Lösungsblatt 2 Signalverarbeitung und Klassifikation

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Lösungsblatt 2 Signalverarbeitung und Klassifikation"

Transkript

1 Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 06 M. Sperber S. Nguyen Lösungsblatt Signalverarbeitung und Klassifikation Aufgabe : Faltung Abbildung : Faltung a) Bestimmen Sie die Faltung der Funktion f(x) mit sich selbst (f(x) f(x)) rechnerisch. Rechnung: f(x) f(x) = f(t)f(x t)dt () Gemäß der Definition der Faltung erhält man die Faltung von f(x) mit sich selbst durch die Integration von f(t) mit der gespiegelten Funktion f( t). Bildlich gesprochen wird für die Integration f( t) von links über f(t) geschoben. Lösungsblatt zu Kognitive Systeme Seite

2 Fallunterscheidung: Fall : x < 0 f(t) f(x t)dt = 0 Fall : Wenn die gespiegelte Funktion f( x) (rotes Quadrat) über f(x) (blaues Quadrat) geschoben wird, entsteht ein Bereich der Überlappung (lila Quadrat). 0 x < f(t) f(x t)dt x = dt = x 0 Fall 3: x = x f(t) f(x t)dt dt = x + Lösungsblatt zu Kognitive Systeme Seite

3 Fall 4: x > f(t) f(x t)dt = 0 Das Faltungsergebnis ist demnach: b) Bestimmen Sie f(x) g(x) grafisch. Rechnung: f(x) g(x) = g(t) f(x t)dt () Lösungsblatt zu Kognitive Systeme Seite 3

4 Fallunterscheidung: Fall : x < 0 g(t) f(x t)dt = 0 Fall : 0 x < = x 0 g(t) f(x t)dt t dt = x Fall 3: x < = = x ] [ t g(t) f(x t)dt t dt + x x dt + x = x + x Fall 4: x g(t) f(x t)dt = x dt = t x = x + 3 Ausgehend von den vorangegangenen Berechnungen kann das Faltungsergebnis wie folgt visualisiert werden: Lösungsblatt zu Kognitive Systeme Seite 4

5 = i δ(f + 400) i δ(f 400) + δ(f + 00) + δ(f 00) (3) Onlinefrage Nr. : Was ist der größte Wert des Ergebnisses der Faltung f(x) g(x)? i) 0,5 ii) 0,75 iii),0 iv),5 v),5 Der größte Wert des Ergebnisses der Faltung f(x) g(x) ist, siehe Lösung der Aufgabe b). Aufgabe : Digitalisierung von Signalen Gegeben sei die Funktion f(t) = sin(π400t) + cos(π00t) Hinweise: Zur Vereinfachung sei in der Zeichnung die Höhe von δ =. Zur Fouriertransformation existieren diverse Konventionen! Lassen Sie sich davon nicht verwirren und verwenden Sie zur Lösung dieser Aufgabe die folgenden Informationen: Funktion Fouriertransformierte i sin(πf 0 t) (δ(f + f 0) δ(f f 0 )) cos(πf 0 t) (δ(f + f 0) + δ(f f 0 )) + k= δ(t kt ) + T k= δ(f k/t ) a) Zeichnen Sie das komplexe Spektrum der mit 500Hz abgetasteten Funktion f(t), t in Sekunden. Die Fouriertransformation der Funktion f(t) ist: F (f) = i (δ(f + 400) δ(f 400)) + (δ(f + 00) + δ(f 00)) Lösungsblatt zu Kognitive Systeme Seite 5

6 Re Abtastung: Faltung des Spektrums mit pulszug Re /T Verschiebung des pulszugs mit f o = 0: Re F (0) δ(0) = 0 Verschiebung des pulszugs mit f o = 00: (F δ)(f o = 00) = T + i T = T + i (F δ)(f o = 400) = (F δ)(f o = 00) = (F δ)(f o = 600) Lösungsblatt zu Kognitive Systeme Seite 6

7 Re Verschiebung des pulszugs mit f o = 400: Re (F δ)(f o = 400) = T i T = T i (F δ)(f o = 00) = (F δ)(f o = 400) = (F δ)(f o = 900) Komplexes Spektrum mit einer Samplefrequenz von 500Hz: (F δ)(f o = 00) = T + i (F δ)(f o = 00) = T i (F δ)(f o = 400) = T i (F δ)(f o = 400) = T + i Re /T Berechnung des Betragsspektrums nach Abtastung mit 500Hz: Lösungsblatt zu Kognitive Systeme Seite 7

8 (F δ)(f o = 00) = (F δ)(f o = 400) = ) = 5 5 ( T ) + ( ( T ) + ( ) = Re Lösungsblatt zu Kognitive Systeme Seite 8

9 b) Welches Phänomen tritt auf, wie kommt es dazu und wie kann verhindert werden, dass es auftritt? Die gegebene Abtastfrequenz von 500Hz wurde gemäß des Abtasttheorems zu klein gewählt. Daher tritt Aliasing auf, d.h. wiederholte Spektren überlagern sich. gegebenen Fall überlagern sich Frequenzen des Realteils und aginärteils. Weitere denkbare Effekte: Auftreten von im Originalsignal nicht vorhandener Frequenzen, und Verschwinden von im Originalsignal vorhandener Frequenzen. Bei einer D/AWandlung kann das Originalsignal nicht mehr aus den abgetasteten Werten rekonstruiert werden. Um Aliasing zu verhindern, muss als Abtastfrequenz eine Frequenz gewählt werden, die echt größer ist als das fache der höchsten Frequenz im Signal, also > 400 Hz. c) Zeichnen Sie das Betragsspektrum der mit 900Hz abgetasteten Funktion. Faltung des Spektrums vor der Abtastung mit dem pulszug mit Frequenz 900Hz: Verschiebung des pulszugs mit f o = 0: Re (F δ)(f o = 0) = 0 Verschiebung des pulszugs mit f o = 00: (F δ)(f o = 00) = T = T (F δ)(f o = 00) = (F δ)(f o = 800) = T = T Verschiebung des pulszugs mit f o = 400: Lösungsblatt zu Kognitive Systeme Seite 9

