Bildverarbeitung Herbstsemester Fourier-Transformation

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Bildverarbeitung Herbstsemester 2012. Fourier-Transformation"

Transkript

1 Bildverarbeitung Herbstsemester 2012 Fourier-Transformation 1

2 Inhalt Fourierreihe Fouriertransformation (FT) Diskrete Fouriertransformation (DFT) DFT in 2D Fourierspektrum interpretieren 2

3 Lernziele Sie erkennen den Nutzen der Fourier-Transformation. Sie können die Fourier-Transformation in konkreten Beispielen einsetzen. Sie kennen den Zusammenhang zwischen Diskretisierung und Periodizität. Sie kennen die diskrete Fourier-Transformation (DFT). Sie können die DFT sowohl in einer als auch in zwei Dimensionen ausprogrammieren. Sie können DFT-transformierte Bilder analysieren und solche qualitativ selber zeichnen. 3

4 Anwendung der DFT/FFT/DCT Bildanalyse Bildrekonstruktion Bildkomprimierung Filterung das Filtern eines Bildes (M 2 Pixel) mit einem Filter (N 2 Pixel) basiert oft auf der Anwendung der Faltungsoperation im Bildraum mit Aufwand O(M 2 N 2 ) durch die Verwendung der FFT kann der Aufwand auf O(M 2 log M) reduziert werden 4

5 Frequenz, Amplitude, Phase Beispiel a sin( x ) Kreisfrequenz: = 2 f Frequenz: f = 1/T = /(2) Periodenlänge: T Amplitude: a Phase: 5

6 Fourierreihe jede periodische Funktion g(x) mit einer Grundfrequenz 0 kann als unendliche Summe von harmonischen Schwingungen dargestellt werden Fourierkoeffizienten: A k, B k Fourieranalyse Berechnung der Fourierkoeffizienten aus einer gegebenen Funktion g(x) 6

7 Fourierintegral und -spektrum eine nicht periodische Funktion g(x) kann als Summe von unendlich vielen Sinus- und Kosinusschwingungen dargestellt werden das bedarf nicht nur Vielfache von der Grundfrequenz Fourierintegral sondern unendlich viele dicht aneinander liegende Frequenzen Bestimmung des Fourierspektrums (Fourierkoeffizientenfunktionen) 7

8 Fouriertransformation (FT) Übergang von Fourierintegral zu Fouriertransformation Ausgangsfunktion g(x) und Fourierspektrum sind komplexwertige Funktionen Vorwärtstransformation Rücktransformation 8

9 Fourier-Transformationspaare (1) + Imaginärteil 9

10 Beispiel: Rücktransformation G( ) f( x ) 2 ( ( 3 )( 3 ) ) G( ) e ( j x ) 2 d f( x ) e ( j 3 x ) e ( j 3 x ) f( x ) 2 f( x ) ( 3 ) e ( j x ) d ( 3 ) e ( j x ) d cos( 3 x )j sin( 3 x ) cos( 3 x ) j sin( 3 x ) f( x )cos ( 3 x )

11 Fourier-Transformationspaare (2) 11

12 FT von diskreten Signalen Abtastung (Sampling) Abtastung = Multiplikation mit Kammfunktion durch Abtastung wird aus einer kontinuierlichen Ausgangsfunktion g(x) eine diskrete Funktion Auswirkungen Diskretisierung im Ortsraum führt zu Periodizität im Fourierspektrum (Frequenzraum) Invers zu: Periodizität im Ortsraum führt zu diskretem Fourierspektrum ( Fourierreihe) 12

13 Aliasing und Abtasttheorem Diskretisierung im Ortsraum Periodizität im Frequenzraum falls die sich wiederholenden Spektralkomponenten im Frequenzraum nicht überschneiden, so ist eine verlustlose Rücktransformation möglich maximal zulässige Signalfrequenz max ist von der Abtastfrequenz s abhängig Spektrum des kontinuierlichen Ausgangssignals Spektrum des abgetasteten Ausgangssignals mit Abtastfrequenz 1 > 2 max Spektrum des abgetasteten Ausgangssignals mit Abtastfrequenz 2 < 2 max 13

14 Zusammenfassung (1) 14

15 Zusammenfassung (2) 15

16 Diskrete Fouriertransformation (DFT) Ausgangslage diskretes, periodisches Signal g(u) mit M Abtastwerten Vorwärtstransformation Rücktransformation 16

17 DFT Einheiten Periodenlänge t 0 : M Abtastwerte im Abstand t s Frequenz f 0 = 1 / Mt s Abtastfrequenz f s = 1/t s = M f 0 Wellenzahl m: 0 m < M Kreisfrequenz = m 0 = 2 m f 0 Leistungsspektrum Phasenspektrum Pha( m) G arctan G Im Re ( m) ( m) 17

18 Implementierung der DFT 18

19 FFT und DCT Zeitkomplexität der DFT zwei verschachtelte for-schleifen von 0 bis M O(M 2 ) Fast Fourier Transform (FFT) z.b. Algorithmus von Cooley und Tukey, 1965 Optimierung auf Signallängen von M = 2 k Reduktion der Zeitkomplexität auf O(M log M) Discrete Cosine Transform (DCT) nur für reelle Signale geeignet Spektrum ist auch reell Transformation verwendet nur Kosinusfunktionen 19

20 DFT in 2D Vorwärtstransformation Rücktransformation 20

21 Implementierung der 2D-DFT Umformung eindimensionale DFT genügt zuerst alle Zeilen eines Bildes mit der DFT transformieren dann alle transformierten Zeilen spaltenweise mit DFT transformieren 21

