Zusammenfassung der 1. Vorlesung
|
|
- Erna Adenauer
- vor 1 Jahren
- Abrufe
Transkript
1 Zusammenfassung der 1. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Zeitdiskretes Signal Quantisiertes Signal Digitales Signal Kontinuierliches System Abtastsystem Diskretes System Auflösung der der A/D- Umsetzer der der MicroAutoBox Schreibweise diskreter Signale
2 Zusammenfassung der 1. Vorlesung Elementare diskrete Signale Einheitsimpuls, Impulsfolge Einheitssprung, Sprungfolge Energie- und Leistungssignale Eigenschaften diskreter Systeme Linearität, t, Zeitinvarianz,, Kausalität Gewichtsfolge und Faltungssummation Differenzengleichung eines PT 1 -Systems
3 Fourier-Analyse + + = = Zerlegung periodischer Funktionen in in eine Reihe harmonischer Funktionen. Bestimmung und und Bedeutung des des Amplitudenspektrums eines Signals Bedeutung in in den den Bereichen Signalanalyse Schwingungstechnik Akustik
4 Fourier-Reihe Eine Eine periodische Funktion kann in in eine eine Funktionenreihe aus aus Sinus- und und Kosinusfunktionen zerlegt werden. reelle Koeffizienten Reelle Fourier-Reihe a 0 f(t) = + ancos(nω 0t) + bnsin(nω0t) 2 n= 1 [ ] Komplexe Fourier-Reihe f(t) = n= ce n jnω t 0 i.a. komplex Betrag-Phasen Phasen-Darstellung Beispiel: Rechtecksignal f(t) = A + A sin(nω t + ϕ ) 0 n 0 n n= 1 reell
5 Fourier-Transformation Fourier-Transformation versus Laplace-Transformation s = σ + jω Die Die Fourier-Transformation ist ist wie wie die die Laplace- Transformation eine eine Integraltransformation. Für Für r Funktionen f(t) f(t) mit mit f(t) f(t) = 0 für für t< t< 0 entspricht die die Laplacetransformierte von von f(t) f(t) der der Fouriertransformierten von von f(t)e f(t)e -σ -σt t.. Bereits einfache Funktionen wie wie z.b. z.b. die die Sprungfunktion 1(t) 1(t) erfüllen die die Konvergenzbedingung der der Fourier- Transformation nicht. Die Die Fourier-Transformation ist ist besser für ffür r die die Analyse von von Signalen geeignet. Die Die Laplace-Transformation ist ist besser für ffür r die die Analyse und und die die Beschreibung von von Systemen geeignet.
6 Fourier-Transformation (2)
7 Spektrum eines kontinuierlichen Signals Was ist ist das Spektrum eines kontinuierlichen Signals? Das Das Spektrum F(jω) ist ist die die Fourier-Transformierte der der Zeitfunktion f(t). f(t). Das Das Spektrum gibt gibt an, an, welche Frequenzen in in einem Signal vorkommen und und welches Gewicht sie sie haben. Einem periodischen Signal kann über die die Fourier- Reihenentwicklung ein ein diskretes Amplitudenspektrum zugeordnet werden. Das Das Spektrum (Amplitudendichte,, Phase) eines nichtperiodischen Signals ist ist kontinuierlich.
