SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden:

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden:"

Transkript

1 /5 Fourier-Analyse (periodischer Signale) Grundlagen Ein periodisches, kontinuierliches Signal x(t) der Periodendauer kann als Fourier-Reihe beschrieben werden: wie folgt ( ) = c k x t + e j k 2πf t k= Jeder komplexe Fourier-Koeffizient c k gehört zu einer Frequenz f k, die ein ganzes Vielfaches der sogenannten Grundfrequenz f = / ist: f k = k f. Negative Werte von k werden negativen Frequenzen zugeordnet 2. Die Menge dieser Koeffizienten bilden das Spektrum, die derer Beträge c k das Amplitudenspektrum und die derer Argumente c k das Phasenspektrum des Signals..5 Signal Zeit in ms Amplitudenspektrum Frequenz in Hz Figur Periodisches Signal mit Grundfrequenz f = 2 Hz und (zweiseitiges 3 ) Amplitudenspektrum. Man beachte, dass wegen der alternierenden Symmetrieeigenschaft des Dreiecksignals die Spektrallinien für geradzahlige Vielfache der Grundfrequenz f verschwinden. Das Amplitudenspektrum eines reellen Signals ist gerade, d. h. symmetrisch zur Achse f =, das Phasenspektrum ist ungerade, d. h. symmetrisch zum Koordinatenursprung. [] Führer, Heidemann, Nerreter, Grundgebiete der Elektrotechnik, Band 2, Hanser, bis 9..5, 9.3, 9.3., 9.3.2, 9.4., Tafel S. 298 [2] Martin Meyer, Signalverarbeitung, Vieweg, 998, 2.2, 5.3 [3] Daniel Ch. von Grünigen, Digitale Signalverarbeitung, Fachbuchverlag Leipzig im Carl Hanser Verlag, 2, 2.2., [4] Lothar Papula, Mathematische Formelsammlung, Vieweg 2 Positive und negative Frequenzen entsprechen gegenläufigen Drehzeigern. 3 Das Spektrum wird zweiseitig genannt, weil es auch für negative Frequenzen existiert.

2 Das Bestimmen der Fourier-Koeffizienten für eine gegebene periodische Funktion x(t) heisst Fourier- Analyse. Die Koeffizienten können nach folgender Formel bestimmt werden: c k = x( t)e jk2πf t dt Dieses Integral kann nur für einfache Funktionsverläufe geschlossen gelöst werden. In den meisten Fällen muss es numerisch mittels der diskreten Fourier-Transformation (DFT) approximativ berechnet werden. Die Funktion x(t) muss in diesem Fall in abgetasteter Form vorliegen, d. h. als Zahlenfolge {x k } = {x(kt s )} = {x, x, x 2,, x N } mit k =,,, N. T s ist dabei das Abtastintervall, N die Anzahl der abgetasteten Werte von x(t), die sogenannte Blocklänge. Zur Berechnung der DFT existiert ein effizienter Algorithmus: die schnelle Fourier-Transformation (Fast Fourier Transformation: FFT). Für die (approximative) Berechnung der Fourier-Koeffizienten eines kontinuierlichen und periodischen Signals mit der DFT sind folgende Hinweise und Bedingungen zu beachten: Auch wenn man kontinuierliche Signale prinzipiell nicht zeitdiskret darstellen kann, müssen diese zur numerischen Berechnung durch eine Folge von zeitdiskreten Abtastwerten dargestellt werden. Um dennoch ein dem kontinuierlichen Signal entsprechendes diskretes Signal zu erhalten, sollte der zeitliche Abstand der Abtastwerte (Abtastintervall T s = /f s ) mindestens 2 mal kleiner sein als die Periodendauer der höchsten noch interessierenden Oberwelle des Signals. Ein periodisches Signal kann wegen seiner unendlichen Dauer ebenfalls nicht dargestellt werden. Damit bei endlicher Signaldauer das Signalspektrum dennoch mit dem des periodischen Signals übereinstimmt, muss die Länge des Signals N T s (Fensterlänge, "Messdauer") ein ganzes vielfaches der Periodendauer der Grundschwingung sein. Damit die Matlab-Funktion fft besonders effizient arbeitet, sollte die Anzahl N der Abtastwerte des Signals eine ganzzahlige Potenz von 2 sein: z. B. 2 9 = 52. Beachten Sie, dass die komplexen Fourier-Koeffizienten wie sie die Matlab-Funktion fft berechnet, betragsmässig um die Blocklänge N grösser als die Koeffizienten c k der Fourier-Reihe sind. Die entsprechenden Matlab-Befehle zur Berechnung des Spektrums lauten: % Definition des Signals f=; % Grundfrequenz T=/f; % Grundperiode n=2^5; % Anzahl Abtastungen pro Periode Ts=T/n; % Abtastintervall fs=/ts; % Abtastfrequenz Tp=4*T; % Signaldauer (hier 4 Perioden) N=4*n; % Blocklänge t=(:n-)*ts; % Zeitvektor A=2; % Signalamplitude x=a*square(2*pi*f*t);%signal(z. B. periodisches Rechtecksignal) figure() plot(t,x) axis([ Tp -.2*A.2*A]) % Approximation der Fourier-Koeffizienten durch DFT X=fft(x,N); % DFT (fft: fast fourier transform) ck=x/n; % Approximation der Fourier-Koeffizienten ck=fftshift(ck); % Zentrieren des Spektrums um f= fk=((:n-)-n/2)*fs/n;% diskrete Frequenzwerte für welche die ck berechnet wurden Ak=abs(ck); % Amplitudenspektrum Pk=8*angle(ck)/pi; % Phasenspektrum in Grad figure(2) stem(fk,ak,'.') % zeichnen des diskreten Amplitudenspektrums axis([-fs/2 fs/2.*max(ak)]) 2/5

3 3/5 Die diskrete Fourier-Transformation liefert grundsätzlich ein periodisches Spektrum mit der Abtastfrequenz als frequenzmässige Periodenlänge. Somit kann die DFT die Koeffizienten der Fourier- Reihe prinzipiell nur approximativ liefern. Für den Vergleich mit dem Spektrum der Fourier-Reihe können nur die Frequenzen bis zur halben Abtastfrequenz herangezogen werden. Die Übereinstimmung ist um so besser, je kleiner die Koeffizienten der Fourier-Reihe bei der halben Abtastfrequenz sind.