22 Amplituden und Phasen 22

23 Fourierspektrum zentriert (1) 23

24 Fourierspektrum zentriert (2) 24

25 Geometrische Korrektur 25

26 Periodizität 26

27 2D-DFT: Beispiele (1) 27

28 2D-DFT: Beispiele (2) 28

29 2D-DFT bei Rasterbildern 29

30 Saliency Detection (SD) Wo schauen wir hin? Wo ist es interessant im Bild? 30

31 Ansatz 31

32 SD Algorithmus 32

33 Matlab Code Verfahren von Hou & Zhang,

34 SD: Resultate (1) 34

35 SD Resultate (2) 35

Longitudinale und transversale Relaxationszeit

Longitudinale und transversale Relaxationszeit Longitudinale und transversale Relaxationszeit Longitudinale Relaxationszeit T 1 (Zeit, die das System benötigt, um nach dem rf- Puls zurück ins Gleichgewicht zu kommen) Transversale Relaxationszeit T

Mehr

Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT)

Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT) Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT) Inhaltsverzeichnis 1 Allgemeines Filter... 2 2 Filter auf dem Signalprozessor... 2 3 Zusammenhang Zeitsignal und Frequenzspektrum...

Mehr

(Fast) Fourier Transformation und ihre Anwendungen

(Fast) Fourier Transformation und ihre Anwendungen (Fast) Fourier Transformation und ihre Anwendungen Johannes Lülff Universität Münster 14.01.2009 Inhaltsverzeichnis 1 Einführung 2 FFT 3 Anwendungen 4 Beschränkungen 5 Zusammenfassung Definition Fouriertransformation

Mehr

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT)

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Ziele In diesem Versuch lernen Sie zwei Anwendungen der Diskreten Fourier-Transformation in der Realisierung als recheneffiziente schnelle

Mehr

Technik der Fourier-Transformation

Technik der Fourier-Transformation Was ist Fourier-Transformation? Fourier- Transformation Zeitabhängiges Signal in s Frequenzabhängiges Signal in 1/s Wozu braucht man das? Wie macht man das? k = 0 Fourier- Reihe f ( t) = Ak cos( ωkt) +

Mehr

Argumente für die diskrete Realisierung der Fourierintegrale

Argumente für die diskrete Realisierung der Fourierintegrale Argumente für die diskrete Realisierung der Fourierintegrale Die Fouriertransformation gemäß der Beschreibung in Kapitel 3.1 weist aufgrund der unbegrenzten Ausdehnung des Integrationsintervalls eine unendlich

Mehr

(Fast) Fourier Transformation und ihre Anwendungen

(Fast) Fourier Transformation und ihre Anwendungen (Fast) Fourier Transformation und ihre Anwendungen Johannes Lülff Universität Münster 14.01.2009 Definition Fouriertransformation F (ω) = F [f(t)] (ω) := 1 2π dt f(t)e iωt Fouriersynthese f(t) = F 1 [F

Mehr

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden:

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden: /5 Fourier-Analyse (periodischer Signale) Grundlagen Ein periodisches, kontinuierliches Signal x(t) der Periodendauer kann als Fourier-Reihe beschrieben werden: wie folgt ( ) = c k x t + e j k 2πf t k=

Mehr

Seminar Digitale Signalverarbeitung

Seminar Digitale Signalverarbeitung Universität Koblenz-Landau Institut für integrierte aturwissenschaften Abteilung Physik Dr. Merten Joost Seminar Digitale Signalverarbeitung Thema: Fast Fourier Transformation Praktische Durchführung einer

Mehr

Fourier-Zerlegung, Fourier-Synthese

Fourier-Zerlegung, Fourier-Synthese Fourier-Zerlegung, Fourier-Synthese Periodische Funktionen wiederholen sich nach einer Zeit T, der Periode. Eine periodische Funktion f(t) mit der Periode T genügt der Beziehung: f( t+ n T) = f( t) für

Mehr

Bildrekonstruktion & Multiresolution

Bildrekonstruktion & Multiresolution Bildrekonstruktion & Multiresolution Verkleinern von Bildern? Was ist zu beachten? Es kann aliasing auftreten! Das Abtasttheorem sagt wie man es vermeidet? ===> Page 1 Verkleinern von Bildern (2) Vor dem

Mehr

VAD - Voice Activity Detection -

VAD - Voice Activity Detection - VAD - - erstellt: Robert Schaar s63012 erstellt: Robert Schaar s63012 Mensch-Maschine-Robotik 1. Einleitung 2. Aufbau des Algorithmus 2.1. allgemeiner Aufbau 2.2. Fourier-Transformation 2.3. Short-Time

Mehr

Netzwerke - Bitübertragungsschicht (1)

Netzwerke - Bitübertragungsschicht (1) Netzwerke - Bitübertragungsschicht (1) Theoretische Grundlagen Fourier-Analyse Jedes Signal kann als Funktion über die Zeit f(t) beschrieben werden Signale lassen sich aus einer (möglicherweise unendlichen)

Mehr

Fourier - Transformation

Fourier - Transformation Fourier - Transformation Kurzversion 2. Sem. Prof. Dr. Karlheinz Blankenbach Hochschule Pforzheim, Tiefenbronner Str. 65 75175 Pforzheim Überblick / Anwendungen / Motivation: Die Fourier-Transformation