10 Re Re (F δ)(f o = 400) = i T = i (F δ)(f o = 400) = (F δ)(f o = 500) = i Das komplexe Spektrum nimmt nach der Abtastung folgende Werte an: (F δ)(f o = 400) = i (F δ)(f o = 00) = T (F δ)(f o = 400) = i (F δ)(f o = 00) = T Re /T Berechnung des Betragsspektrums nach Abtastung mit 900Hz: (F δ)(f o = 400) = 0 + ( i (F δ)(f o = 00) = ( T ) + 0 = T ) = Lösungsblatt zu Kognitive Systeme Seite 0

11 (F δ)(f o = 400) = 0 + ( i ) = Re + /T / Bei einer Abtastfrequenz von 900Hz wird das Abtasttheorem befolgt und es kommt nicht zu Aliasing. Lösungsblatt zu Kognitive Systeme Seite

12 Onlinefrage Nr. : Was ist der größte reale Anteil aller Funktionswerte im komplexen Spektrum von f(t) vor der Abtastung? i) ii) T iii) iv) v) Der größte reale Anteil aller Funktionswerte im komplexen Spektrum von f(t) vor der Abtastung beträgt. Aufgabe 3: Filtern a) Gegeben sei die Funktion v(t) = π δ(t) sin(3ω 0t) sin(ω 0 t) t mit der Zeitvariablen t und ω 0 > 0. Die Multiplikation ihrer Fouriertransformierten V (ω) mit der Fouriertransformierten eines Signals stellt einen Filter dar. Um welchen Filter handelt es sich dabei? Hinweis: Die Funktion f(t) = sin(πt) πt entspricht der Funktion f(t) = sinc(t). Benutzen Sie als Fouriertransformierte von g(t) = sinc(at) folgende Funktion: G(ω) = a rect( ω 0, t > { πa ) mit rect(t) =, t Umformung: v(t) = πδ(t) sin(3ω ot) sin(ω o t) t (4) = πδ(t) ( 3ω o sin(3ω o t) ω o sin(ω o t) ) 3ω o t ω o t (5) sin(3π ωo π = πδ(t) (3ω ω sin(π o o 3π ωo π t ω π t) o π ωo π t ) (6) = πδ(t) (3ω o sinc( 3ω o π t) ω osinc( ω o π t)) Fouriertransformation: Laut Formelsammlung ist die Fouriertransformierte von f(x) = δ(x) die Funktion F (ω) =. V (ω) = F (v(t)) = F (πδ(t) (3ω o sinc( 3ωo π t) ω osinc( ωo π t))) Gegeben sei: Die Fouriertransformation von g(t) = sinc(at) sei G(ω) = a rect( ω πa ), wobei rect(t) definiert { } 0, t > ist als, t Lösungsblatt zu Kognitive Systeme Seite

13 V (ω) = π (3ω o 3ωo rect(t) ist definiert als ω ) ω o ωo ω π ωo π π rect( π 3ωo π π rect( π = π (3ω o rect( ω π ) ω o rect( ω )) (7) 3ω o 6ω o ω o ω o = π (πrect( ω 6ω o ) πrect( ω ω o )) (8) = π πrect( ω 6ω o ) + πrect( ω ω o ) (9) { 0, t >, t rect( ω 6ω o ) ist nur dann wenn ω 3ω o rect( ω ω o ) ist nur dann wenn ω ω o } )) (0) Onlinefrage Nr. 3: Um welches Filter handelt es sich in Aufgabe 3a)? i) Tiefpass ii) Hochpass iii) Bandpass iv) Bandsperre Es handelt sich um eine Bandsperre (siehe Lösung 3a). Aufgabe 4: Diskrete Fouriertransformation, Sampling Die Frequenzauflösung der DFT hängt von der zeitlichen Auflösung ab. Je feiner die zeitliche Auflösung ist, desto gröber ist die Frequenzauflösung und umgekehrt. Berechnet man beispielsweise die DFT über einem gesamten Musikstück, so erhält man detaillierte Informationen über die auftretenden Frequenzen, dies jedoch nur kumuliert über das gesamte Musikstück hinweg. Berechnet man die DFT auf Basis von beispielsweise 00 Werten, so erhält man als Ergebnis ebenfalls 00 Werte. Da das Resultat der DFT symmetrisch ist, trägt nur die Hälfte der Werte Informationen. Somit verteilt sich die Frequenzinformation auf 50 Werte. Betrachten wir zur Verdeutlichung ein Beispiel mit unterschiedlichen Samplingraten, berechnen dabei die DFT aber stets auf Basis von 00 Samples: Lösungsblatt zu Kognitive Systeme Seite 3

14 Samplingrate Grenzfrequenz Frequenzauflösung Zeitauflösung 000 Hz 500 Hz 0 Hz 0. s 00 Hz 50 Hz Hz s 0 Hz 5 Hz 0. Hz 0 s Es wird deutlich, dass die Frequenzauflösung in einem reziproken Verhältnis zur zeitlichen Auflösung steht. a) Berechnen Sie die Anzahl N der Samples, die benötigt werden, damit eine DFT eine Frequenzauflösung von 0Hz erreichen kann, wenn ein Signal mit 33kHz abgetastet wurde. Bei einer Abtastung mit 33kHz beträgt die Grenzfrequenz 6.5kHz. Bei einer gewünschten Frequenzauflösung von 0Hz benötigen wir somit 650 Werte. Dies entspricht einer DFT mit 3300 Werten. Folglich benötigen wir N = 3300 Samples zur Berechnung der DFT. Onlinefrage Nr. 4: Welche zeitliche Auflösung wird benötigt, damit eine DFT eine Frequenzauflösung von 0Hz erreichen kann, wenn ein Signal mit 33kHz abgetastet wurde? i) 0.ms ii) 3.3ms iii) 0.33ms iv) 00ms Aus Teilaufgabe a) wissen wir, dass wir 3300 Samples benötigen. Bei einer Abtastrate von 33kHz entspricht dies einer zeitlichen Auflösung von 0.s bzw. 00ms. Lösungsblatt zu Kognitive Systeme Seite 4