8 Spektrum diskreter Signale Darstellung eines zeitdiskreten Signals mit mit Hilfe einer Folge von von Deltaimpulsen: f*(t) f(t) f(2t) f(t) T 2T 3T t Ersetzen der der Dirac-Impulsfolge durch die die komplexe Fourier-Reihe: ω = A 2π T
9 Fourier-Reihe einer periodischen Folge von Deltaimpulsen f(t) = δ k= (t kt) 1 f(t) Gesucht: Komplexe Fourier-Reihe f(t) = δ(t kt) = ce ν k= ν= jνω t 0-3T -2T -T T 2T 3T ω = 0 2π T 1 jνω0t Fourier-Koeffizienten: c ν = δ(t kt)e dt T T 2 T k= 2 T 2 1 = δ(t) d T T 2 jνω0t e t
10 Fourier-Reihe einer periodischen Folge von Deltaimpulsen (2) Aus Aus der der Ausblendeigenschaft des des Deltaimpulses folgt: c ν T 2 1 = δ T T 2 jνω0t (t)e dt = 1 e T jνω 0 0 = 1 T Fourier-Reihe der Folge von Deltaimpulsen: δ(t kt) = k= 1 T ν= e jνω t 0
11 Spektrum diskreter Signale (2) liefert: Hierauf wird wird jetzt jetzt die die Fourier-Transformation angewendet: Mit Mit Hilfe des des Frequenzverschiebungssatzes erhält man:
12 Frequenzverschiebungssatz Frage: Wie Wie sieht die die Fourier-Transformierte einer mit mit e jνω jνω At At multiplizierten Funktion f(t) f(t) aus? F { j } At f(t) e υω υω ω = j At j t f(t)e e dt = f(t)e j( ω υω )t A dt Mit Mit der der Substitution v = ω νω νω A ergibt A sich: F { f(t) e jυω } At = jvt f(t)e dt = F(jv) = F (j( ω νω )) A Multiplikation mit mit e jνω jνω At At im im Zeitbereich bedeutet eine eine Verschiebung des des Spektrums nach rechts um um νω νω A. A.
13 Spektrum diskreter Signale (3) F(j ω) Spektrum des kontinuierlichen Signals bandbegrenztes kontinuierliches Signal ω g * T F(j ω) Spektrum des abgetasteten Signals Seitenbänder nder Spektrum eines zeitdiskreten Signals ist ist periodisch mit mit der der Periode ω A =2π/T A und und mit mit 1/T 1/Tgewichtet
14 Tiefpaßverhalten und Bandbreite Elektrische Drosselklappe (8) RTI Data ADC Drosselklappenwinkel Istwinkel 0,1 30 Hz in 60 s In1 Out1 Winkel in Grad Terminator 0.2 output Chirp Signal Gain DAC Drossellklappennmotor Switch In1 Eingangssignal in Grad Offset 0.18 Offset1 0 Simulink Blockschaltbild
15 Elektrische Drosselklappe (10) Ermittlung der Bandbreite (Amplitudenabfall < 3 db) 1 Hz 2 Hz 4 Hz 10 Hz 20 Hz 25 Hz
16 Elektrische Drosselklappe (11) Abtasttheorem 40 Elektrische Drosselklappe 30 f A = 10 Hz f A = 4 Hz Winkel [Grad] Sollwinkel Istwinkel Zeit [s]
17 Abtasttheorem Periodendauer: T 0 = 0,5 s T 0 o o o o o T Frequenz: f 0 = 2 Hz Abtastintervall: T = 0,25 s Abtastfrequenz: f A = 4 Hz Die Die abgetasteten Werte eines Sinussignals sind sind von von einem Gleichspannungssignal nicht zu zu unterscheiden, wenn die die Abtastfrequenz doppelt so so hoch ist, ist, wie wie die die Frequenz des des Sinussignals.
18 Abtasttheorem (2)
19 Abtasttheorem (3) Beispiel: Audio-CD Frequenzbereich: Abtastfrequenz: 5 Hz 20 khz 44,1 khz Nyquistfrequenzf A /2 liegt 10 % über der Grenzfrequenz 20 khz Amplitudenauflösung: 16 bit (1/32767=0,00003) Speicherbedarf: 16 bit Hz / 8 = 176,4 KByte / s 176,4 KByte / s s 60 s = 10,6 MByte / Minute
20 Frequenzfaltung oder Aliasing Spektrum Spektrum des des kontinuierlichen kontinuierlichen Signals Signals Spektrum Spektrum des des mit mitω A > A 2ω2 2ω g abgetasteten g abgetasteten Signals Signals Spektrum Spektrum des des mit mitω A < A 2ω2 2ω g abgetasteten g abgetasteten Signals Signals ω A ω g
21 Frequenzfaltung oder Aliasing (2) Die Die Spektren des des kontinuierlichen und und des des diskreten Signals stimmen offensichtlich im im Intervall (-ω (-ω A /2 A /2 ω ω A /2) A /2) überein, wenn die die folgenden Forderungen eingehalten werden:
22 Frequenzfaltung oder Aliasing (3) o o f 1 f(t) 1 (t) = -sin -sin2π0,9t o o o o o o o f 2 f(t) 2 (t) = sin sin2π0,1t o o