Mehr

Grundlagen der Videotechnik. Redundanz

Grundlagen der Videotechnik. Redundanz Grundlagen der Videotechnik Redundanz Redundanz beruht auf: - statistischen Abhängigkeiten im Signal, - Information, die vorher schon gesendet wurde - generell eine Art Gedächtnis im Signal Beispiel: Ein

Mehr

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 4 Fourier-Transformation 3

Mehr

Computergrafik 2: Fourier-Transformation

Computergrafik 2: Fourier-Transformation Computergrafik 2: Fourier-Transformation Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen

Mehr

Digitale Signalbearbeitung und statistische Datenanalyse

Digitale Signalbearbeitung und statistische Datenanalyse Digitale Signalbearbeitung und statistische Datenanalyse Teil 5 8 Aus ontinuierlichem Signal werden in onstanten Zeitintervallen Daten entnommen ontinuierliches Signal x(t) Einheitsimpulsfuntion Gewichtete

Mehr

Merkmale von Bildregionen, Einführung in Spektraltechniken

Merkmale von Bildregionen, Einführung in Spektraltechniken Merkmale von Bildregionen, Einführung in Spektraltechniken Industrielle Bildverarbeitung, Vorlesung No. 10 1 M. O. Franz 12.12.2007 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Burger

Mehr

Visual Computing Filtering, Fourier Transform, Aliasing

Visual Computing Filtering, Fourier Transform, Aliasing Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Zu loesen bis: 16. Mai 2006 Prof. M. Gross Remo Ziegler / Christian Voegeli / Daniel Cotting Ziele Visual Computing

Mehr

DFT / FFT der Titel der Präsentation wiederholt (Ansicht >Folienmaster) Dipl.-Ing. Armin Rohnen, Fakultät 03, rohnen@hm.edu

DFT / FFT der Titel der Präsentation wiederholt (Ansicht >Folienmaster) Dipl.-Ing. Armin Rohnen, Fakultät 03, rohnen@hm.edu 1 Grundlagen Abtasttheorem Fenster Zeit - Frequenzauflösung Pegelgenauigkeit Overlap Mittelung 2 2 volle Schwingungen 32 Abtastwerte Amplitude = 1 Pascal Signallänge = 1 Sekunde Eine Frequenzline bei 2

Mehr

Fourier-Spektroskopie. Vortrag am 22.07.03 Elektrische und optische Sensoren

Fourier-Spektroskopie. Vortrag am 22.07.03 Elektrische und optische Sensoren Fourier-Spektroskopie Vortrag am 22.07.03 Elektrische und optische Sensoren Inhaltsverzeichnis 1. Einführung 2. Benötigte Grundlagen der Optik 3. Das Michelson-Interferometer 4. Probleme der Realisierung

Mehr

Signale und ihre Spektren

Signale und ihre Spektren Einleitung Signale und ihre Spektren Fourier zeigte, dass man jedes in der Praxis vorkommende periodische Signal in eine Reihe von Sinus- und Cosinusfunktionen unterschiedlicher Frequenz zerlegt werden

Mehr

MATLAB Kurs 2010 Teil 2 Eine Einführung in die Frequenzanalyse via MATLAB

MATLAB Kurs 2010 Teil 2 Eine Einführung in die Frequenzanalyse via MATLAB MATLAB Kurs 2010 Teil 2 Eine Einführung in die via MATLAB 26.11.2010 & 03.12.2010 nhaltsverzeichnis 1 2 3 Ziele Kurze Einführung in die -Analyse Ziele Kurze Einführung in die -Analyse MATLAB Routinen für

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Speicherbedarf und Kompression 2.3 Digitalisierung Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004 4 Signalverarbeitung 4.1! Grundbegriffe! 4.2! Frequenzspektren, Fourier-Transformation! 4.3! Abtasttheorem: Eine zweite Sicht Weiterführende Literatur (z.b.):!! Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

3 Diskrete Fourier-Transformation

3 Diskrete Fourier-Transformation 33 3 Diskrete Fourier-Transformation Inhalt 3 Diskrete Fourier-Transformation... 33 3. Grundlagen... 34 3.. Diskrete Fourier-Transformation... 34 3..2 Eigenschaften der diskreten Fourier-Transformation...

Mehr

Lokale Frequenzanalyse

Lokale Frequenzanalyse Lokale Frequenzanalyse Fourieranalyse bzw. Powerspektrum liefern globale Maße für einen Datensatz (mittleres Verhalten über die gesamte Länge des Datensatzes) Wiederkehrdiagramme zeigten, dass Periodizitäten

Mehr

Fouriertransformation

Fouriertransformation Fouriertransformation Radix2 fast fourier transform nach Cooley/Tukey 1 Inhaltsübersicht Mathematische Grundlagen: Komplexe Zahlen und Einheitswurzeln Die diskrete Fouriertransformation Der Radix2-Algorithmus

Mehr

Analoge CMOS-Schaltungen

Analoge CMOS-Schaltungen Analoge CMOS-Schaltungen PSPICE: Fourier-Analyse 12. Vorlesung Einführung 1. Vorlesung 8. Vorlesung: Inverter-Verstärker, einige Differenzverstärker, Miller-Verstärker 9. Vorlesung: Miller-Verstärker als

Mehr

Signale und Systeme. A1 A2 A3 Summe

Signale und Systeme. A1 A2 A3 Summe Signale und Systeme - Prof. Dr.-Ing. Thomas Sikora - Name:............................... Vorname:.......................... Matr.Nr:.............................. Ergebnis im Web mit verkürzter Matr.Nr?