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Speicherbedarf und Kompression 2.3 Digitalisierung Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der 1. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Zeitdiskretes Signal Quantisiertes Signal Digitales Signal Kontinuierliches System Abtastsystem

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004 4 Signalverarbeitung 4.1! Grundbegriffe! 4.2! Frequenzspektren, Fourier-Transformation! 4.3! Abtasttheorem: Eine zweite Sicht Weiterführende Literatur (z.b.):!! Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

FH Jena Prüfungsaufgaben - Master Prof. Giesecke FB ET/IT Digitale Signalverarbeitung SS 2012

FH Jena Prüfungsaufgaben - Master Prof. Giesecke FB ET/IT Digitale Signalverarbeitung SS 2012 FB ET/IT Digitale Signalverarbeitung SS 0 Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner ein mathematisches Formelwerk eine selbsterstellte Formelsammlung Wichtige Hinweise:

Mehr

Motivation. Diskretisierung. Überblick. Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen. Diskretisierung und Quantisierung

Motivation. Diskretisierung. Überblick. Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen. Diskretisierung und Quantisierung Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen Motivation Analoge Aufnahme von Sprache, Bildern Digitale Speicherung durch Diskretisierung + Quantisierung Informationsverlust

Mehr

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 4 Fourier-Transformation 3

Mehr

Einführung in die Signalverarbeitung

Einführung in die Signalverarbeitung Einführung in die Signalverarbeitung Phonetik und Sprachverarbeitung, 2. Fachsemester, Block Sprachtechnologie I Florian Schiel Institut für Phonetik und Sprachverarbeitung, LMU München Signalverarbeitung

Mehr

Technik der Fourier-Transformation

Technik der Fourier-Transformation Was ist Fourier-Transformation? Fourier- Transformation Zeitabhängiges Signal in s Frequenzabhängiges Signal in 1/s Wozu braucht man das? Wie macht man das? k = 0 Fourier- Reihe f ( t) = Ak cos( ωkt) +

Mehr

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT)

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Ziele In diesem Versuch lernen Sie zwei Anwendungen der Diskreten Fourier-Transformation in der Realisierung als recheneffiziente schnelle

Mehr

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016 Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 1 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Übungsblatt 3 Maschinelles Lernen und Klassifikation Abgabe online

Mehr

3.3 Das Abtasttheorem

3.3 Das Abtasttheorem 17 3.3 Das Abtasttheorem In der Praxis kennt man von einer zeitabhängigen Funktion f einem Signal meist nur diskret abgetastete Werte fn, mit festem > und ganzzahligem n. Unter welchen Bedingungen kann

Mehr

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation Bildverarbeitung Herbstsemester 2012 Fourier-Transformation 1 Inhalt Fourierreihe Fouriertransformation (FT) Diskrete Fouriertransformation (DFT) DFT in 2D Fourierspektrum interpretieren 2 Lernziele Sie

Mehr

(Fast) Fourier Transformation und ihre Anwendungen

(Fast) Fourier Transformation und ihre Anwendungen (Fast) Fourier Transformation und ihre Anwendungen Johannes Lülff Universität Münster 14.01.2009 Definition Fouriertransformation F (ω) = F [f(t)] (ω) := 1 2π dt f(t)e iωt Fouriersynthese f(t) = F 1 [F

Mehr

1.3 Digitale Audiosignale

1.3 Digitale Audiosignale Seite 22 von 86 Abb. 1.2.12 - Wirkung der Schallverzögerung Effekte sind: Delay, Echo, Reverb, Flanger und Chorus Hört man ein akustisches Signal im Raum, dann werden die Signale von Wänden und anderen

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d z + c d z + c uk d + + yk z d + c d z + c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme Übungsaufgaben Manfred Strohrmann Urban Brunner Inhalt Übungsaufgaben - Signalabtastung und Rekonstruktion...

Mehr

3.6 Analog-Digital-Umsetzung

3.6 Analog-Digital-Umsetzung 3.6 AnalogDigitalUmsetzung 1 Abtastung von Signalen FlashUmsetzer (ParallelUmsetzer) Stufenumsetzer (Successive Approximation) Integrierende Umsetzer DeltaSigma Umsetzer Anhang Abtastung 2 Abtastung (Sampling):

Mehr

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden:

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden: /5 Fourier-Analyse (periodischer Signale) Grundlagen Ein periodisches, kontinuierliches Signal x(t) der Periodendauer kann als Fourier-Reihe beschrieben werden: wie folgt ( ) = c k x t + e j k 2πf t k=

Mehr

Visual Computing Filtering, Fourier Transform, Aliasing

Visual Computing Filtering, Fourier Transform, Aliasing Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Zu loesen bis: 16. Mai 2006 Prof. M. Gross Remo Ziegler / Christian Voegeli / Daniel Cotting Ziele Visual Computing

Mehr

Kontrollfragen zum Skript Teil 1 beantwortet

Kontrollfragen zum Skript Teil 1 beantwortet Kontrollfragen zum Skript Teil 1 beantwortet Von J.S. Hussmann Fragen zu SW 1.1 Welche Vorteile hat die DSVB? Programmierbar Parametrierbar Reproduzierbar Wie heisst die Umwandlung eines Zeit-diskreten