4 4/5 Aufgaben. Fourier-Analyse (theoretische Vorarbeit) Bestimmen und skizzieren Sie das zweiseitige Fourier-Spektrum (Amplituden- und Phasenspektrum) der periodischen und kontinuierlichen Rechteckpulsfolge: x(t) = τ / τ t k für τ < T τ. k= Periodische Rechteckpulsfolge Zeit t/ (τ = /4) Figur 2 Rechteckpulsfolge der Periodendauer und Pulsbreite τ (τ < ) gemäss der Formel oben Die Pulshöhe beträgt /τ, so dass die Fläche unterhalb eines Pulses beträgt.. Bestimmen Sie die Fourier-Koeffizienten durch Lösen des Integrals c k = x( t)e jk2πf t dt. Allgemeine Herleitung. Benötigte Formeln: sin( α) = e jα e jα, sinc x 2 j ( ) = sin( π x) π x.2 Welchen Einfluss auf das Amplitudenspektrum hat die Verringerung der Pulsbreite τ gegenüber der (festen) Periodendauer (z. B. = und τ = /2, /4 und /8)? Geben Sie die Koordinaten aller markanten Punkte des Amplitudenspektrums sowie von dessen Umhüllenden. Wie sieht das Amplitudenspektrum im Grenzfall aus, wo τ gegen Null geht? Hinweis: Die einzelnen Pulse werden dabei zu Dirac-Stössen, d. h. verschwindend breit und unendlich hoch..3 Untersuchen Sie was sich für die Koeffizienten ändert, falls das Signal zeitlich um eine halbe Periode (d. h. t = /2) verzögert wird. Bestimmen Sie die Koeffizienten des Signals das durch die Differenz aus dem ursprünglichen und dem neuen Signal gebildet wird.

5 5/5 2. Die diskrete Fourier-Transformation (DFT) als Approximation der Fourier-Reihe 2. Bestimmen Sie das Spektrum eines Sinussignals mit der DFT (Matlab-Funktion fft). Überprüfen Sie das Ergebnis mit dem erwarteten Amplituden- und Phasenspektrum. Bemerkung: Es sollte möglich sein, ein den Erwartungen entsprechendes Spektrum zu erhalten 4. Damit stellen Sie sicher, dass das Verfahren, bzw. Ihr Programm richtig funktioniert. Dies ist Voraussetzung für das Bearbeiten der weiteren Aufgaben. 2.2 Bestimmen Sie numerisch das Amplitudenspektrum eines Dreiecksignals (mit derselben Grundfrequenz wie das vorhin getestete Sinussignal). Vergleichen Sie das erhaltene Spektrum mit dem theoretisch erwarteten und überprüfen Sie, ob die Beträge der diskreten Amplituden auch tatsächlich umgekehrt mit dem Quadrat der Frequenz abnehmen. Bestimmen Sie ausserdem den Klirrfaktor des Signals aus den Amplitudenwerten und vergleichen Sie ihn mit dem theoretisch ermittelten Wert. Benötigte Formel für die Reihenentwicklung des Klirrfaktors: = = π 4 4 2n 96 n= ( ) 4 Welche Massnahmen können getroffen werden, um eine bessere Übereinstimmung des numerisch ermittelten mit dem theoretischen Spektrum zu erhalten? 2.3 Bestimmen Sie die Fourier-Spektren der Signale aus den Aufgaben. und.3 (z. B. für = und τ = /4) und vergleichen Sie die Ergebnisse mit den theoretischen Ergebnissen Ihrer Vorarbeit. Bemerkung: Im Fall der Pulsfolge, bestimmt die Pulsbreite die benötigte Abtastfrequenz: Wählen Sie mindestens 2 Abtastwerte innerhalb der Pulsdauer. 4 Sollte dies nicht der Fall sein, so müssen Sie das Einhalten der Hinweise für die Bestimmung der Fourier-Koeffizienten mit der DFT sicherstellen.

Fourier-Reihe und -Spektrum

Fourier-Reihe und -Spektrum SiSy, Fourier-Reihen / Fourier-Reihe und -Spektrum Fourier-Darstellung periodischer Funktionen. Einleitung In vielen technischen Anwendungen sind die zeitlichen Verläufe von Signalen wie z.b. Spannung

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004 4 Signalverarbeitung 4.1! Grundbegriffe! 4.2! Frequenzspektren, Fourier-Transformation! 4.3! Abtasttheorem: Eine zweite Sicht Weiterführende Literatur (z.b.):!! Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation Bildverarbeitung Herbstsemester 2012 Fourier-Transformation 1 Inhalt Fourierreihe Fouriertransformation (FT) Diskrete Fouriertransformation (DFT) DFT in 2D Fourierspektrum interpretieren 2 Lernziele Sie

Mehr

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT)

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Ziele In diesem Versuch lernen Sie zwei Anwendungen der Diskreten Fourier-Transformation in der Realisierung als recheneffiziente schnelle

Mehr

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 4 Fourier-Transformation 3

Mehr

Fourier - Transformation

Fourier - Transformation Fourier - Transformation Kurzversion 2. Sem. Prof. Dr. Karlheinz Blankenbach Hochschule Pforzheim, Tiefenbronner Str. 65 75175 Pforzheim Überblick / Anwendungen / Motivation: Die Fourier-Transformation

