1 3. April 2006 c Rudolf Scharlau 121 2.9 Die komplexen Zahlen Die komplexen Zahlen sind unverzichtbar für nahezu jede Art von höherer Mathematik. Systematisch gehören sie zum einen in

Mehr

Informations- und Elektrotechnik Semester: Fachbereich 3 : Elektrische Maschinen Prof. Dr. Bernd Aschendorf Datum: Versuch Nr. 4 Thema: Fach: Dozent:

Informations- und Elektrotechnik Semester: Fachbereich 3 : Elektrische Maschinen Prof. Dr. Bernd Aschendorf Datum: Versuch Nr. 4 Thema: Fach: Dozent: Fachbereich 3 : Informations- und Elektrotechnik Semester: Fach: Dozent: Elektrische Maschinen Prof. Dr. Bernd Aschendorf Datum: Versuch Nr. 4 Thema: Einführung in Elektrische Maschinen - Drehfeldmaschine

Mehr

ANIMATION - GRUNDLAGEN

ANIMATION - GRUNDLAGEN ANIMATION - GRUNDLAGEN Bei CAD-Programmen gibt es meist folgende Verfahren zur Erzeugung von : Festlegung von Schlüsselszenen, aus denen das Programm automatisch Zwischenbilder generiert ( Keyframing )

Mehr

FRAKTALE. Eine Dokumentation von Dominik Assmann, Philipp Gewessler und Paul Maier

FRAKTALE. Eine Dokumentation von Dominik Assmann, Philipp Gewessler und Paul Maier FRAKTALE Eine Dokumentation von Dominik Assmann, Philipp Gewessler und Paul Maier I. Fraktale allgemein a. Mathematischer Algorithmus i. Komplexe Zahlen b. Konvergieren und Divergieren i. Bei Mandelbrotmengen

Mehr

Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 3. Übung

Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 3. Übung TU Bergakademie Freiberg Vorl. Frau Prof. Dr. Swanhild Bernstein Übung Dipl.-Math. Daniel Lorenz Freiberg, 25. Oktober 2016 Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 3. Übung Aufgabe

Mehr

4 Komplexe Zahlen. 4.1 Notwendigkeit und Darstellung Einführung

4 Komplexe Zahlen. 4.1 Notwendigkeit und Darstellung Einführung Komplexe Zahlen 4 4 Komplexe Zahlen Die komplexen Zahlen sind eine Erweiterung der reellen Zahlen. Die Konstruktion erfolgt durchc=r R. 4.1 Notwendigkeit und Darstellung 4.1.1 Einführung Hat die Gleichung

Mehr

Verlustbehaftete Kompression. JPEG: Joint Photographic Experts Group

Verlustbehaftete Kompression. JPEG: Joint Photographic Experts Group Verlustbehaftete Kompression JPEG: Joint Photographic Experts Group ITU T8.1 definiert Zusammenarbeit von ITU, IEC, ISO Verfahren zur verlustbehafteten Bildkodierung (auch Verlustloser Modus vorhanden)

Mehr

Versuch 3: Amplituden-Frequenzgang

Versuch 3: Amplituden-Frequenzgang Versuch 3: Amplituden-Frequenzgang Versuchsbeschreibung: Das Digitale Audio Analyse System DAAS 4 erlaubt es, mit nur zwei Messungen den Frequenzgang von Lautsprechern, Verstärkern oder Frequenzweichen

Mehr

Problemlösen. Zahl Ebene und Raum Größen Daten und Vorhersagen. Fachsprache, Symbole und Arbeitsmittel anwenden

Problemlösen. Zahl Ebene und Raum Größen Daten und Vorhersagen. Fachsprache, Symbole und Arbeitsmittel anwenden Curriculum Mathematik 3. Klasse Aus den Rahmenrichtlinien Die Schülerin, der Schüler kann Vorstellungen von natürlichen, ganzen rationalen Zahlen nutzen mit diesen schriftlich im Kopf rechnen geometrische