Mehr

Einführung in die Signalverarbeitung

Einführung in die Signalverarbeitung Einführung in die Signalverarbeitung Phonetik und Sprachverarbeitung, 2. Fachsemester, Block Sprachtechnologie I Florian Schiel Institut für Phonetik und Sprachverarbeitung, LMU München Signalverarbeitung

Mehr

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 2 Zeitkontinuierliche

Mehr

Argumente für die diskrete Realisierung der Fourierintegrale

Argumente für die diskrete Realisierung der Fourierintegrale Argumente für die diskrete Realisierung der Fourierintegrale Die Fouriertransformation gemäß der Beschreibung in Kapitel 3.1 weist aufgrund der unbegrenzten Ausdehnung des Integrationsintervalls eine unendlich

Mehr

5. Übung für Übungsgruppen Musterlösung

5. Übung für Übungsgruppen Musterlösung Grundlagenveranstaltung Systemtheorie WS 6/7 (H.S. Stiehl, AB Kognitive Systeme, Department Informatik der Universität Hamburg) 5. Übung für Übungsgruppen Musterlösung (U. Köthe, Department Informatik,

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

Grundlagen der Schwingungslehre

Grundlagen der Schwingungslehre Grundlagen der Schwingungslehre Einührung. Vorgänge, bei denen eine physikalische Größe in estem zeitlichen Abstand ein und denselben Werteverlau auweist, werden als periodisch bezeichnet. Den zeitlichen

Mehr

Praxiswerkstatt Algorithmen der Signalcodierung

Praxiswerkstatt Algorithmen der Signalcodierung Praxiswerkstatt Algorithmen der Signalcodierung 2. Termin Themen heute: Abtastung Lineare Zeitinvariante Systeme Seite 1 Abtastung letztes Mal haben wir gesehen: 3,9 khz kaum noch hörbar bei 8 khz Abtastrate.

Mehr

Signale und Systeme II

Signale und Systeme II TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Signale und Systeme II Lösung zur Modulklausur SS 201 Prüfer: Prof. Dr.-Ing. Gerhard Schmidt

Mehr

Zufallssignal Stationär (z.b. gleichverteiltes Rauschen) Nicht-stationär (z.b. normalverteiltes Rauschen mit wechselnder Streuung) Deterministisches

Zufallssignal Stationär (z.b. gleichverteiltes Rauschen) Nicht-stationär (z.b. normalverteiltes Rauschen mit wechselnder Streuung) Deterministisches Zufallssignal Stationär (z.b. gleichverteiltes Rauschen) Nicht-stationär (z.b. normalverteiltes Rauschen mit wechselnder Streuung) Deterministisches Signal Periodisch harmonische Schwingung Summe harmonischer

Mehr

einige Zusatzfolien für s Seminar

einige Zusatzfolien für s Seminar Signale und Systeme einige Zusatzfolien für s Seminar Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme Fourierreihe reelle Fourierreihe betrachtet wird ein periodisches Zeitsignal u p mit

Mehr

Übung 2: Spektrum periodischer Signale

Übung 2: Spektrum periodischer Signale ZHAW, SiSy, Rumc, Übung : Spektrum periodischer Signale Augabe Verschiedene Darstellungen der Fourierreihe. Betrachten Sie das periodische Signal s(t) = + sin(π t). a) Bestimmen Sie die A k - und B k -Koeizienten

Mehr

Systemtheorie abbildender Systeme

Systemtheorie abbildender Systeme Bandbegrenzung Bild in (b) nicht band-begrenzt: scharfe Kanten = Dirac-Funktionen = weißes Spektrum Erfordert Tapering vor Digitalisierung (Multiplikation mit geeigneter Fensterfunktion; auf Null drücken

Mehr

Elektrotechnik II: Kolloquium 4

Elektrotechnik II: Kolloquium 4 Elektrotechnik II: Kolloquium 4 Digitalschaltungen Hubert Abgottspon: abgottspon@eeh.ee.ethz.ch Markus Imhof: imhof@eeh.ee.ethz.ch Inhalt des Kolloquium: Digitale Messkette Sensor 1) Filter S&H- Versträker

Mehr

(2 π f C ) I eff Z = 25 V

(2 π f C ) I eff Z = 25 V Physik Induktion, Selbstinduktion, Wechselstrom, mechanische Schwingung ösungen 1. Eine Spule mit der Induktivität = 0,20 mh und ein Kondensator der Kapazität C = 30 µf werden in Reihe an eine Wechselspannung

Mehr

Bildgebende Verfahren in der Medizin Bildgebung in der Medizin mit Ultraschall

Bildgebende Verfahren in der Medizin Bildgebung in der Medizin mit Ultraschall Bildgebende Verfahren in der Medizin Bildgebung in der Medizin mit Ultraschall INSTITUT FÜR BIOMEDIZINISCHE TECHNIK 2008 Google - Imagery 2008 Digital Globe, GeoContent, AeroWest, Stadt Karlsruhe VLW,

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt Übungen zur Ingenieur-Mathematik III WS 9/ Blatt 4..9 Aufgabe : Berechnen Sie das Volumen des Volltorus, der durch Rotation der reisscheibe { x,, z R 3, x b + z a } mit < a < b um die z-achse entsteht.