Mehr

Fourier- und Laplace- Transformation

Fourier- und Laplace- Transformation Skriptum zur Vorlesung Mathematik für Ingenieure Fourier- und Laplace- Transformation Teil : Fourier-Transformation Prof. Dr.-Ing. Norbert Höptner (nach einer Vorlage von Prof. Dr.-Ing. Torsten Benkner)

Mehr

Allgemeine Beschreibung (1)

Allgemeine Beschreibung (1) Allgemeine Beschreibung (1) Jede periodische Funktion x(t) kann in allen Bereichen, in denen sie stetig ist oder nur endlich viele Sprungstellen aufweist, in eine trigonometrische Reihe entwickelt werden,

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens SS2013 Inhalt Fourier Reihen Sehen wir in 2 Wochen Lösung der lin. Dgln.

Mehr

Technische Beschreibung der akustischen Signalkette

Technische Beschreibung der akustischen Signalkette Technische Beschreibung der akustischen Signalkette Wichtige Aufgabe: Vielfältige Medien Gestaltung akustischer Kommunikationsketten (Sprache, Geräusche, Musik, CD, Radio, mp3,...) Unterschiedlichste Information

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

Longitudinale und transversale Relaxationszeit

Longitudinale und transversale Relaxationszeit Longitudinale und transversale Relaxationszeit Longitudinale Relaxationszeit T 1 (Zeit, die das System benötigt, um nach dem rf- Puls zurück ins Gleichgewicht zu kommen) Transversale Relaxationszeit T

Mehr

Seminar Digitale Signalverarbeitung

Seminar Digitale Signalverarbeitung Universität Koblenz-Landau Institut für integrierte aturwissenschaften Abteilung Physik Dr. Merten Joost Seminar Digitale Signalverarbeitung Thema: Fast Fourier Transformation Praktische Durchführung einer

Mehr

Fourier-Reihe mit komplexer Exponentialfunktion

Fourier-Reihe mit komplexer Exponentialfunktion Fourier-Reihe mit komplexer Exponentialfunktion Jörn Loviscach Versionsstand: 9. Juni 2010, 15:54 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. 1 Überlagung sinusförmiger

Mehr

Das wissen Sie: 6. Welche Möglichkeiten zur Darstellung periodischer Funktionen (Signalen) kennen Sie?

Das wissen Sie: 6. Welche Möglichkeiten zur Darstellung periodischer Funktionen (Signalen) kennen Sie? Das wissen Sie: 1. Wann ist eine Funktion (Signal) gerade, ungerade, harmonisch, periodisch (Kombinationsbeispiele)? 2. Wie lassen sich harmonische Schwingungen mathematisch beschreiben und welche Beziehungen

Mehr

Vom Zeit- zum Spektralbereich: Fourier-Analyse

Vom Zeit- zum Spektralbereich: Fourier-Analyse Vom Zeit- zum Spektralbereich: Fourier-Analyse Ergebnis der Analyse Zerlegung eines beliebigen periodischen Signals in einem festen Zeitfenster in eine Summe von Sinoidalschwingungen Ermittlung der Amplituden

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der 1. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Zeitdiskretes Signal Quantisiertes Signal Digitales Signal Kontinuierliches System Abtastsystem

Mehr

Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT)

Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT) Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT) Inhaltsverzeichnis 1 Allgemeines Filter... 2 2 Filter auf dem Signalprozessor... 2 3 Zusammenhang Zeitsignal und Frequenzspektrum...

Mehr

4. Übung für Übungsgruppen Musterlösung

4. Übung für Übungsgruppen Musterlösung Grundlagenveranstaltung Systemtheorie WS 6/7 (H.S. Stiehl, AB Kognitive Systeme, FB Informatik der Universität Hamburg). Übung für Übungsgruppen Musterlösung (N. Stein, Institut für Angewandte Physik,

Mehr

Einführung in die Signalverarbeitung

Einführung in die Signalverarbeitung Einführung in die Signalverarbeitung Phonetik und Sprachverarbeitung, 2. Fachsemester, Block Sprachtechnologie I Florian Schiel Institut für Phonetik und Sprachverarbeitung, LMU München Signalverarbeitung

Mehr

FH Jena Prüfungsaufgaben - Master Prof. Giesecke FB ET/IT Digitale Signalverarbeitung SS 2012

FH Jena Prüfungsaufgaben - Master Prof. Giesecke FB ET/IT Digitale Signalverarbeitung SS 2012 FB ET/IT Digitale Signalverarbeitung SS 0 Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner ein mathematisches Formelwerk eine selbsterstellte Formelsammlung Wichtige Hinweise:

Mehr

Grundlagen der Schwingungslehre

Grundlagen der Schwingungslehre Grundlagen der Schwingungslehre Einührung. Vorgänge, bei denen eine physikalische Größe in estem zeitlichen Abstand ein und denselben Werteverlau auweist, werden als periodisch bezeichnet. Den zeitlichen

Mehr

Lösungsblatt 2 Signalverarbeitung und Klassifikation

Lösungsblatt 2 Signalverarbeitung und Klassifikation Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 06 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Lösungsblatt Signalverarbeitung und Klassifikation Aufgabe : Faltung

Mehr

f(t) = a 2 + darstellen lasst Periodische Funktionen.

f(t) = a 2 + darstellen lasst Periodische Funktionen. 7. Fourier-Reihen Viele Prozesse der Ingenieur- und Naturwissenschaften verlaufen periodisch oder annahernd periodisch, wie die Schwingungen einer Saite, Spannungs- und Stromverlaufe in Wechselstromkreisen