Mehr

Wave-Datei-Analyse via FFT

Wave-Datei-Analyse via FFT Wave-Datei-Analyse via FFT Wave-Dateien enthalten gesampelte Daten, die in bestimmten Zeitabständen gespeichert wurden. Eine Fourier-Transformation über diesen Daten verrät das Frequenz-Spektrum der zugrunde

Mehr

Carl von Ossietzky Universität Oldenburg - Fakultät V- Institut für Physik Modul Grundpraktikum Physik Teil I. Fourieranalyse

Carl von Ossietzky Universität Oldenburg - Fakultät V- Institut für Physik Modul Grundpraktikum Physik Teil I. Fourieranalyse 04 Carl von Ossietzky Universität Oldenburg - Fakultät V- Institut für Physik Modul Grundpraktikum Physik eil I Fourieranalyse Stichworte: FOURIERreihe (trigonometrische Reihe), FOURIERkoeffizienten, FOURIERanalyse

Mehr

Die Fourier-Transformation

Die Fourier-Transformation 1/20 Die Fourier-Transformation 2/20 Die FT ermittelt aus dem Signal von überlagerten Schwingungen welche Frequenzen enthalten sind FT 3/20 Von der folgenden Schwingung soll die Frequenz ermittelt werden

Mehr

Bildverarbeitung: Fourier-Transformation. D. Schlesinger () BV: Fourier-Transformation 1 / 16

Bildverarbeitung: Fourier-Transformation. D. Schlesinger () BV: Fourier-Transformation 1 / 16 Bildverarbeitung: Fourier-Transformation D. Schlesinger () BV: Fourier-Transformation 1 / 16 Allgemeines Bilder sind keine Vektoren. Bilder sind Funktionen x : D C (Menge der Pixel in die Menge der Farbwerte).

Mehr

Lösungsblatt 2 Signalverarbeitung und Klassifikation

Lösungsblatt 2 Signalverarbeitung und Klassifikation Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 06 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Lösungsblatt Signalverarbeitung und Klassifikation Aufgabe : Faltung

Mehr

Biosignalverarbeitung (Schuster)

Biosignalverarbeitung (Schuster) Biosignalverarbeitung (Schuster) 9. FOURIER - TRANSFORMATION: 4 Ausprägungen der Transformation: Zeitbereich Frequenzbereich Laplace-Transformation Fourier-Transformation kontinuierlicher Signale (FT,

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 29.01.2009 Numerische Methoden und Algorithmen in der Physik Hartmut Stadie 1/ 18 Einführung Fourier-Transformation

Mehr

Filterung von Bildern (2D-Filter)

Filterung von Bildern (2D-Filter) Prof. Dr. Wolfgang Konen, Thomas Zielke Filterung von Bildern (2D-Filter) SS06 6. Konen, Zielke Aktivierung Was, denken Sie, ist ein Filter in der BV? Welche Filter kennen Sie? neuer Pixelwert bilden aus

Mehr

Grundlagen der Computer-Tomographie

Grundlagen der Computer-Tomographie Grundlagen der Computer-Tomographie Quellenangabe Die folgenden Folien sind zum Teil dem Übersichtsvortrag: imbie.meb.uni-bonn.de/epileptologie/staff/lehnertz/ct1.pdf entnommen. Als Quelle für die mathematischen

Mehr

Digitale Signalverarbeitung Juli 2004

Digitale Signalverarbeitung Juli 2004 Westfälische Wilhelms-Universität Münster Institut für Angewandte Physik xperimentelle Übungen für Fortgeschrittene Digitale Signalverarbeitung Juli 2004 In der Digitaltechnik ist es nicht möglich, physikalische

Mehr

Motivation. Diskretisierung. Überblick. Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen. Diskretisierung und Quantisierung

Motivation. Diskretisierung. Überblick. Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen. Diskretisierung und Quantisierung Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen Motivation Analoge Aufnahme von Sprache, Bildern Digitale Speicherung durch Diskretisierung + Quantisierung Informationsverlust

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

Lab3 - Fourieranalyse von Signalen

Lab3 - Fourieranalyse von Signalen 1 Einleitung Lab3 - Fourieranalyse von Signalen M. Brandner, C. Wallinger Die spektrale Analyse deterministischer und zufälliger Signale ist von zentraler Bedeutung in der Messtechnik, da sehr viele interessante

Mehr

Echtzeit-Analyse/Synthese von Sprachsignalen unter Berücksichtigung des Sprachverständlichkeitsindex (SII)

Echtzeit-Analyse/Synthese von Sprachsignalen unter Berücksichtigung des Sprachverständlichkeitsindex (SII) Allgemeine Nachrichtentechnik Prof. Dr.-Ing. Udo Zölzer Echtzeit-Analyse/Synthese von Sprachsignalen unter Berücksichtigung des Sprachverständlichkeitsindex (SII) Von Sayak Ghosh Choudhury Prof. Dr.-Ing.