Mehr

1. Klausur in K2 am

1. Klausur in K2 am Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung:. Klausur in K am 0.0. Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: Schallgeschwindigkeit

Mehr

Lösung zur Übung 4.5.1/1: 2005 Mesut Civan

Lösung zur Übung 4.5.1/1: 2005 Mesut Civan Lösung zur Übung 4.5.1/1: 5 Mesut Civan x e t= x e [t t t 1 ] x a t=ht für x e t=t x a t= x e [ht ht t 1 ] x a t= x e [ht ht t 1 ] a) t 1 T e Da die Impulsdauer t 1 des Eingangsimpulses größer ist als

Mehr

Übung 8: Digitale Modulationen

Übung 8: Digitale Modulationen ZHW, NTM, 25/6, Rur ufgabe : Modulationsarten. Übung 8: Digitale Modulationen Die Datensequenz wird bei einer festen Bitrate von Mb/s mittels 3 verschiedener Modulationsarten übertragen. Charakterisieren

Mehr

DFT / FFT der Titel der Präsentation wiederholt (Ansicht >Folienmaster) Dipl.-Ing. Armin Rohnen, Fakultät 03, rohnen@hm.edu

DFT / FFT der Titel der Präsentation wiederholt (Ansicht >Folienmaster) Dipl.-Ing. Armin Rohnen, Fakultät 03, rohnen@hm.edu 1 Grundlagen Abtasttheorem Fenster Zeit - Frequenzauflösung Pegelgenauigkeit Overlap Mittelung 2 2 volle Schwingungen 32 Abtastwerte Amplitude = 1 Pascal Signallänge = 1 Sekunde Eine Frequenzline bei 2

Mehr

Datenverarbeitung in der Geophysik. Digitalisierung, Diskretisierung

Datenverarbeitung in der Geophysik. Digitalisierung, Diskretisierung Datenverarbeitung in der Geophysik Digitalisierung, Diskretisierung Seismische Zeitreihen -> Seismogramme Samplingrate, Taktfrequenz Nyquistfrequenz zeitliche, räumliche Frequenzen Binäre Zahlendarstellung

Mehr

Versuch 5: Filterentwurf

Versuch 5: Filterentwurf Ziele In diesem Versuch lernen Sie den Entwurf digitaler Filter, ausgehend von der Festlegung eines Toleranzschemas für den Verlauf der spektralen Charakteristik des Filters, kennen. Es können Filtercharakteristiken

Mehr

Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT)

Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT) Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT) Inhaltsverzeichnis 1 Allgemeines Filter... 2 2 Filter auf dem Signalprozessor... 2 3 Zusammenhang Zeitsignal und Frequenzspektrum...

Mehr

4. Übung für Übungsgruppen Musterlösung

4. Übung für Übungsgruppen Musterlösung Grundlagenveranstaltung Systemtheorie WS 6/7 (H.S. Stiehl, AB Kognitive Systeme, FB Informatik der Universität Hamburg). Übung für Übungsgruppen Musterlösung (N. Stein, Institut für Angewandte Physik,

Mehr

Versuch 252 Digitale Filter

Versuch 252 Digitale Filter Drittes Physikalisches Institut der Universität Göttingen Bürgerstraße 42-44 D-3773 Göttingen Oktober 998 Praktikum für Fortgeschrittene Versuch 252 Digitale Filter Analoge Signale werden heute zunehmend

Mehr

Lesen von Sonagrammen I: Grundlagen. Uwe Reichel IPS, LMU München 16. November 2007

Lesen von Sonagrammen I: Grundlagen. Uwe Reichel IPS, LMU München 16. November 2007 Lesen von Sonagrammen I: Grundlagen Uwe Reichel IPS, LMU München reichelu@phonetik.uni-muenchen.de 16. November 2007 Inhalt Das Sonagramm: Allgemeines Gewinnung des Sonagramms Zeitsignal Spektrum Spektrogramm

Mehr

Serie 8 - Parametrisierte Kurven

Serie 8 - Parametrisierte Kurven Analysis D-BAUG Dr Meike Akveld HS 05 Serie 8 - Parametrisierte Kurven Geben Sie für die folgenden Bewegungen eines Punktes jeweils eine parametrisierte Darstellung I [0, ] R xt, t yt an Lösung a Geradlinige

Mehr

Das Nyquist-Shannon Theorem

Das Nyquist-Shannon Theorem Fachbereich Medieninformatik Hochschule Harz Das Nyquist-Shannon Theorem Referat Philip Lücke Matrikelnummer: 10070 Abgabe: 15.01.2007 Seite: 1 Inhaltsverzeichnis 1 Einleitung...3 2 Das Phänomen des stillstehenden

Mehr

Longitudinale und transversale Relaxationszeit

Longitudinale und transversale Relaxationszeit Longitudinale und transversale Relaxationszeit Longitudinale Relaxationszeit T 1 (Zeit, die das System benötigt, um nach dem rf- Puls zurück ins Gleichgewicht zu kommen) Transversale Relaxationszeit T

Mehr

Aufgabe 1 - Pegelrechnung und LTI-Systeme

Aufgabe 1 - Pegelrechnung und LTI-Systeme KLAUSUR Nachrichtentechnik 06.08.0 Prof. Dr.-Ing. Dr. h.c. G. Fettweis Dauer: 0 min. Aufgabe 3 4 Punkte 5 0 4 50 Aufgabe - Pegelrechnung und LTI-Systeme Hinweis: Die Teilaufgaben (a), (b) und (c) können

Mehr

Aufgabe 1: Kontinuierliche und diskrete Signale

Aufgabe 1: Kontinuierliche und diskrete Signale Klausur zur Vorlesung: Signale und Systeme Aufgabe : Kontinuierliche und diskrete Signale. Zwei Systeme sollen auf ihre Eigenschaften untersucht werden: v(t) S { } y (t) v(t) S { } y (t) Abbildung : zeitkontinuierliche

Mehr

NANO III - MSR. Signalabtastung Analog Digital Converter (ADC) Digital Analog Converter (DAC) Themen: DAC

NANO III - MSR. Signalabtastung Analog Digital Converter (ADC) Digital Analog Converter (DAC) Themen: DAC NANO III - MSR Themen: Signalabtastung Analog Digital Converter (ADC) A ADC D Digital Analog Converter (DAC) D DAC A Nano III MSR Physics Basel, Michael Steinacher 1 Signalabtastung Praktisch alle heutigen