Mehr

Argumente für die diskrete Realisierung der Fourierintegrale

Argumente für die diskrete Realisierung der Fourierintegrale Argumente für die diskrete Realisierung der Fourierintegrale Die Fouriertransformation gemäß der Beschreibung in Kapitel 3.1 weist aufgrund der unbegrenzten Ausdehnung des Integrationsintervalls eine unendlich

Mehr

3.3 Das Abtasttheorem

3.3 Das Abtasttheorem 17 3.3 Das Abtasttheorem In der Praxis kennt man von einer zeitabhängigen Funktion f einem Signal meist nur diskret abgetastete Werte fn, mit festem > und ganzzahligem n. Unter welchen Bedingungen kann

Mehr

Signale und Systeme I

Signale und Systeme I FACULTY OF ENGNEERING CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITAL SIGNAL PROCESSING AND SYSTEM THEORY DSS Signale und Systeme I Musterlösung zur Modulklausur WS 010/011 Prüfer: Prof. Dr.-Ing. Gerhard

Mehr

einige Zusatzfolien für s Seminar

einige Zusatzfolien für s Seminar Signale und Systeme einige Zusatzfolien für s Seminar Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme Fourierreihe reelle Fourierreihe betrachtet wird ein periodisches Zeitsignal u p mit

Mehr

Signale und Systeme Ergänzungen zu den Spektraltransformationen

Signale und Systeme Ergänzungen zu den Spektraltransformationen Signale und Systeme Ergänzungen zu den Spektraltransformationen Gerhard Schmidt Christian-Albrechts-Universität zu Kiel Technische Faculty of Engineering Fakultät Elektrotechnik Institute of Electrical

Mehr

Messung & Darstellung von Schallwellen

Messung & Darstellung von Schallwellen Messung Digitalisierung Darstellung Jochen Trommer jtrommer@uni-leipzig.de Universität Leipzig Institut für Linguistik Phonologie/Morphologie SS 2007 Messung Digitalisierung Darstellung Überblick Messung

Mehr

7 Fourier-Transformation

7 Fourier-Transformation 7 Fourier-Transformation Ausgangspunkt: Die bereits bekannte Fourier-Reihenentwicklung einer T-periodischen, stückweise stetig differenzierbaren Funktion f T : R R, f T (t) = k= γ k e ikωt mit Frequenz

Mehr

Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung

Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung 28. September 2016 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung Aufgabe 1. Die nachfolgende Grafik stellt das Oszillogramm zweier sinusförmiger Spannungen

Mehr

Kapitel 3: DFT und FFT

Kapitel 3: DFT und FFT ZHAW, DSV1, FS2009, Rumc, 3-1 Inhaltsverzeichnis Kapitel 3 DFT und FFT 3.1. EINLEITUNG... 1 3.2. DISKRETE FOURIERTRANSFORMATION (DFT)... 2 3.3. EIGENSCHAFTEN DER DFT... 2 3.4. VERWANDTSCHAFT DER DFT MIT

Mehr

Biosignalverarbeitung (Schuster)

Biosignalverarbeitung (Schuster) Biosignalverarbeitung (Schuster) 9. FOURIER - TRANSFORMATION: 4 Ausprägungen der Transformation: Zeitbereich Frequenzbereich Laplace-Transformation Fourier-Transformation kontinuierlicher Signale (FT,

Mehr

(Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!)

(Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!) Teil 1: Fragen und Kurzaufgaben (Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!) Frage 1 (6 Punkte) Es wird ein analoges

Mehr

Technik der Fourier-Transformation

Technik der Fourier-Transformation Was ist Fourier-Transformation? Fourier- Transformation Zeitabhängiges Signal in s Frequenzabhängiges Signal in 1/s Wozu braucht man das? Wie macht man das? k = 0 Fourier- Reihe f ( t) = Ak cos( ωkt) +

Mehr

Signale und Systeme I

Signale und Systeme I TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Signale und Systeme I Formelsammlung v.5 Inhaltsverzeichnis Mathematische Formeln. Trigonometrische

Mehr

Übung 2: Spektrum periodischer Signale

Übung 2: Spektrum periodischer Signale ZHAW, SiSy, Rumc, Übung : Spektrum periodischer Signale Augabe Verschiedene Darstellungen der Fourierreihe. Betrachten Sie das periodische Signal s(t) = + sin(π t). a) Bestimmen Sie die A k - und B k -Koeizienten

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d z + c d z + c uk d + + yk z d + c d z + c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme Übungsaufgaben Manfred Strohrmann Urban Brunner Inhalt Übungsaufgaben - Signalabtastung und Rekonstruktion...

Mehr

Kontinuierliche Fourier-Transformation. Laplace-Transformation

Kontinuierliche Fourier-Transformation. Laplace-Transformation Kontinuierliche Fourier-Transformation. Laplace-Transformation Jörn Loviscach Versionsstand: 16. Juni 2010, 17:56 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu:

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 29.01.2009 Numerische Methoden und Algorithmen in der Physik Hartmut Stadie 1/ 18 Einführung Fourier-Transformation

Mehr

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben.

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben. Modellfall Anwendungen: Fragen: Digitalisierung / digitale Darstellung von Funktionen, insbesondere für Ton- und Bilddaten Digitale Frequenzfilter Datenkompression: Abspeichern der unteren Frequenzen Lösung

Mehr

Frequenzanalyse. Der Abstand der diskreten Frequenzlinien ist der Kehrwert der Periodendauer:

Frequenzanalyse. Der Abstand der diskreten Frequenzlinien ist der Kehrwert der Periodendauer: WS 0 Fourier-Reihe: Jede einigrermaßen gutartige 1 periodishe reelle Zeitfuntion x(t) ann mittels einer Fourier-Reihe dargestellt werden als eine Summe omplexer Amplituden (Fourier-Synthese): xt () e n

Mehr

Diese Funktion ist mein Typ!