Mehr

Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 3. Übung

Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 3. Übung TU Bergakademie Freiberg Vorl. Frau Prof. Dr. Swanhild Bernstein Übung Dipl.-Math. Daniel Lorenz Freiberg, WS 2017/18 Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 3. Übung Aufgabe

Mehr

= 2 i 2= 2 2 i, z 4. = 1.5, z 8

= 2 i 2= 2 2 i, z 4. = 1.5, z 8 Mathematik 1 - Übungsblatt 11 Aufgabe 1 (komplexe Zahlen) Gegeben sind folgende komplexe Zahlen in der Darstellung als Normalform mit Real- und Imaginärteil z=x i y - oder wegen der Vertauschbarkeit von

Mehr

Fourier Optik. Zeit. Zeit

Fourier Optik. Zeit. Zeit Fourier Optik Beispiel zur Fourier-Zerlegung: diskretes Spektrum von Sinus-Funktionen liefert in einer gewichteten Überlagerung näherungsweise eine Rechteckfunktion Sin t Sin 3t Sin 5t Sin 7t Sin 9t Sin

Mehr

Einführung Im Bereich der komplexen Zahlen ist es möglich die Wurzel aus negativen Zahlen zu ziehen.

Einführung Im Bereich der komplexen Zahlen ist es möglich die Wurzel aus negativen Zahlen zu ziehen. Komplexe Zahlen Einführung Im Bereich der komplexen Zahlen ist es möglich die Wurzel aus negativen Zahlen zu ziehen. Komplexe Zahl Unter dem Zahlenkörper der komplexe Zahlen C versteht man die Elemente

Mehr

Übung 3: Fouriertransformation

Übung 3: Fouriertransformation ZHAW, SiSy HS202, Rumc, Übung 3: Fouriertransformation Aufgabe Fouriertransformation Dirac-Impuls. a) Bestimmen Sie die Fouriertransformierte S(f) des Dirac-Impulses s(t) = δ(t) und interpretieren Sie

Mehr

Stellen Sie diese Operation grafisch durch Pfeile in einem zweidimensionalen Koordinatensystem dar. + R n R n R n. + R R R

Stellen Sie diese Operation grafisch durch Pfeile in einem zweidimensionalen Koordinatensystem dar. + R n R n R n. + R R R Vektoren Aufgabe Berechnen Sie 2 + 0 Aufgabe 2 Beweisen Sie das ausführlich das Assoziativgesetz der Vektoraddition + R n R n R n Sie dürfen dabei alle Gesetze der reellen Addition + R R R verwenden machen

Mehr

Mathematiklabor 2. Übungsblatt

Mathematiklabor 2. Übungsblatt Dr. Jörg-M. Sautter 3.4.7 Mathematiklabor. Übungsblatt Aufgabe : (Wiederholung) Laden Sie die Dateien mlintro?.m herunter und gehen Sie diese Schritt für Schritt durch. Aufgabe : (Matrix- und Vektoroperationen,

Mehr

Mathematik für Berufsintegrationsklassen

Mathematik für Berufsintegrationsklassen Mathematik für Berufsintegrationsklassen Lerngebiet Kompetenz(en) aus den Lernbereichen Mathematik Titel 2.4 Grundkenntnisse der Geometrie Die Schülerinnen und Schüler - bestimmen Flächeninhalte von Rechtecken,

Mehr

TEIL 12: BIVARIATE ANALYSE FÜR METRISCH SKALIERTE VARIABLEN

TEIL 12: BIVARIATE ANALYSE FÜR METRISCH SKALIERTE VARIABLEN TEIL 12: BIVARIATE ANALYSE FÜR METRISCH SKALIERTE VARIABLEN Bivariate Analyse für metrisch skalierte Variablen Grundlagen Verfahren für metrische Daten nutzen den vollen mathematischen Informationsgehalt

Mehr

/U Wie groß ist den beiden unter 6. genannten Fällen der von der Spannungsquelle U 1 gelieferte Strom? als Formel. 1 + jωc = R 2.