Mehr

Musterlösung zu Blatt 11, Aufgabe 1

Musterlösung zu Blatt 11, Aufgabe 1 Musterlösung zu Blatt, Aufgabe Analysis II MIIA SoSe 7 Martin Schottenloher Musterlösung zu Blatt, Aufgabe I Aufgabenstellung Berechnen Sie folgende komplexe Kurvenintegrale vgl. 3.9: a zn dz für n N,

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufgabe 45. Polynome sind stets stetig. Höhere Mathematik für Informatiker II (Sommersemester

Mehr

Bildrekonstruktion & Multiresolution

Bildrekonstruktion & Multiresolution Bildrekonstruktion & Multiresolution Verkleinern von Bildern? Was ist zu beachten? Es kann aliasing auftreten! Das Abtasttheorem sagt wie man es vermeidet? ===> Page 1 Verkleinern von Bildern (2) Vor dem

Mehr

f(t) = a 2 + darstellen lasst Periodische Funktionen.

f(t) = a 2 + darstellen lasst Periodische Funktionen. 7. Fourier-Reihen Viele Prozesse der Ingenieur- und Naturwissenschaften verlaufen periodisch oder annahernd periodisch, wie die Schwingungen einer Saite, Spannungs- und Stromverlaufe in Wechselstromkreisen

Mehr

Die Fourier-Transformation

Die Fourier-Transformation 1/20 Die Fourier-Transformation 2/20 Die FT ermittelt aus dem Signal von überlagerten Schwingungen welche Frequenzen enthalten sind FT 3/20 Von der folgenden Schwingung soll die Frequenz ermittelt werden

Mehr

Übung 5 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN

Übung 5 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme Übung 5 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN BEDEUTUNG DER GEWICHTSFUNKTION UND

Mehr

3. Schaltungsentwicklung - Beispiel Taschenlichtorgel

3. Schaltungsentwicklung - Beispiel Taschenlichtorgel 3. - Beispiel Taschenlichtorgel Anforderungen: Drei farbige LEDs, Mikrofoneingang, Empfindlichkeitseinstellung, kleines Format, geringe Betriebsspannung und Leistung, geringster Material- und Arbeitsaufwand.

Mehr

Trigonometrische Funktionen Luftvolumen

Trigonometrische Funktionen Luftvolumen Trigonometrische Funktionen Luftvolumen Die momentane Änderungsrate des Luftvolumens in der Lunge eines Menschen kann durch die Funktion f mit f(t) = 1 2 sin(2 5 πt) modelliert werden, f(t) in Litern pro

Mehr

Signale und Systeme I

Signale und Systeme I FACULTY OF ENGNEERING CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITAL SIGNAL PROCESSING AND SYSTEM THEORY DSS Signale und Systeme I Musterlösung zur Modulklausur WS 010/011 Prüfer: Prof. Dr.-Ing. Gerhard

Mehr

Mathematische Erfrischungen III - Vektoren und Matrizen

Mathematische Erfrischungen III - Vektoren und Matrizen Signalverarbeitung und Musikalische Akustik - MuWi UHH WS 06/07 Mathematische Erfrischungen III - Vektoren und Matrizen Universität Hamburg Vektoren entstanden aus dem Wunsch, u.a. Bewegungen, Verschiebungen

Mehr

Elektrische Messtechnik, Labor Sommersemester 2014

Elektrische Messtechnik, Labor Sommersemester 2014 Institut für Elektrische Messtechnik und Messsignalverarbeitung Elektrische Messtechnik, Labor Sommersemester 2014 Rechnerunterstützte Erfassung und Analyse von Messdaten Übungsleiter: Dipl.-Ing. GALLIEN

Mehr

Digital Signal Processing

Digital Signal Processing - for Master Study by TFH Bochum - Analog Signal I OO O I I I O O O Digital Signal Seite 1 Zielsetzung der Signalverarbeitung Analyse: H(t), H(f) Modellieren y(t) {} Physikalische Größe und Prozesse Synthese

Mehr

Dipl.-Ing. (TU) Jürgen Wemheuer

Dipl.-Ing. (TU) Jürgen Wemheuer Dipl.-Ing. (TU) Jürgen Wemheuer wemheuer@ewla.de http://ewla.de 1 Statt kontinuierlicher (Amplituden-)Werte einer stetigen Funktion sind nur diskontinuierliche, diskrete Werte möglich (begrenzter Wertevorrat):

Mehr

Bei den Parabeln gibt es eine Grundfigur: Die Normalparabel, sie hat die

Bei den Parabeln gibt es eine Grundfigur: Die Normalparabel, sie hat die Die allgemeine Sinusfunktion Bei den Parabeln gibt es eine Grundfigur: Die Normalparabel, sie hat die Funktionsgleichung f(x) x. Aus ihr erzeugt man andere Parabeln, indem man den Funktionsterm verändert.

Mehr

7 Fourier-Transformation

7 Fourier-Transformation 7 Fourier-Transformation Ausgangspunkt: Die bereits bekannte Fourier-Reihenentwicklung einer T-periodischen, stückweise stetig differenzierbaren Funktion f T : R R, f T (t) = k= γ k e ikωt mit Frequenz

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Verlustfreie universelle Kompression 2.3 Digitalisierung, Digitale Medien Ludwig-Maximilians-Universität München, Medieninformatik

Mehr

Elektronenstrahloszilloskop

Elektronenstrahloszilloskop - - Axel Günther 0..00 laudius Knaak Gruppe 7 (Dienstag) Elektronenstrahloszilloskop Einleitung: In diesem Versuch werden die Ein- und Ausgangssignale verschiedener Testobjekte gemessen, auf dem Oszilloskop

Mehr

(Fast) Fourier Transformation und ihre Anwendungen

(Fast) Fourier Transformation und ihre Anwendungen (Fast) Fourier Transformation und ihre Anwendungen Johannes Lülff Universität Münster 14.01.2009 Inhaltsverzeichnis 1 Einführung 2 FFT 3 Anwendungen 4 Beschränkungen 5 Zusammenfassung Definition Fouriertransformation