23 Aliasing-Effekt: Simulink-Simulation Simulation DSP-Blockset Toolbox f = 0,9 Hz T = 1,0 s
24 Frequenzfaltung oder Aliasing (4) Verhinderung der Frequenzfaltung Bei Bei nicht-bandbegrenzten Signalen muß mußman man vor vorder Abtastung mit mit Hilfe eines Tiefpasses (Anti-Aliasing-Filter) Frequenzanteile ab ab der der halben Abtastfrequenz unterdrücken oder am am besten vollständig verschwinden lassen. Bei Bei bandbegrenzten Signalen muß mußdie Abtastfrequenz größer als als das das Doppelte der der höchsten, im im Signal vorkommenden Frequenz sein. Wenn nicht möglich, Einsatz eines Anti-Aliasing-Filters. u(t) Analoges AAF ADU u(k) Diskreter Regler y(k) DAU y(t)
25 Frequenzfaltung oder Aliasing (5) F(jω) F(jω) ω Ideales Antialiasing-Filter ω A /2 ω A /2 F(jω) ω Reales Antialiasing-Filter ω A /2 ω A /2 ω F * (jω) ω A ω A /2 ω A /2 ω A ω
26 Abtastfrequenzen in technischen Systemen Regelkreise im Kraftfahrzeug Regelkreise im Flugzeug Regelkreise in der Verfahrenstechnik CD-Audio-Aufzeichnung Signalverarbeitung mit Mikrocontroller Abtastfrequenz Hz Hz 1 10 Hz 44,1 khz Bis 50 MHz
Digitale Signalverarbeitung Bernd Edler
Digitale Signalverarbeitung Bernd Edler Wintersemester 2008/2009 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Systeme bei stochastischer
,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge
Heavisidefunktion σ (t), Diracimpuls δ (t),faltung Definition Heavisidefunktion, t > 0 σ ( t) = 0, t < 0 Anwendungen ) Rechteckimpuls, t < T r( t) = = σ ( t + T ) σ ( t T ) 0, t > T 2) Sprungfunktionen,
Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik
Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 2 Zeitkontinuierliche
Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik
Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 4 Fourier-Transformation 3
Digitale Regelung. Vorlesung: Seminarübungen: Dozent: Professor Ferdinand Svaricek Ort: 33/2211 Zeit:Di 15.00 16.30 Uhr
Vorlesung: Dozent: Professor Ferdinand Svaricek Ort: 33/2211 Zeit:Di 15.00 16.30 Uhr Seminarübungen: Dozent: Alexander Weber Ort: 33/1101 Zeit: Mo 9.45 11.15 Uhr (Beginn: 20.04.2015) Vorlesungsskript:
Lösungsblatt 2 Signalverarbeitung und Klassifikation
Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 06 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Lösungsblatt Signalverarbeitung und Klassifikation Aufgabe : Faltung
Fourier- und Laplace- Transformation
Skriptum zur Vorlesung Mathematik für Ingenieure Fourier- und Laplace- Transformation Teil : Fourier-Transformation Prof. Dr.-Ing. Norbert Höptner (nach einer Vorlage von Prof. Dr.-Ing. Torsten Benkner)
- Sei r(x,y) Eingangsbild, dass nur Rauschen (Quantenrauschen) enthält.
Eingang System Ausgang - Sei r(x,y) Eingangsbild, dass nur (Quantenrauschen) enthält. - Das Bild enthalte keinerlei Information, d.h. das Spektrum ist weiß und es gibt keine Korrelationen zwischen den
Fahrzeugmechatronik Masterstudiengang M 3.2 Sensoren und Aktoren Labor für Automatisierung und Dynamik AuD FB 03MB
Abb. 6 Dreidimensionale Darstellung des Frequenzgangs G ATP () s, Achsteilungen s 2 π in Hz Prof. Dr. Höcht 1/29 18.06.2006 11:13 Z_ Abb. 7 Einfluß des Pols bei s imaginären Achse, Achsteilungen in Hz
SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden:
/5 Fourier-Analyse (periodischer Signale) Grundlagen Ein periodisches, kontinuierliches Signal x(t) der Periodendauer kann als Fourier-Reihe beschrieben werden: wie folgt ( ) = c k x t + e j k 2πf t k=
Systemtheorie Teil B
d + d z + c d z + c uk d + + yk z d + c d z + c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme Übungsaufgaben Manfred Strohrmann Urban Brunner Inhalt Übungsaufgaben - Signalabtastung und Rekonstruktion...