Mehr

Frequenzanalyse. Der Abstand der diskreten Frequenzlinien ist der Kehrwert der Periodendauer:

Frequenzanalyse. Der Abstand der diskreten Frequenzlinien ist der Kehrwert der Periodendauer: WS 0 Fourier-Reihe: Jede einigrermaßen gutartige 1 periodishe reelle Zeitfuntion x(t) ann mittels einer Fourier-Reihe dargestellt werden als eine Summe omplexer Amplituden (Fourier-Synthese): xt () e n

Mehr

V 322 Überlagerung und Modulation /AD-Wandler

V 322 Überlagerung und Modulation /AD-Wandler V 322 Überlagerung und Modulation /AD-Wandler 1. Aufgaben 1.1 Digitalisieren Sie ein analoges Signal und experimentieren mit der Abtastrate und Sampleanzahl. 1.2 Überlagern Sie 2 Frequenzen und beobachten

Mehr

Projektdokumentation

Projektdokumentation Thema: Bildschärfung durch inverse Filterung von: Thorsten Küster 11027641 Lutz Kirberg 11023468 Gruppe: Ibv-team-5 Problemstellung: Bei der Übertragung von Kamerabildern über ein Video-Kabel kommt es

Mehr

Titel: Darstellung und Analyse abgetasteter Signale Titel-Kürzel: ABT

Titel: Darstellung und Analyse abgetasteter Signale Titel-Kürzel: ABT Titel: Darstellung und Analyse abgetasteter Signale Titel-Kürzel: ABT Autoren: Niklaus Schmid, sni Koautor: U. Gysel, gys Version: v2.0 31. Dezember 2005 v2.1 7. Januar 2006 Korrekturen von G. Lekkas verarbeitet

Mehr

GT- Labor. Inhaltsverzeichnis

GT- Labor. Inhaltsverzeichnis Inhaltsverzeichnis Seite 1. Versuchsvorbereitung 2 1.1 Qualitatives Spektrum der Ausgangsspannung des Eintaktmodulators 2 1.2 Spektrum eines Eintaktmodulators mit nichtlinearem Element 2 1.3 Bandbreite

Mehr

Computergraphik 1 2. Teil: Bildverarbeitung. Fouriertransformation Ende FFT, Bildrestauration mit PSF Transformation, Interpolation

Computergraphik 1 2. Teil: Bildverarbeitung. Fouriertransformation Ende FFT, Bildrestauration mit PSF Transformation, Interpolation Computergraphik 1 2. Teil: Bildverarbeitung Fouriertransformation Ende FFT, Bildrestauration mit PSF Transformation, Interpolation LMU München Medieninformatik Butz/Hoppe Computergrafik 1 SS2009 1 2 Repräsentation

Mehr

Abtastung schmalbandiger Signale und ihre Anwendung zur Hüllkurvenanalyse bei rechnergestützten schwingungsdiagnostischen Systemen

Abtastung schmalbandiger Signale und ihre Anwendung zur Hüllkurvenanalyse bei rechnergestützten schwingungsdiagnostischen Systemen tm Technisches Messen 74 (2007) 2 / DOI 10.1524/teme.2007.74.2.63 Oldenbourg Verlag 63 Abtastung schmalbandiger Signale und ihre Anwendung zur Hüllkurvenanalyse bei rechnergestützten schwingungsdiagnostischen

Mehr

Skriptum zur 4. Laborübung. Spektren

Skriptum zur 4. Laborübung. Spektren Elektrotechnische Grundlagen der Informatik (LU 182.085) Skriptum zur 4. Laborübung Spektren Christof Pitter Wolfgang Puffitsch Technische Universität Wien Institut für Technische Informatik (182) 1040,

Mehr

Analogmultiplexer als Amplitudenmodulatoren

Analogmultiplexer als Amplitudenmodulatoren Analogmultiplexer als Amplitudenmodulatoren Dipl.-Phys. Jochen Bauer 09.11.014 Einführung und Motivation Mit dem zunehmenden Verschwinden von Mittel- und Langwellensendern ergibt sich die Notwendigkeit

Mehr

Einführung in die Physik I. Schwingungen und Wellen 1

Einführung in die Physik I. Schwingungen und Wellen 1 Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten

Mehr

NUMERISCHE METHODEN IN DER PHYSIK Zweite Übung WS 2012/2013 [MATLAB]

NUMERISCHE METHODEN IN DER PHYSIK Zweite Übung WS 2012/2013 [MATLAB] NUMERISCHE METHODEN IN DER PHYSIK Zweite Übung WS 2012/2013 [MATLAB] Schnelle diskrete Fourier-Transformation (Fast Fourier Transform FFT) Darstellung der Methode: Skriptum Kap. 3.3 und 3.4. Die Berechnungen

Mehr

Signalübertragung und -verarbeitung

Signalübertragung und -verarbeitung ILehrstuhl für Informationsübertragung Schriftliche Prüfung im Fach Signalübertragung und -verarbeitung 6. Oktober 008 5Aufgaben 90 Punkte Hinweise: Beachten Sie die Hinweise zu den einzelnen Teilaufgaben.

Mehr

Zusammenfassung Digitale Bildverarbeitung By Fabian Flohrmann

Zusammenfassung Digitale Bildverarbeitung By Fabian Flohrmann Zusammenfassung Digitale Bildverarbeitung By Fabian Flohrmann VL01 Stufen der Bildverarbeitung Bildgewinnung => Bildbearbeitung => Bilderkennung Bildgewinnung: Bildaufnahme Bilddiskretisierung Bildbearbeitung:

Mehr

Kapitel 3: DFT und FFT

Kapitel 3: DFT und FFT ZHAW, DSV1, FS2009, Rumc, 3-1 Inhaltsverzeichnis Kapitel 3 DFT und FFT 3.1. EINLEITUNG... 1 3.2. DISKRETE FOURIERTRANSFORMATION (DFT)... 2 3.3. EIGENSCHAFTEN DER DFT... 2 3.4. VERWANDTSCHAFT DER DFT MIT

Mehr

LABORVERSUCH MT2. Grundlagen der digitalen Messsignalerfassung. Labor Messtechnik FGA. Prof. Dr. rer. nat.g. Haussmann Dipl. Ing.