/U Wie groß ist den beiden unter 6. genannten Fällen der von der Spannungsquelle U 1 gelieferte Strom? als Formel. 1 + jωc = R 2. Aufgabe Ü6 Gegeben ist die angegebene Schaltung:. Berechnen Sie allgemein (als Formel) /. 2. Wie groß ist der Betrag von /? R 3. Um welchen Winkel ist gegenüber phasenverschoben? 4. Skizzieren Sie die

Mehr

Lösungsblatt 2 Signalverarbeitung

Lösungsblatt 2 Signalverarbeitung Fakultät für nformatik Übung zu Kognitive Systeme Sommersemester 208 S. Constantin (stefan.constantin@kit.edu) T. Nguyen (thai.nguyen@kit.edu) Lösungsblatt 2 Signalverarbeitung Aufgabe : Faltung Abbildung

Mehr

OOP. Mit Zahlen rechnen. Henrik Horstmann

OOP. Mit Zahlen rechnen. Henrik Horstmann OOP Mit Zahlen rechnen Henrik Horstmann 15. September 2014 Inhaltsverzeichnis Inhaltsverzeichnis 1 Bedeutung der Symbole...1 2 Ein Taschenrechner zum Addieren...2 3 Die Benutzereingaben...3 4 Strings in

Mehr

6 Vertiefende Themen aus des Mechanik

6 Vertiefende Themen aus des Mechanik 6 Vertiefende Themen aus des Mechanik 6.1 Diagramme 6.1.1 Steigung einer Gerade; Änderungsrate Im ersten Kapitel haben wir gelernt, was uns die Steigung (oft mit k bezeichnet) in einem s-t Diagramm ( k=

Mehr

Die Studierenden kennen die Zahlengerade als Visualisierung.

Die Studierenden kennen die Zahlengerade als Visualisierung. 1./2. Semester Nr. Zahlbereichserweiterung Die Studierenden kennen die Zahlengerade als Visualisierung. E.1.1 Die Studierenden besitzen eine Größenvorstellung für Zahlen und können Zahlen der Größe nach

Mehr

(Fast) Fourier Transformation und ihre Anwendungen

(Fast) Fourier Transformation und ihre Anwendungen (Fast) Fourier Transformation und ihre Anwendungen Johannes Lülff Universität Münster 14.01.2009 Definition Fouriertransformation F (ω) = F [f(t)] (ω) := 1 2π dt f(t)e iωt Fouriersynthese f(t) = F 1 [F

Mehr

Automatisch-generierte Texturen aus Laserpunktwolken

Automatisch-generierte Texturen aus Laserpunktwolken Automatisch-generierte Texturen aus Laserpunktwolken Sharon Friedrich, Maik Häsner Ruprecht-Karls-Universität Heidelberg Interdisziplinäres Zentrum für wissenschaftliches Rechnen (IWR) Softwarepraktikum

Mehr

Übung Datenstrukturen. Objektorientierung in C++

Übung Datenstrukturen. Objektorientierung in C++ Übung Datenstrukturen Objektorientierung in C++ Aufgabe 1a - Farben Schreiben Sie eine Klasse COLOR zur Beschreibung von Farben. Eine Farbe werde hierbei additiv durch ihren Rot-, Grün- und Blauanteil

Mehr

Bildverarbeitung Herbstsemester. Mustererkennung

Bildverarbeitung Herbstsemester. Mustererkennung Bildverarbeitung Herbstsemester Herbstsemester 2009 2012 Mustererkennung 1 Inhalt Einführung Mustererkennung in Grauwertbildern Ähnlichkeitsmasse Normalisierte Korrelation Korrelationskoeffizient Mustererkennung

Mehr

Lösung - Serie 2. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger Welche der folgenden Funktionen ( 1, 1) R sind strikt monoton wachsend?