FH Jena Prüfungsaufgaben - Master Prof. Giesecke FB ET/IT Digitale Signalverarbeitung SS 2012
FB ET/IT Digitale Signalverarbeitung SS 0 Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner ein mathematisches Formelwerk eine selbsterstellte Formelsammlung Wichtige Hinweise:
Signale und Systeme I
FACULTY OF ENGNEERING CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITAL SIGNAL PROCESSING AND SYSTEM THEORY DSS Signale und Systeme I Musterlösung zur Modulklausur WS 010/011 Prüfer: Prof. Dr.-Ing. Gerhard
Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik
Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 2005 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 3 Zeitkontinuierliche
ZHAW, DSV1, FS2010, Rumc, 1. H(z) a) Zeichnen Sie direkt auf das Aufgabenblatt das Betragsspektrum an der Stelle 1.
ZHAW, DSV, FS200, Rumc, DSV Modulprüfung 7 + 4 + 5 + 8 + 6 = 30 Punkte Name: Vorname: : 2: 3: 4: 5: Punkte: Note: Aufgabe : AD-DA-Umsetzung. + + +.5 +.5 + = 7 Punkte Betrachten Sie das folgende digitale
Inhaltsverzeichnis. Daniel von Grünigen. Digitale Signalverarbeitung. mit einer Einführung in die kontinuierlichen Signale und Systeme
Inhaltsverzeichnis Daniel von Grünigen Digitale Signalverarbeitung mit einer Einführung in die kontinuierlichen Signale und Systeme ISBN (Buch): 978-3-446-44079-1 ISBN (E-Book): 978-3-446-43991-7 Weitere
:. (engl.: first harmonic frequency)
5 Fourier-Reihen 5.1 Schwingungsüberlagerung 5.2 "Oberschwingungen" f 0 :. (engl.: fundamental frequency) :. (engl.: first harmonic frequency) Jede ganzzahlige (n) vielfache Frequenz von f 0 nennt man
Merkzettel - Digitale Regelung
Merkzettel - Digitale Regelung (Dozent: Dr. Wurmthaler) Martin Vierling, 3. Februar 2008 [2:55Uhr] Bei Fragen, Verbesserungen etc.: martin@die-webber.com Alle Angaben ohne Gewähr Inhaltsverzeichnis Aufgabentyp
Einführung in die Systemtheorie
Bernd Girod, Rudolf Rabenstein, Alexander Stenger Einführung in die Systemtheorie Signale und Systeme in der Elektrotechnik und Informationstechnik 4., durchgesehene und aktualisierte Auflage Mit 388 Abbildungen
2. Anordnung zur digitalen Signalverarbeitung
2. Anordnung zur digitalen Signalverarbeitung Prof. Dr.-Ing. Dr. h.c. Norbert Höptner Prof. Dr.-Ing. Stefan Hillenbrand Ergänzende Informationen zur Vorlesung Signalverarbeitungssysteme Abschnitte 2.1-2.5.
Digitale Signalverarbeitung Übungsaufgaben
Kapitel : Einleitung -: Analoger Tiefpass Dieser Tiefpass mit den Werten R = Ω, L =.5mH R L und C =.5µF ist wie folgt zu analysieren: U e C R. Es springe U e bei t =.5ms auf 5V und bei t = ms wieder auf.