Diese Funktion ist mein Typ! Diese Funktion ist mein Typ! Überblick über die wichtigsten Funktionstypen der 10.Jgst.: Lineare Funktionen Quadratische Funktionen Ganzrationale Funktionen Gebrochen-rationale Funktionen Trigonometrische

Mehr

Mathematik für Informatik 3

Mathematik für Informatik 3 Mathematik für Informatik 3 - ANALYSIS - Folgen, Reihen und Funktionen - Funktionen mehrerer Veränderlicher - Extremwertaufgaben - Normen und Approximationen - STATISTIK - WAHRSCHEINLICHKEITSRECHNUNG Literaturempfehlungen:

Mehr

Einführung in die Signalverarbeitung

Einführung in die Signalverarbeitung Einführung in die Signalverarbeitung Phonetik und Sprachverarbeitung, 2. Fachsemester, Block Sprachtechnologie I Florian Schiel Institut für Phonetik und Sprachverarbeitung, LMU München Signalverarbeitung

Mehr

Titel: Darstellung und Analyse periodischer Signale Titel-Kürzel: FR

Titel: Darstellung und Analyse periodischer Signale Titel-Kürzel: FR itel: Darstellung und Analyse periodischer Signale itel-kürzel: FR Autoren: Hablützel Heinzpeter, hph; Gysel Ulrich, gys Koautoren: Markendorf Ralf, mar; Lekkas Georgios, lks Version v.: 6. Oktober 5 Version

Mehr

18 Kontinuierliche Fourier-Transformation. Laplace-Transformation

18 Kontinuierliche Fourier-Transformation. Laplace-Transformation 18 Kontinuierliche Fourier-Transformation. Laplace-Transformation Jörn Loviscach Versionsstand: 28. März 2015, 21:30 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos:

Mehr

Menge der irrationalen Zahlen C = {z z = a + bi; a, b R, i 2 = 1} Menge der komplexen Zahlen R C Somit ergibt sich: N N Z Q R C

Menge der irrationalen Zahlen C = {z z = a + bi; a, b R, i 2 = 1} Menge der komplexen Zahlen R C Somit ergibt sich: N N Z Q R C 1 Komplexe Zahlen 1.1 Übersicht N = {1, 2, 3,... } Menge der natürlichen Zahlen ohne 0 N = {0, 1, 2, 3,... } Menge der natürlichen Zahlen mit 0 N N Z = {..., 2, 1, 0, 1, 2,... } Menge der ganzen Zahlen

Mehr

Teil III. Fourieranalysis

Teil III. Fourieranalysis Teil III Fourieranalysis 3 / 3 Fourierreihen Ziel: Zerlegung einer gegebenen Funktion in Schwingungen Konkret: f : (, L) R gegebene Funktion Gesucht: Darstellung der Form ( f (x) = a + a n cos ( n L x)

Mehr

Dipl.-Ing. (TU) Jürgen Wemheuer

Dipl.-Ing. (TU) Jürgen Wemheuer Dipl.-Ing. (TU) Jürgen Wemheuer wemheuer@ewla.de http://ewla.de 1 Statt kontinuierlicher (Amplituden-)Werte einer stetigen Funktion sind nur diskontinuierliche, diskrete Werte möglich (begrenzter Wertevorrat):

Mehr

Inhaltsübersicht. Deltafunktion Gammafunktion Fehlerfunktion. Kapitel 13: Spezielle Funktionen

Inhaltsübersicht. Deltafunktion Gammafunktion Fehlerfunktion. Kapitel 13: Spezielle Funktionen Inhaltsübersicht Kapitel 13: Spezielle Funktionen Deltafunktion Gammafunktion Fehlerfunktion Notizen zur Vorlesung Mathematik für Materialwissenschaftler 2 1 Die Bezeichnung Delta-Funktion ist streng genommen

Mehr

Reell. u(t) Komplex u(t), Zeitabhängig Zeitunabhängig. u(t)e jωt. Reell Û. Elektrische Größe. Spitzenwert. Komplex Û. Reell U. Effektivwert.

Reell. u(t) Komplex u(t), Zeitabhängig Zeitunabhängig. u(t)e jωt. Reell Û. Elektrische Größe. Spitzenwert. Komplex Û. Reell U. Effektivwert. Aufgaben Reell u(t) Elektrische Größe Zeitabhängig Zeitunabhängig Spitzenwert Effektivwert Komplex u(t), Reell Û Komplex Û Reell U Komplex U u(t)e jωt Institut für Technische Elektronik, RWTH - Aachen

Mehr

Höhere Mathematik I/II

Höhere Mathematik I/II Markus Stroppel Höhere Mathematik I/II Z. Zusätze. Z.. Skalarprodukte in Funktionenräumen. Wir wollen an einigen Beispielen zeigen, dass es nützlich sein kann, Skalarprodukte auch in ganz allgemeinen (reellen)

Mehr

Lesen von Sonagrammen I: Grundlagen. Uwe Reichel IPS, LMU München 16. November 2007

Lesen von Sonagrammen I: Grundlagen. Uwe Reichel IPS, LMU München 16. November 2007 Lesen von Sonagrammen I: Grundlagen Uwe Reichel IPS, LMU München reichelu@phonetik.uni-muenchen.de 16. November 2007 Inhalt Das Sonagramm: Allgemeines Gewinnung des Sonagramms Zeitsignal Spektrum Spektrogramm

Mehr

Spektralanalyse

Spektralanalyse 4. Spektralanalyse Die Spektralanalyse ermittelt, welche Beiträge die einzelnen Frequenzen zu einem Signal liefern. Je nach Art des Zeitsignals wird der Frequenzgehalt durch die Fourier-Transformation,