Lösung - Serie 2. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger Welche der folgenden Funktionen ( 1, 1) R sind strikt monoton wachsend? D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie.. Welche der folgenden Funktionen (, R sind strikt monoton wachsend? (a (b (c + 3 (d e (e (f arccos Keine. Auf (, 0] ist strikt monoton

Mehr

TEIL 12: BIVARIATE ANALYSE FÜR METRISCH SKALIERTE VARIABLEN

TEIL 12: BIVARIATE ANALYSE FÜR METRISCH SKALIERTE VARIABLEN TEIL 12: BIVARIATE ANALYSE FÜR METRISCH SKALIERTE VARIABLEN GLIEDERUNG Bivariate Analyse für metrisch skalierte Variablen Grundlagen Streudiagramme und Visualisierungen von Zusammenhängen Positive lineare

Mehr

Stefan Ruzika. 24. April 2016

Stefan Ruzika. 24. April 2016 Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 2: Körper 24. April 2016 1 / 21 Gliederung 1 1 Schulstoff 2 Körper Definition eines Körpers

Mehr

Parallele FFT-Algorithmen

Parallele FFT-Algorithmen Parallele FFT-Algorithmen Jörg Haeger 11. Juli 1996 1 Die diskrete Fourier-Transformation (DFT) 2 2 Permutationen und Graphen 2 2.1 Permutationen.............................. 2 2.2 Graphen..................................

Mehr

Multiplikation und Division in Polarform

Multiplikation und Division in Polarform Multiplikation und Division in Polarform 1-E1 1-E Multiplikation und Division in Polarform: Mathematisches Rüstzeug n m b b = b n+m bn bm = bn m ( b n )m = b n m Additionstheoreme: cos 1 = cos 1 cos sin

Mehr

1. Einführung des. Allgemeines

1. Einführung des. Allgemeines Allgemeines In diesem Rechner ist ein komplettes Set mathematischer Werkzeuge für Algebra, dynamische Geometrie, Statistik, Tabellenkalkulation und Messdatenerfassung in Echtzeit. Formeln, Tabellen und

Mehr

6 Distanzfunktionen (2) 6 Distanzfunktionen. 6.1 Eigenschaften und Klassifikationen. Einführung

6 Distanzfunktionen (2) 6 Distanzfunktionen. 6.1 Eigenschaften und Klassifikationen. Einführung 6 en 6 en (2) 1. Eigenschaften und Klassifikation 2. en auf Punkten Minkowski L m Gewichtete Minkowski L m w Quadratische d q Quadratische Pseudo Dynamical Partial Semi Pseudo Chi Quadrat Semi Pseudo Kullback

Mehr

Ziel: Minimalität der Feature-Werte Ausnutzung Kompaktheit im Frequenzbereich Kompaktheit:

Ziel: Minimalität der Feature-Werte Ausnutzung Kompaktheit im Frequenzbereich Kompaktheit: Anwendung DFT zur Feature-Aufbereitung Ziel: Minimalität der Feature-Werte Ausnutzung Kompaktheit im Frequenzbereich Kompaktheit: Funktion häufig durch wenige, niedrige Frequenzkoeffizienten approximierbar,

Mehr

Höhere Mathematik für Naturwissenschaftler Studienjahr 2016/17

Höhere Mathematik für Naturwissenschaftler Studienjahr 2016/17 1/37 0. Organisatorisches 2/37 Übung Höhere Mathematik für Naturwissenschaftler Studienjahr 2016/17 Dr. Udo Lorz TU Bergakademie Freiberg Fakultät für Mathematik und Informatik Links zur Vorlesung Website

Mehr

6 Distanzfunktionen. Quadratische Pseudo. 1. Eigenschaften und Klassifikation

6 Distanzfunktionen. Quadratische Pseudo. 1. Eigenschaften und Klassifikation 6 Distanzfunktionen 1. Eigenschaften und Klassifikation 2. Distanzfunktionen auf Punkten Minkowski Distanzfunktion L m Gewichtete Minkowski Distanzfunktion L m w Quadratische Distanzfunktion d q Quadratische