Grundlagen der Elektrotechnik 3. Übungsaufgaben
Campus Duisburg Grundlagen der Elektrotechnik 3 Nachrichtentechnische Systeme Prof. Dr.-Ing. Ingolf Willms Version Juli 08 Aufgabe 1: Man bestimme die Fourier-Reihenentwicklung für die folgende periodische
3.3 Das Abtasttheorem
17 3.3 Das Abtasttheorem In der Praxis kennt man von einer zeitabhängigen Funktion f einem Signal meist nur diskret abgetastete Werte fn, mit festem > und ganzzahligem n. Unter welchen Bedingungen kann
Digitale Signalverarbeitung, Vorlesung 2: Quantisierung, Frequenzanalyse
Digitale Signalverarbeitung, Vorlesung 2: Quantisierung, Frequenzanalyse 31. Oktober 2016 Eigenschaften diskreter Signale Quantisierung Frequenzbereichsmethoden Anhang Wesentliches Thema heute: 1 Eigenschaften
Digitale Signalverarbeitung
Daniel Ch. von Grünigen Digitale Signalverarbeitung mit einer Einführung in die kontinuierlichen Signale und Systeme 4. Auflage Mit 222 Bildern, 91 Beispielen, 80 Aufgaben sowie einer CD-ROM mit Lösungen
Übungsaufgaben Signalverarbeitung (SV)
Übungsaufgaben Signalverarbeitung (SV) Prof. Dr.-Ing. O. Nelles Institut für Mechanik und Regelungstechnik Universität Siegen 3. Mai 27 Einführung Keine Aufgaben. 2 Zeitdiskrete Signale und Systeme Aufgabe
Das wissen Sie: 6. Welche Möglichkeiten zur Darstellung periodischer Funktionen (Signalen) kennen Sie?
Das wissen Sie: 1. Wann ist eine Funktion (Signal) gerade, ungerade, harmonisch, periodisch (Kombinationsbeispiele)? 2. Wie lassen sich harmonische Schwingungen mathematisch beschreiben und welche Beziehungen
9. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main
9. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: Abtastung und Rekonstruktion Abtastung: Wandelt bandbegrenzte kontinuierliche
Systemtheorie Teil B
d d z c d z c uk d yk z d c d z c Systemtheorie eil B - Zeitdiskrete Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Musterlösungen - Entwurf zeitdiskreter Filter... 3. iefpass mit
Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien 4-1
4. Signalverarbeitung 4.1 Grundbegrie 4.2 Frequenzspektren, Fourier-Transormation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter Weiterührende Literatur (z.b.): Beate Meert, Ola Hochmuth: Werkzeuge der
Erarbeiten der Diskreten Fourier Transformation (GFT) unter Verwendung von Scilab zur Veranschaulichung
Erarbeiten der Diskreten Fourier Transormation (GFT) unter Verwendung von Scilab zur Veranschaulichung 1. Das Prinzip verstehen 2. DFT beschreiben 3. DFT mit Scilab testen 4. Umsetzung der DFT ür einen
Funktion von Delta-Sigma-Wandlern zur Digitaliserung eines analogen Sensorsignals mit einer praktischen Anwendung. Dr.
Funktion von Delta-Sigma-Wandlern zur Digitaliserung eines analogen Sensorsignals mit einer praktischen Anwendung Dr. Thomas Komarek 1 Übersicht Praktische Anwendung: Super Audio Compact Disc (SACD) Grundlagen
3. Quantisierte IIR-Filter R
. Zweierkomplement a) Wie sieht die binäre Darstellung von -5 aus bei den Wortbreiten b = 4, b =, b = 6? b) Berechnen Sie folgende Additionen im Format SINT(4). Geben Sie bei Überlauf auch die Ausgaben
Labor SMV Versuch 1. Erläuterungen zum Aliasing. Prof. Dr.-Ing. Gernot Freitag. FB: EuI, FH Darmstadt. Darmstadt, den
Labor SMV Versuch Erläuterungen zum Aliasing FB: EuI, Darmstadt, den 26.5 Elektrotechnik und Informationstechnik Rev., 9.5 Auf den folgenden Seiten sind einige typische Abtastsituationen zusammengestellt,
Filterentwurf. Aufgabe
Aufgabe Filterentwurf Bestimmung der Filterkoeffizienten für gewünschte Filtereigenschaften Problem Vorgaben häufig für zeitkontinuierliches Verhalten, z.b. H c (s) Geeignete Approximation erforderlich
Systemtheorie für Informatiker
Systemtheorie für Informatiker Dr. Ch. Grimm Professur Technische Informatik, Univ. Frankfurt/Main Vorlesung Systemtheorie Vorlesung: Übung: Veranstalter: Dr. Christoph Grimm Professur Technische Informatik
Zufallssignal Stationär (z.b. gleichverteiltes Rauschen) Nicht-stationär (z.b. normalverteiltes Rauschen mit wechselnder Streuung) Deterministisches
Zufallssignal Stationär (z.b. gleichverteiltes Rauschen) Nicht-stationär (z.b. normalverteiltes Rauschen mit wechselnder Streuung) Deterministisches Signal Periodisch harmonische Schwingung Summe harmonischer
Prof. Dr. Tatjana Lange
Prof. Dr. Tatjana Lange Lehrgebiet: Regelungstechnik Laborübung 1: Thema: Einführrung in die digitale Regelung Übungsziele Veranschaulichung der Abtastung von bandbegrenzten Signalen und der Reproduktion
Digitalisierung II. Digitalisierung - Hörbeispiel Analog-Digital-Umsetzer Simulation LTI-Systeme (zeitdiskret) Übungen Literatur und Quellen
Digitalisierung II Digitalisierung - Hörbeispiel Analog-Digital-Umsetzer Simulation LTI-Systeme (zeitdiskret) Übungen Literatur und Quellen 19.06.2016 Professor Dr.-Ing. Martin Werner Folie 1 Digitalisierung
Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT)
Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT) Inhaltsverzeichnis 1 Allgemeines Filter... 2 2 Filter auf dem Signalprozessor... 2 3 Zusammenhang Zeitsignal und Frequenzspektrum...