Mehr

Quadratische Funktion - Übungen

Quadratische Funktion - Übungen Quadratische Funktion - Übungen 1a) "Verständnisfragen" zu "Scheitel und Allgemeine Form" - mit Tipps. Teilweise: Trotz der Tipps nicht immer einfach! Wir haben die Formeln: Allgemeine Form: y = a x 2

Mehr

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS Dämpfung. Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung 5. Dämpfung 5-1 1. Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische Energie

Mehr

Diskrete Fourier-Transformation

Diskrete Fourier-Transformation Universität Koblenz-Landau Institut für integrierte Naturwissenschaften Abteilung Physik Dozent: Dr. Merten Joost Seminar Digitale Signalverarbeitumg im Sommersemester 2005 Diskrete Fourier-Transformation

Mehr

Multimediatechnik / Audio

Multimediatechnik / Audio Multimediatechnik / Audio Dipl.-Ing. Oliver Lietz Übersicht Person Organisatorisches Fachlicher Überblick Übersicht Person Person Dipl.-Ing. Elektrotechnik TU Berlin Nachrichtentechnik / Akustik / Informatik

Mehr

Digitalisierung und ihre Konsequenzen

Digitalisierung und ihre Konsequenzen Digitalisierung und ihre Konsequenzen Bisher haben wir im Zusammenhang mit dem FID und den daraus resultierenden frequenzabhängigen Spektren immer nur von stetigen Funktionen gesprochen. In Wirklichkeit

Mehr

Seminar Digitale Signalverarbeitung

Seminar Digitale Signalverarbeitung Universität Koblenz-Landau Institut für integrierte aturwissenschaften Abteilung Physik Dr. Merten Joost Seminar Digitale Signalverarbeitung Thema: Fast Fourier Transformation Praktische Durchführung einer

Mehr

4.5 Gekoppelte LC-Schwingkreise

4.5 Gekoppelte LC-Schwingkreise 4.5. GEKOPPELTE LC-SCHWINGKEISE 27 4.5 Gekoppelte LC-Schwingkreise 4.5. Versuchsbeschreibung Ein elektrischer Schwingkreis kann induktiv mit einem zweiten erregten Schwingkreis 2 koppeln. Der Kreis wird

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Verlustfreie universelle Kompression 2.3 Digitalisierung, Digitale Medien Ludwig-Maximilians-Universität München Prof.

Mehr

Aktive Filterschaltungen - Filter II

Aktive Filterschaltungen - Filter II Messtechnik-Praktikum 27.05.08 Aktive Filterschaltungen - Filter II Silvio Fuchs & Simon Stützer Augabenstellung. a) Bauen Sie einen aktiven Tief- oder Hochpass entsprechend Abbildung bzw. 2 auf. b) Bestimmen

Mehr

Adaptive Systeme. Sommersemester Prof. Dr. -Ing. Heinz-Georg Fehn. Prof. Dr. rer. nat. Nikolaus Wulff

Adaptive Systeme. Sommersemester Prof. Dr. -Ing. Heinz-Georg Fehn. Prof. Dr. rer. nat. Nikolaus Wulff Adaptive Systeme Sommersemester 2015 Prof. Dr. -Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff 1 Adaptive Systeme Adaptives System: ein System, das

Mehr

Biosignalverarbeitung (Schuster)

Biosignalverarbeitung (Schuster) Biosignalverarbeitung (Schuster) 9. FOURIER - TRANSFORMATION: 4 Ausprägungen der Transformation: Zeitbereich Frequenzbereich Laplace-Transformation Fourier-Transformation kontinuierlicher Signale (FT,

Mehr

Physik 2 (B.Sc. EIT) 2. Übungsblatt

Physik 2 (B.Sc. EIT) 2. Übungsblatt Institut für Physik Werner-Heisenberg-Weg 9 Fakultät für Elektrotechnik 85577 München / Neubiberg Universität der Bundeswehr München / Neubiberg Prof Dr H Baumgärtner Übungen: Dr-Ing Tanja Stimpel-Lindner,

Mehr

Leseprobe. Michael Knorrenschild. Vorkurs Mathematik. Ein Übungsbuch für Fachhochschulen. ISBN (Buch):

Leseprobe. Michael Knorrenschild. Vorkurs Mathematik. Ein Übungsbuch für Fachhochschulen. ISBN (Buch): Leseprobe Michael Knorrenschild Vorkurs Mathematik Ein Übungsbuch für Fachhochschulen ISBN (Buch): 978-3-446-43798-2 ISBN (E-Book): 978-3-446-43628-2 Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-43798-2

Mehr

FM Synthese. Ralph Holzmann Universität Heidelberg Advanced Seminar Computer Engineering. Betreuer: Michael Krieger

FM Synthese. Ralph Holzmann Universität Heidelberg Advanced Seminar Computer Engineering. Betreuer: Michael Krieger FM Synthese Ralph Holzmann Universität Heidelberg Advanced Seminar Computer Engineering Betreuer: Michael Krieger FM Synthese R. Holzmann, Uni Heidelberg 1 Übersicht Einführung Geschichte Mathematisches

Mehr

Kapitel 3: DFT und FFT

Kapitel 3: DFT und FFT ZHAW, DSV1, FS2009, Rumc, 3-1 Inhaltsverzeichnis Kapitel 3 DFT und FFT 3.1. EINLEITUNG... 1 3.2. DISKRETE FOURIERTRANSFORMATION (DFT)... 2 3.3. EIGENSCHAFTEN DER DFT... 2 3.4. VERWANDTSCHAFT DER DFT MIT

Mehr

Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder

Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder Bei der Behandlung reeller elektromagnetischer Felder im Fourierraum ist man mit der Tatsache konfrontiert, dass

Mehr

Die akustische Analyse von Sprachlauten.