Mehr

Technische Universität München Fakultät für Mathematik. Klausur. Geometriekalküle. Modul MA März 2018, 16:00 17:00 Uhr

Technische Universität München Fakultät für Mathematik. Klausur. Geometriekalküle. Modul MA März 2018, 16:00 17:00 Uhr Technische Universität München Fakultät für Mathematik Klausur Geometriekalküle Modul MA2203 1. März 2018, 16:00 17:00 Uhr Prof. Dr. Dr. Jürgen Richter-Gebert Musterlösung Aufgabe 1. Kegelschnitt mit Parameter

Mehr

Serie 6: Komplexe Zahlen

Serie 6: Komplexe Zahlen D-ERDW, D-HEST, D-USYS Mathematik I HS 15 Dr. Ana Cannas Serie 6: Komplexe Zahlen Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom 26. und 28. Oktober. Es gibt zwei Darstellungsformen

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien 4-1

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien 4-1 4. Signalverarbeitung 4.1 Grundbegrie 4.2 Frequenzspektren, Fourier-Transormation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter Weiterührende Literatur (z.b.): Beate Meert, Ola Hochmuth: Werkzeuge der

Mehr

Blatt 23: Komplexe Zahlen (Teil 3) MLAE 1& 2

Blatt 23: Komplexe Zahlen (Teil 3) MLAE 1& 2 School of Engineering Winterthur Zürcher Hochschule für Angewandte Wissenschaften Blatt 3: Komplexe Zahlen (Teil 3) MLAE & Aufgabe : Lösen Sie die folgenden Gleichungen in C: (a) z = 0 (b) (z + 3) = 64

Mehr

Herzlich Willkommen. GeoGebra für Anfänger

Herzlich Willkommen. GeoGebra für Anfänger Herzlich Willkommen beim Seminar GeoGebra für Anfänger Ihr Name Viel Erfolg! Inhaltsverzeichnis Viel Erfolg!... Umkreis eines Dreiecks......... Mit der Werkzeugleiste... Mit der Eingabezeile... Spiegeln.........

Mehr

Aufgabenkomplex 2: Mengenlehre, Umrechnung von Einheiten, Zahlbereiche

Aufgabenkomplex 2: Mengenlehre, Umrechnung von Einheiten, Zahlbereiche Technische Universität Chemnitz 0. November 008 Fakultät für Mathematik Höhere Mathematik I. Aufgabenkomplex : Mengenlehre, Umrechnung von Einheiten, Zahlbereiche Letzter Abgabetermin: 5. November 008

Mehr

Übung 4 (für Pharma/Geo/Bio) Uni Basel. Besprechung der Lösungen: 15. Oktober 2018 in den Übungsstunden

Übung 4 (für Pharma/Geo/Bio) Uni Basel. Besprechung der Lösungen: 15. Oktober 2018 in den Übungsstunden Mathematik I für Naturwissenschaften Dr. Christine Zehrt 11.10.18 Übung 4 (für Pharma/Geo/Bio Uni Basel Besprechung der Lösungen: 15. Oktober 018 in den Übungsstunden Aufgabe 1 (a Sei f(x = cosx. Der Graph

Mehr

02. Komplexe Zahlen. a = Re z ist der Realteil von z, b = Im z der Imaginärteil von z.

02. Komplexe Zahlen. a = Re z ist der Realteil von z, b = Im z der Imaginärteil von z. 0. Komplexe Zahlen Da für alle x R gilt dass x 0, hat die Gleichung x +1 = 0 offenbar keine reellen Lösungen. Rein formal würden wir x = ± 1 erhalten, aber dies sind keine reellen Zahlen. Um das Problem

Mehr

Mathematik, Signale und moderne Kommunikation

Mathematik, Signale und moderne Kommunikation Natur ab 4 - PH Baden Mathematik, Signale und moderne Kommunikation 1 monika.doerfler@univie.ac.at 29.4.2009 1 NuHAG, Universität Wien monika.doerfler@univie.ac.at Mathematik, Signale und moderne Kommunikation

Mehr