LABORVERSUCH MT2. Grundlagen der digitalen Messsignalerfassung. Labor Messtechnik FGA. Prof. Dr. rer. nat.g. Haussmann Dipl. Ing. LABORVERSUCH MT2 Grundlagen der digitalen Messsignalerfassung Prof. Dr. rer. nat.g. Haussmann Dipl. Ing. Wolfgang Then Ha V06/06 Versuch Grundlagen der digitalen Messsignalfassung Seite 1 0. Bedeutung

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der 1. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Zeitdiskretes Signal Quantisiertes Signal Digitales Signal Kontinuierliches System Abtastsystem

Mehr

Reell. u(t) Komplex u(t), Zeitabhängig Zeitunabhängig. u(t)e jωt. Reell Û. Elektrische Größe. Spitzenwert. Komplex Û. Reell U. Effektivwert.

Reell. u(t) Komplex u(t), Zeitabhängig Zeitunabhängig. u(t)e jωt. Reell Û. Elektrische Größe. Spitzenwert. Komplex Û. Reell U. Effektivwert. Aufgaben Reell u(t) Elektrische Größe Zeitabhängig Zeitunabhängig Spitzenwert Effektivwert Komplex u(t), Reell Û Komplex Û Reell U Komplex U u(t)e jωt Institut für Technische Elektronik, RWTH - Aachen

Mehr

Laufzeitverhalten von FFT Implementierungen O. Punk, S. Döhler, U. Heuert Hochschule Merseburg (FH), Fachbereich Ingenieur und Naturwissenschaften

Laufzeitverhalten von FFT Implementierungen O. Punk, S. Döhler, U. Heuert Hochschule Merseburg (FH), Fachbereich Ingenieur und Naturwissenschaften Laufzeitverhalten von FFT Implementierungen O. Punk, S. Döhler, U. Heuert Hochschule Merseburg (FH), Fachbereich Ingenieur und Naturwissenschaften Aufgabenstellung und Motivation Die DFT (Diskrete Fouriertransformation)

Mehr

Vom Zeit- zum Spektralbereich: Fourier-Analyse

Vom Zeit- zum Spektralbereich: Fourier-Analyse Vom Zeit- zum Spektralbereich: Fourier-Analyse Ergebnis der Analyse Zerlegung eines beliebigen periodischen Signals in einem festen Zeitfenster in eine Summe von Sinoidalschwingungen Ermittlung der Amplituden

Mehr

Digitale Bildverarbeitung (DBV)

Digitale Bildverarbeitung (DBV) Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie Email: heinz juergen.przybilla@hs bochum.de Tel. 0234 32 10517 Sprechstunde: Montags 13 14 Uhr und nach Vereinbarung

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d z + c d z + c uk d + + yk z d + c d z + c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme Übungsaufgaben Manfred Strohrmann Urban Brunner Inhalt Übungsaufgaben - Signalabtastung und Rekonstruktion...

Mehr

3. Fourieranalyse und Amplitudenspektren

3. Fourieranalyse und Amplitudenspektren 3.1 Fourieranalyse 3.1.1 Einleitung Laut dem französischen Mathematiker Fourier (1768-1830) kann jedes periodische Signal in eine Summe von sinusförmigen Signalen mit unterschiedlichen Amplituden, Frequenzen

Mehr

Kontrollfragen zum Skript Teil 1 beantwortet

Kontrollfragen zum Skript Teil 1 beantwortet Kontrollfragen zum Skript Teil 1 beantwortet Von J.S. Hussmann Fragen zu SW 1.1 Welche Vorteile hat die DSVB? Programmierbar Parametrierbar Reproduzierbar Wie heisst die Umwandlung eines Zeit-diskreten

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens SS2013 Inhalt Fourier Reihen Sehen wir in 2 Wochen Lösung der lin. Dgln.

Mehr

1 Analoge und digitale Signale

1 Analoge und digitale Signale Hochfrequenztechnik II Modulationsverfahren MOD/1 1 Analoge und digitale Signale Modulationsverfahren werden benötigt, um ein vorhandenes Basisbandsignal s(t) über ein hochfrequentes Trägersignal zu übertragen.

Mehr

5.5 Theorie und Praxis der Signalabtastung

5.5 Theorie und Praxis der Signalabtastung ELEKTRONIK FÜR EMBEDDED SYSTEMS TEIL 5, ABSCHNITT 5 EES05_03 SEITE 1 5.5 Theorie und Praxis der Signalabtastung Wie gut ist eigentlich "digital"? Von der digitalen Speicherung und Verarbeitung eigentlich

Mehr

EIN BEITRAG ZUR RECHNERGESTÜTZTEN BESTIMMUNG VON OBERSCHWINGUNGEN IN NIEDER- UND MITTELSPANNUNGSNETZEN

EIN BEITRAG ZUR RECHNERGESTÜTZTEN BESTIMMUNG VON OBERSCHWINGUNGEN IN NIEDER- UND MITTELSPANNUNGSNETZEN EIN BEITRAG ZUR RECHNERGESTÜTZTEN BESTIMMUNG VON OBERSCHWINGUNGEN IN NIEDER- UND MITTELSPANNUNGSNETZEN Dissertation zur Erlangung des akademischen Grades Doktor - Ingenieur vorgelegt der Fakultät für Technische