Mehr

Diskrete Fourier-Transformation

Diskrete Fourier-Transformation Universität Koblenz-Landau Institut für integrierte Naturwissenschaften Abteilung Physik Dozent: Dr. Merten Joost Seminar Digitale Signalverarbeitumg im Sommersemester 2005 Diskrete Fourier-Transformation

Mehr

Digital Signal Processing

Digital Signal Processing - for Master Study by TFH Bochum - Analog Signal I OO O I I I O O O Digital Signal Seite 1 Zielsetzung der Signalverarbeitung Analyse: H(t), H(f) Modellieren y(t) {} Physikalische Größe und Prozesse Synthese

Mehr

Diskrete und Schnelle Fourier Transformation. Patrick Arenz

Diskrete und Schnelle Fourier Transformation. Patrick Arenz Diskrete und Schnelle Fourier Transformation Patrick Arenz 7. Januar 005 1 Diskrete Fourier Transformation Dieses Kapitel erläutert einige Merkmale der Diskreten Fourier Transformation DFT), der Schnellen

Mehr

Skriptum zur 4. Laborübung. Spektren

Skriptum zur 4. Laborübung. Spektren Elektrotechnische Grundlagen der Informatik (LU 182.085) Skriptum zur 4. Laborübung Spektren Christof Pitter Wolfgang Puffitsch Technische Universität Wien Institut für Technische Informatik (182) 1040,

Mehr

8 Euklidische Vektorräume und Fourierreihen

8 Euklidische Vektorräume und Fourierreihen Mathematik für Ingenieure II, SS 9 Dienstag 7.7 $Id: fourier.te,v 1.6 9/7/7 13:: hk Ep $ $Id: diff.te,v 1. 9/7/7 16:13:53 hk Ep $ 8 Euklidische Vektorräume und Fourierreihen 8.4 Anwendungen auf Differentialgleichungen

Mehr

(Fast) Fourier Transformation und ihre Anwendungen

(Fast) Fourier Transformation und ihre Anwendungen (Fast) Fourier Transformation und ihre Anwendungen Johannes Lülff Universität Münster 14.01.2009 Definition Fouriertransformation F (ω) = F [f(t)] (ω) := 1 2π dt f(t)e iωt Fouriersynthese f(t) = F 1 [F

Mehr

4 Erzeugung von Tonsignalen

4 Erzeugung von Tonsignalen 4 Erzeugung von Tonsignalen 4.1 Etwas Theorie: Sample, Samplefrequenz, Abtasten Zeit in ms u1(t) 0 0 1 3,09 2 5,88 3 8,09 4 9,51 5 10 6 9,51 7 8,09 8 5,88 9 3,09 10 0 11-3,09 12-5,88 13-8,09 14-9,51 15-10

Mehr

f = T φ ist negative für nacheilende Funktionen φ ist positive für voreilende Funktionen 2 Signale im Zeitbereich 2.1 Harmonische Funktionen

f = T φ ist negative für nacheilende Funktionen φ ist positive für voreilende Funktionen 2 Signale im Zeitbereich 2.1 Harmonische Funktionen 2 Signale im Zeitbereich 2.1 Harmonische Funktionen = Xˆ sin( ω t) 1 f = T Einheiten: [ f ] = Hz ω = 2 π -1 [ ω] = s f mit Phasenverschiebung (hier: nacheilend) : = Xˆ sin( ω t - ϕ) φ ist negative für

Mehr

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ): Komplexe Zahlen Definition 1. Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen (a, b). Wir nennen a den Realteil von z und b den Imaginärteil von z, geschrieben a = Re z, b = Im z. Komplexe

Mehr

MATLAB Kurs 2010 Teil 2 Eine Einführung in die Frequenzanalyse via MATLAB

MATLAB Kurs 2010 Teil 2 Eine Einführung in die Frequenzanalyse via MATLAB MATLAB Kurs 2010 Teil 2 Eine Einführung in die via MATLAB 26.11.2010 & 03.12.2010 nhaltsverzeichnis 1 2 3 Ziele Kurze Einführung in die -Analyse Ziele Kurze Einführung in die -Analyse MATLAB Routinen für

Mehr

Spektra von periodischen Signalen. Resonanz. Jonathan Harrington

Spektra von periodischen Signalen. Resonanz. Jonathan Harrington Spektra von periodischen Signalen. Resonanz. Jonathan Harrington Spektrum von einem Zeitsignal Zeitsignal 1. Das Zeitsignal wird durch eine Fourier- Analyse in Sinusoiden zerlegt 2. Spektrum: die Abbildung

Mehr

Allgemeine Form der Fourierreihe einer zwei- -periodischen, stetigen Funktion:

Allgemeine Form der Fourierreihe einer zwei- -periodischen, stetigen Funktion: Einführung Eine Funktion mittels trigonometrischer Funktionen darzustellen ist das Ziel bei Fourierreihenentwicklung. Als Fourierreihe einer periodischen Funktion f, die abschnittsweise stetig ist, bezeichnet

Mehr

Elektrotechnik-Grundlagen Teil 2 Messtechnik

Elektrotechnik-Grundlagen Teil 2 Messtechnik Version 1.0 2005 Christoph Neuß Inhalt 1. ZIEL DER VORLESUNG...3 2. ALLGEMEINE HINWEISE ZU MESSAUFBAUTEN...3 3. MESSUNG ELEMENTARER GRÖßEN...3 3.1 GLEICHSTROMMESSUNG...3 3.2 WECHSELSTROMMESSUNG...4 4.