Die akustische Analyse von Sprachlauten. Die akustische Analyse von Sprachlauten. Die Interpretation von Spektrogrammen. Jonathan Harrington IPDS, Kiel. Vom Zeitsignal zum Spektrum s t a m 1. Ein Teil vom Sprachsignal aussuchen: die Zeitauflösung

Mehr

MATLAB Signal Processing Toolbox Inhaltsverzeichnis

MATLAB Signal Processing Toolbox Inhaltsverzeichnis Inhaltsverzeichnis Signal Processing Toolbox 1 Was ist Digitale Signalverarbeitung? 2 Inhalt 3 Aufbereitung der Messdaten 4 Interpolation 6 Approximation 7 Interpolation und Approximation 8 Anpassung der

Mehr

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5 4 Verteilungen und ihre Kennzahlen 1 Kapitel 4: Verteilungen und ihre Kennzahlen A: Beispiele Beispiel 1: Eine diskrete Zufallsvariable X, die nur die Werte 1,, 3, 4, 5 mit positiver Wahrscheinlichkeit

Mehr

4. Passive elektronische Filter

4. Passive elektronische Filter 4.1 Wiederholung über die Grundbauelemente an Wechselspannung X Cf(f) X Lf(f) Rf(f) 4.2 Einleitung Aufgabe 1: Entwickle mit deinen Kenntnissen über die Grundbauelemente an Wechselspannung die Schaltung

Mehr

355 Messwerterfassung mit Labview

355 Messwerterfassung mit Labview 1. Aufgaben 355 Messwerterfassung mit Labview 1.1 Erarbeiten Sie sich die Grundlagen im mgang mit Labview anhand einer einfachen Aufzeichnung eines Signals. a) Lesen Sie ein sinusförmiges Signal ein und

Mehr

Elektrische Messtechnik Protokoll - Bestimmung des Frequenzgangs durch eine Messung im Zeitbereich

Elektrische Messtechnik Protokoll - Bestimmung des Frequenzgangs durch eine Messung im Zeitbereich Elektrische Messtechnik Protokoll - Bestimmung des Frequenzgangs durch eine Messung im Zeitbereich André Grüneberg Janko Lötzsch Mario Apitz Friedemar Blohm Versuch: 19. Dezember 2001 Protokoll: 6. Januar

Mehr

Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω)

Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω) 4 Systeme im Frequenzbereich (jω) 4.1 Allgemeines Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω) 1 4.2 Berechnung des Frequenzgangs Beispiel: RL-Filter

Mehr

Analysis-Aufgaben: Funktionen (Grundlagen) 7. Anwendungen GeoGebra

Analysis-Aufgaben: Funktionen (Grundlagen) 7. Anwendungen GeoGebra Analysis-Aufgaben: Funktionen (Grundlagen) 7 Anwendungen GeoGebra 1. Wir beginnen diese Aufgabenserie mit einer kurzen Wiederholung der Definitionen & Begriffe im Zusammenhang mit Funktionen: (a) Definiere

Mehr

Zeitfunktionen. Kapitel Elementarfunktionen

Zeitfunktionen. Kapitel Elementarfunktionen Kapitel Zeitfunktionen Systeme werden durch Eingangsgrößen (Ursache, Eingangssignal, Erregung) angeregt und man interessiert sich für die Ausgangsgrößen (Wirkung, Ausgangssignal, Antwort). Die praktisch

Mehr

Digitalisierung. Digitale Übertragung analoger Signale. störsicher (0/1-Codierung, Fehlerkorrektur) präzise (fixe unveränderliche Codeworte)

Digitalisierung. Digitale Übertragung analoger Signale. störsicher (0/1-Codierung, Fehlerkorrektur) präzise (fixe unveränderliche Codeworte) Digitale Übertragung analoger Signale Vorteile digitaler Übertragung störsicher (0/1-Codierung, Fehlerkorrektur) präzise (fixe unveränderliche Codeworte) Nachteiler digitaler Übertragung natürliche Signale

Mehr

3) Es soll ein aktives Butterworth-Tiefpassfilter mit folgenden Betriebsparametern entworfen werden: Grunddämpfung: Grenze des Durchlassbereiches:

3) Es soll ein aktives Butterworth-Tiefpassfilter mit folgenden Betriebsparametern entworfen werden: Grunddämpfung: Grenze des Durchlassbereiches: Übungsblatt 4 1) Beim Praktikumsversuch 4 sollten Sie an das aufgebaute iefpassfilter eine Rechteckspannung mit einer Frequenz von 6 Hz anlegen: a) Skizzieren Sie grob den Verlauf der Ausgangsspannung

Mehr

Signalübertragung und -verarbeitung

Signalübertragung und -verarbeitung ILehrstuhl für Informationsübertragung Schriftliche Prüfung im Fach Signalübertragung und -verarbeitung 6. Oktober 008 5Aufgaben 90 Punkte Hinweise: Beachten Sie die Hinweise zu den einzelnen Teilaufgaben.

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

M_G7 EF Pvn Klausurvorbereitung: Lösungen 13. Oktober Klausurvorbereitung. Lösungen

M_G7 EF Pvn Klausurvorbereitung: Lösungen 13. Oktober Klausurvorbereitung. Lösungen Klausurvorbereitung Lösungen I. Funktionen Funktionen und ihre Eigenschaften S. 14 Aufg. 2 f(-2)=0,5 f(0,1)=-10 f(78)= 1 78 g(-2)=-7 g(0,1)=-2,8 g(78)=153 h(-2)=57 h(0,1)=23,82 h(78)=11257 D f = R/{0}

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 29.01.2009 Numerische Methoden und Algorithmen in der Physik Hartmut Stadie 1/ 18 Einführung Fourier-Transformation

Mehr