Mehr

3.3 Das Abtasttheorem

3.3 Das Abtasttheorem 17 3.3 Das Abtasttheorem In der Praxis kennt man von einer zeitabhängigen Funktion f einem Signal meist nur diskret abgetastete Werte fn, mit festem > und ganzzahligem n. Unter welchen Bedingungen kann

Mehr

FOURIERREIHEN. a) Periodische Funktionen. 3) Rechteckschwingung. b) Stückweise stetige Funktionen. Skizze= Sägezahnschwingung

FOURIERREIHEN. a) Periodische Funktionen. 3) Rechteckschwingung. b) Stückweise stetige Funktionen. Skizze= Sägezahnschwingung FOURIERREIHEN 1. Grundlagen a) Periodische Funtionen Beispiele: 1) f( x) = sin( x+ π / 3), T = 2 π /. 2) f( t) = cos( ωt+ ϕ), T = 2 π / ω. 3) Rechtecschwingung, 1< t < f() t =, f( t+ 2) = f() t 1, < t

Mehr

Die Diskrete Fouriertransformation (DFT)

Die Diskrete Fouriertransformation (DFT) Kapitel Die Diskrete Fouriertransformation (DFT). Einleitung Zerlegt man Signale in sinusoidale (oder komplex exponentielle) Komponenten, dann spricht man von der Darstellung der Signale im Frequenzbereich.

Mehr

Einführung in die Signalverarbeitung

Einführung in die Signalverarbeitung Einführung in die Signalverarbeitung Phonetik und Sprachverarbeitung, 2. Fachsemester, Block Sprachtechnologie I Florian Schiel Institut für Phonetik und Sprachverarbeitung, LMU München Signalverarbeitung

Mehr

Filtern, JPEG, MP3. Fourier-Analyse JPEG MP3. Filtern - Wavelet

Filtern, JPEG, MP3. Fourier-Analyse JPEG MP3. Filtern - Wavelet Filtern, JPEG, MP3 Fourier-Analyse JPEG MP3 Filtern - Waelet Filtern Ausgangspunkt: Gegebenes Signal soll -erändert werden (Hifi, Weichzeichner, ) -analysiert werden (EKG Herztöne, ) -komprimiert werden

Mehr

Technische Grundlagen der Informatik Kapitel 10

Technische Grundlagen der Informatik Kapitel 10 Technische Grundlagen der Informatik Kapitel 10 Prof. Dr.-Ing. S. A. Huss Fachbereich Informatik TU Darmstadt S. A. Huss / Folie 10-1 Inhaltsübersicht Digitale Verarbeitung analoger Signale Signale Wert-

Mehr

Kapitel 7. Bildverarbeitung im Frequenzraum

Kapitel 7. Bildverarbeitung im Frequenzraum Kapitel 7 Bildverarbeitung im Frequenzraum Durchführung von Faltungen im Frequenzraum Filterung im Frequenzraum: Tiefpass- und Hochpass-Filter, etc. Bildrestaurierung Notch-Filter: Entfernung periodischer

Mehr

Fourier-Transformation und Signalanalyse

Fourier-Transformation und Signalanalyse Physikalisches Praktikum, Hrsg. W. Schenk, F. Kremer Ergänzungen zum Kapitel Fourier-Transformation und Signalanalyse Methoden der Messtechnik - Signal und Bildverarbeitung Für die Überlassung des Skripts

Mehr

Zufallssignal Stationär (z.b. gleichverteiltes Rauschen) Nicht-stationär (z.b. normalverteiltes Rauschen mit wechselnder Streuung) Deterministisches

Zufallssignal Stationär (z.b. gleichverteiltes Rauschen) Nicht-stationär (z.b. normalverteiltes Rauschen mit wechselnder Streuung) Deterministisches Zufallssignal Stationär (z.b. gleichverteiltes Rauschen) Nicht-stationär (z.b. normalverteiltes Rauschen mit wechselnder Streuung) Deterministisches Signal Periodisch harmonische Schwingung Summe harmonischer

Mehr

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung 34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis

Mehr

1 Einführung. 2 Theoretische Grundlagen. 2.1 Kurzeinführung in MATLAB

1 Einführung. 2 Theoretische Grundlagen. 2.1 Kurzeinführung in MATLAB Versuch: Bildabtastung 1 Einführung Wird bei der Digitalisierung analoger Signale das Abtasttheorem verletzt, treten Aliasing- Effekte auf. Während man die Bandbegrenzung auf die halbe Abtastfrequenz durch

Mehr

Kontinuierliche Fourier-Transformation. Laplace-Transformation

Kontinuierliche Fourier-Transformation. Laplace-Transformation Kontinuierliche Fourier-Transformation. Laplace-Transformation Jörn Loviscach Versionsstand: 16. Juni 2010, 17:56 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu:

Mehr

Verlustbehaftete Kompression. JPEG: Joint Photographic Experts Group

Verlustbehaftete Kompression. JPEG: Joint Photographic Experts Group Verlustbehaftete Kompression JPEG: Joint Photographic Experts Group ITU T8.1 definiert Zusammenarbeit von ITU, IEC, ISO Verfahren zur verlustbehafteten Bildkodierung (auch Verlustloser Modus vorhanden)

Mehr

Als Summendarstellung der komplexen Zahl bezeichnen wir den bekannten Ausdruck

Als Summendarstellung der komplexen Zahl bezeichnen wir den bekannten Ausdruck A.1 MATHEMATISCHE GRUNDLAGEN In diesem Abschnitt werden die mathematischen Grundlagen zusammengestellt, die für die Behandlung von Übertragungssystemen erforderlich sind. Unter anderem sind dies die komplexen

Mehr

Die Schicht unterhalb von GSM/UMTS, DSL, WLAN & DVB

Die Schicht unterhalb von GSM/UMTS, DSL, WLAN & DVB Die Schicht unterhalb von GSM/UMTS, DSL, WLAN & DVB Wie kommen die Bits überhaupt vom Sender zum Empfänger? (und welche Mathematik steckt dahinter) Vergleichende Einblicke in digitale Übertragungsverfahren

Mehr

(Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!)

(Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!) Teil 1: Fragen und Kurzaufgaben (Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!) Frage 1 (6 Punkte) Es wird ein analoges

Mehr

Messtechnik-Praktikum. Spektrumanalyse. Silvio Fuchs & Simon Stützer. c) Berechnen Sie mit FFT (z.b. ORIGIN) das entsprechende Frequenzspektrum.

Messtechnik-Praktikum. Spektrumanalyse. Silvio Fuchs & Simon Stützer. c) Berechnen Sie mit FFT (z.b. ORIGIN) das entsprechende Frequenzspektrum. Messtechnik-Praktikum 10.06.08 Spektrumanalyse Silvio Fuchs & Simon Stützer 1 Augabenstellung 1. a) Bauen Sie die Schaltung für eine Einweggleichrichtung entsprechend Abbildung 1 auf. Benutzen Sie dazu

Mehr

2L: Verfahren der Messtechnik FFT, Triggerung und gedämpfte Schwingung NI LabVIEW - NI-DAQ-Karte

2L: Verfahren der Messtechnik FFT, Triggerung und gedämpfte Schwingung NI LabVIEW - NI-DAQ-Karte Hochschule Merseburg (FH) FB INW Praktikum Virtuelle Instrumentierung 2L: Verfahren der Messtechnik FFT, Triggerung und gedämpfte Schwingung NI LabVIEW - NI-DAQ-Karte National Instruments DAQ-Karte National

Mehr

einige Zusatzfolien für s Seminar

einige Zusatzfolien für s Seminar Signale und Systeme einige Zusatzfolien für s Seminar Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme Fourierreihe reelle Fourierreihe betrachtet wird ein periodisches Zeitsignal u p mit

Mehr

Technische Universität

Technische Universität Technische Universität München Fakultät für Informatik Forschungs- und Lehreinheit Informatik IX Filter im Frequenzraum Proseminar Jakob Külzer Betreuer: Abgabetermin: 16.02.2005 Dipl.-Inform. Heiko Gottschling

Mehr

Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder

Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder Bei der Behandlung reeller elektromagnetischer Felder im Fourierraum ist man mit der Tatsache konfrontiert, dass

Mehr

Die Fourier Transformation und ihre Anwendungen in der Nachrichtentechnik

Die Fourier Transformation und ihre Anwendungen in der Nachrichtentechnik A FT I Anwendungen der Fourier-Transformation Die Fourier Transformation und ihre Anwendungen in der Nachrichtentechnik Die Fourier Transformation und damit der Zusammenhang zwischen Zeit und Frequenzbereich

Mehr

Messung & Darstellung von Schallwellen

Messung & Darstellung von Schallwellen Messung Digitalisierung Darstellung Jochen Trommer jtrommer@uni-leipzig.de Universität Leipzig Institut für Linguistik Phonologie/Morphologie SS 2007 Messung Digitalisierung Darstellung Überblick Messung

Mehr

Broadband EMI Noise Measurement in Time Domain

Broadband EMI Noise Measurement in Time Domain Broadband EMI Noise Measurement in Time Domain Florian Krug, Peter Russer Institute for High-Frequency Engineering Technische Universität München fkrug@ieee.org 1 Inhalt Einführung Time-Domain Electromagnetic

Mehr

Grundlagen der Schwingungslehre

Grundlagen der Schwingungslehre Grundlagen der Schwingungslehre Einührung. Vorgänge, bei denen eine physikalische Größe in estem zeitlichen Abstand ein und denselben Werteverlau auweist, werden als periodisch bezeichnet. Den zeitlichen

Mehr

5. Übung für Übungsgruppen Musterlösung

5. Übung für Übungsgruppen Musterlösung Grundlagenveranstaltung Systemtheorie WS 6/7 (H.S. Stiehl, AB Kognitive Systeme, Department Informatik der Universität Hamburg) 5. Übung für Übungsgruppen Musterlösung (U. Köthe, Department Informatik,

Mehr

355 Messwerterfassung mit Labview

355 Messwerterfassung mit Labview 1. Aufgaben 355 Messwerterfassung mit Labview 1.1 Erarbeiten Sie sich die Grundlagen im mgang mit Labview anhand einer einfachen Aufzeichnung eines Signals. a) Lesen Sie ein sinusförmiges Signal ein und

Mehr

Modulationsverfahren Inhalt

Modulationsverfahren Inhalt Inhalt 1. Allgemeines... 2 2. Übersicht über... 3 5. Amplitudenmodulation... 3 3.1 Zweiseitenbandmodulation... 5 3.2 Einseitenbandmodulation... 5 4. Winkelmodulation... 6 5. Tastmodulation(Digitale Modulation)...

Mehr