Mehr

Mathematische Erfrischungen III - Vektoren und Matrizen

Mathematische Erfrischungen III - Vektoren und Matrizen Signalverarbeitung und Musikalische Akustik - MuWi UHH WS 06/07 Mathematische Erfrischungen III - Vektoren und Matrizen Universität Hamburg Vektoren entstanden aus dem Wunsch, u.a. Bewegungen, Verschiebungen

Mehr

Signale und Systeme. A1 A2 A3 Summe

Signale und Systeme. A1 A2 A3 Summe Signale und Systeme - Prof. Dr.-Ing. Thomas Sikora - Name:............................... Vorname:.......................... Matr.Nr:.............................. Ergebnis im Web mit verkürzter Matr.Nr?

Mehr

Arbeitsblatt 4: Kurvendiskussion - Von Skizzen zu Extremstellen-Bedingungen

Arbeitsblatt 4: Kurvendiskussion - Von Skizzen zu Extremstellen-Bedingungen Arbeitsblatt 4: Kurvendiskussion - Von Skizzen zu Etremstellen-Bedingungen Häufig sind Ableitungsfunktionsterme leichter zu handhaben als die Terme der Ausgangsfunktonen, weil sie niedrigere Eponenten

Mehr

Merkmale von Bildregionen, Einführung in Spektraltechniken

Merkmale von Bildregionen, Einführung in Spektraltechniken Merkmale von Bildregionen, Einführung in Spektraltechniken Industrielle Bildverarbeitung, Vorlesung No. 10 1 M. O. Franz 12.12.2007 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Burger

Mehr

3.2. Polarkoordinaten

3.2. Polarkoordinaten 3.2. Polarkoordinaten Die geometrische Bedeutung der komplexen Multiplikation versteht man besser durch die Einführung von Polarkoordinaten. Der Betrag einer komplexen Zahl z x + i y ist r: z x 2 + y 2.

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Speicherbedarf und Kompression 2.3 Digitalisierung Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien

Mehr

Zufallssignal Stationär (z.b. gleichverteiltes Rauschen) Nicht-stationär (z.b. normalverteiltes Rauschen mit wechselnder Streuung) Deterministisches

Zufallssignal Stationär (z.b. gleichverteiltes Rauschen) Nicht-stationär (z.b. normalverteiltes Rauschen mit wechselnder Streuung) Deterministisches Zufallssignal Stationär (z.b. gleichverteiltes Rauschen) Nicht-stationär (z.b. normalverteiltes Rauschen mit wechselnder Streuung) Deterministisches Signal Periodisch harmonische Schwingung Summe harmonischer

Mehr

Lösung 04 Klassische Theoretische Physik I WS 15/16. c n = 1 T. c n,u e inωt + c n,u e inωt] c n e inωt = c 0 +

Lösung 04 Klassische Theoretische Physik I WS 15/16. c n = 1 T. c n,u e inωt + c n,u e inωt] c n e inωt = c 0 + Karlsruher Institut für Technologie Institut für theoretische Festkörperphysik www.tfp.kit.edu Lösung 4 Klassische Theoretische Physik I WS 5/6 Prof. Dr. G. Schön 2 Punkte Sebastian Zanker, Daniel Mendler

Mehr

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung 34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis

Mehr

Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren. Man nennt die Untersuchung von Funktionen auch Kurvendiskussion.

Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren. Man nennt die Untersuchung von Funktionen auch Kurvendiskussion. Tutorium Mathe 1 MT I Funktionen: Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren Man nennt die Untersuchung von Funktionen auch Kurvendiskussion 1 Definitionsbereich/Wertebereich

Mehr

Einführung in die Physik I. Schwingungen und Wellen 1

Einführung in die Physik I. Schwingungen und Wellen 1 Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten

Mehr

Als Summendarstellung der komplexen Zahl bezeichnen wir den bekannten Ausdruck

Als Summendarstellung der komplexen Zahl bezeichnen wir den bekannten Ausdruck A.1 MATHEMATISCHE GRUNDLAGEN In diesem Abschnitt werden die mathematischen Grundlagen zusammengestellt, die für die Behandlung von Übertragungssystemen erforderlich sind. Unter anderem sind dies die komplexen

Mehr

1 Autokorrelation, Leistung und Wahrscheinlichkeitsdichtefunktion eines Sinussignals

1 Autokorrelation, Leistung und Wahrscheinlichkeitsdichtefunktion eines Sinussignals Audiotechnik II Digitale Audiotechnik: 2. utorium Prof. Dr. Stefan Weinzierl 5. November 213 Musterlösung: 5. November 213, 18:25 1 Autokorrelation, Leistung und Wahrscheinlichkeitsdichtefunktion eines

Mehr

Anharmonische Schwingungen / Gekoppelte Pendel

Anharmonische Schwingungen / Gekoppelte Pendel Anharmonische Schwingungen / Gekoppelte Pendel Die Charakterisierung periodischer Vorgänge mit Hilfe der Fourieranalyse wird am Beispiel eines physikalischen Pendels, zweier gekoppelten Pendel sowie elektrischer

Mehr

Mathematik Name: Nr.4 K1 Punkte: /30 Note: Schnitt:

Mathematik Name: Nr.4 K1 Punkte: /30 Note: Schnitt: K Punkte: / Note: Schnitt: 9.5.6 Pflichtteil (etwa 4 min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der GTR und die Formalsammlung verwendet werden

Mehr

4 Erzeugung von Tonsignalen

4 Erzeugung von Tonsignalen 4 Erzeugung von Tonsignalen 4.1 Etwas Theorie: Sample, Samplefrequenz, Abtasten Zeit in ms u1(t) 0 0 1 3,09 2 5,88 3 8,09 4 9,51 5 10 6 9,51 7 8,09 8 5,88 9 3,09 10 0 11-3,09 12-5,88 13-8,09 14-9,51 15-10

Mehr

SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Übung 8. Laborprotokoll SSY. Diskrete Systeme II: Stabilitätsbetrachtungen und Systemantwort

SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Übung 8. Laborprotokoll SSY. Diskrete Systeme II: Stabilitätsbetrachtungen und Systemantwort SSYLB SS6 Daniel Schrenk, Andreas Unterweger Übung 8 Laborprotokoll SSY Diskrete Systeme II: Stabilitätsbetrachtungen und Systemantwort Daniel Schrenk, Andreas Unterweger, ITS 4 SSYLB SS6 Daniel Schrenk,

Mehr

FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK

FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK Sommersemester 006 Zahl der Blätter: 5 Blatt 1 s. unten Hilfsmittel: Literatur, Manuskript, keine Taschenrechner und sonstige elektronische Rechner Zeit:

Mehr

Fourierreihen periodischer Funktionen

Fourierreihen periodischer Funktionen Fourierreihen periodischer Funktionen periodische Funktion: (3.1) Fourierkoeffizienten und (3.2) (3.3) Fourier-Reihenentwicklungen Cosinus-Reihe: (3.4) (3.5) Exponentialreihe: (3.6) (3.7-3.8) Bestimmung

Mehr

2 Harmonische Bewegung und Fourier-Analyse periodischer Schwingungen

2 Harmonische Bewegung und Fourier-Analyse periodischer Schwingungen 2 Harmonische Bewegung und Fourier-Analyse periodischer Schwingungen 2.1 Darstellung und Eigenschaften harmonischer Schwingungen Wegen der elementaren Bedeutung der harmonischen Funktionen werden sowohl

Mehr

Zusammenfassung : Fourier-Reihen

Zusammenfassung : Fourier-Reihen Zusammenfassung : Fourier-Reihen Theorem : Jede (nicht-pathologische) periodische Funktion läßt sich schreiben als "Fourier-Reihe" der Form: Vorzeichen ist Konvention, in Mathe : + Fourier-Transformation

Mehr

Wärmeleitungsgleichung,

Wärmeleitungsgleichung, Fachbereich Mathematik der Universität Hamburg SoSe 2015 Dr. Hanna Peywand Kiani Wärmeleitungsgleichung, 05.06.2015 Die ins Netz gestellten Kopien der Anleitungsfolien sollen nur die Mitarbeit während

Mehr

Adaptive Systeme. Sommersemester Prof. Dr. -Ing. Heinz-Georg Fehn. Prof. Dr. rer. nat. Nikolaus Wulff

Adaptive Systeme. Sommersemester Prof. Dr. -Ing. Heinz-Georg Fehn. Prof. Dr. rer. nat. Nikolaus Wulff Adaptive Systeme Sommersemester 2015 Prof. Dr. -Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff 1 Adaptive Systeme Adaptives System: ein System, das

Mehr

Musterlösungen zu Blatt 15, Analysis I

Musterlösungen zu Blatt 15, Analysis I Musterlösungen zu Blatt 5, Analysis I WS 3/4 Inhaltsverzeichnis Aufgabe 85: Konvergenzradien Aufgabe 86: Approimation von ep() durch Polynome Aufgabe 87: Taylorreihen von cos 3 und sin Aufgabe 88: Differenzenquotienten

Mehr

Bildverarbeitung: Fourier-Transformation. D. Schlesinger () BV: Fourier-Transformation 1 / 16

Bildverarbeitung: Fourier-Transformation. D. Schlesinger () BV: Fourier-Transformation 1 / 16 Bildverarbeitung: Fourier-Transformation D. Schlesinger () BV: Fourier-Transformation 1 / 16 Allgemeines Bilder sind keine Vektoren. Bilder sind Funktionen x : D C (Menge der Pixel in die Menge der Farbwerte).

Mehr

Filter und Schwingkreise

Filter und Schwingkreise FH-Pforzheim Studiengang Elektrotechnik Labor Elektrotechnik Laborübung 5: Filter und Schwingkreise 28..2000 Sven Bangha Martin Steppuhn Inhalt. Wechselstromlehre Seite 2.2 Eigenschaften von R, L und C

Mehr

Funktion; trigonometrische Reihen; trigonometrische Polynome; gliedweise Integration; Integration und Grenzübergang; Fourier-

Funktion; trigonometrische Reihen; trigonometrische Polynome; gliedweise Integration; Integration und Grenzübergang; Fourier- Kapitel 26 Fourier-Reihen 26.1 Einführung (Spektrum; harmonische Analyse; Periode einer Funktion; trigonometrische Reihen; trigonometrische Polynome; gliedweise Integration; Integration und Grenzübergang;

Mehr

Primzahlen Darstellung als harmonische Schwingung

Primzahlen Darstellung als harmonische Schwingung Primzahlen Darstellung als harmonische Schwingung Die natürliche Sinusschwingung wird hier in Zusammenhang mit der Zahlentheorie gebracht um einen weiteren theoretischen Ansatz für die Untersuchung der

Mehr

Vorlesung Mathematik 2 für Ingenieure (Sommersemester 2016)

Vorlesung Mathematik 2 für Ingenieure (Sommersemester 2016) 1 Vorlesung Mathematik 2 für Ingenieure (Sommersemester 216) Kapitel 11: Potenzreihen und Fourier-Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.

Mehr

Trigonometrische Funktionen

Trigonometrische Funktionen Trigonometrische Funktionen. Gegeben ist die Funktion f() = (sin( π )) Ihr Graph sei K. a) Skizzieren Sie K im Intervall [0,]. Geben Sie die Periode von f an. Geben Sie alle Hoch- und Tiefpunkte von K

Mehr

cos(kx) sin(nx)dx =?

cos(kx) sin(nx)dx =? 3.5 Fourierreihen 3.5.1 Vorbemerkungen cos(kx) sin(nx)dx =? cos gerade Funktion x cos(kx) gerade Funktion sin ungerade Funktion x sin(nx) ungerade Funktion x cos(kx) sin(nx) ungerade Funktion Weil [, π]

Mehr