Diskrete Fourier-Transformation und FFT. 1. Die diskrete Fourier-Transformation (DFT) 2. Die Fast Fourier Transform (FFT)
Diskrete Fourier-Transformation und FFT 2. Die Fast Fourier Transform (FFT) 3. Anwendungsbeispiele der DFT 1 Wiederholung: Fourier-Transformation und Fourier-Reihe Fourier-Transformation kontinuierlicher
Signale und Systeme. A1 A2 A3 Summe
Signale und Systeme - Prof. Dr.-Ing. Thomas Sikora - Name:............................... Vorname:.......................... Matr.Nr:.............................. Ergebnis im Web mit verkürzter Matr.Nr?
Systemtheorie Teil B
d + d z + c d z + c uk d + + yk z d + c d z + c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme - Übungsaufgaben Manfred Strohrmann Urban Brunner Inhalt Inhalt... Übungsaufgaben - Signalabtastung
Praktikum, NT 1: Spektrumsschätzung
Praktikum, NT 1: Spektrumsschätzung Versuchsentwurf: M.Sc., Dipl. Ing. (FH) Marko Hennhöfer, FG Nachrichtentechnik Version vom 4. Dezember 2007 1 1 Einführung und Motivation 1.1 Anwendung In der Praxis
Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004
4 Signalverarbeitung 4.1! Grundbegriffe! 4.2! Frequenzspektren, Fourier-Transformation! 4.3! Abtasttheorem: Eine zweite Sicht Weiterführende Literatur (z.b.):!! Beate Meffert, Olaf Hochmuth: Werkzeuge
2. Digitale Codierung und Übertragung
2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Speicherbedarf und Kompression 2.3 Digitalisierung Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien
Test = 28 Punkte. 1: 2: 3: 4: 5: Punkte: Note:
ZHAW, DSV1, FS2010, Rumc, 1 Test 1 5 + 5 + 5 + 8 + 5 = 28 Punkte Name: Vorname: 1: 2: : 4: 5: Punkte: Note: Aufgabe 1: AD-DA-System. + 1 + 1 = 5 Punkte Das analoge Signal x a (t) = cos(2πf 0 t), f 0 =750
Filtertypen Filter 1. Ordnung Filter 2. Ordnung Weitere Filter Idee für unser Projekt. Filter. 3. November Mateusz Grzeszkowski
typen. Ordnung 2. Ordnung Weitere Idee für unser Projekt 3. November 2009 Mateusz Grzeszkowski / 24 Mateusz Grzeszkowski 3. November 2009 typen. Ordnung 2. Ordnung Weitere Idee für unser Projekt Motivation
Fourierreihen periodischer Funktionen
Fourierreihen periodischer Funktionen periodische Funktion: (3.1) Fourierkoeffizienten und (3.2) (3.3) Fourier-Reihenentwicklungen Cosinus-Reihe: (3.4) (3.5) Exponentialreihe: (3.6) (3.7-3.8) Bestimmung
3.7 Anti-Alias-Verfahren
3.7 Anti-Alias-Verfahren Wir hatten Treppeneffekte bereits beim Rastern von Bildern kennengelernt. Aber auch beim Wiederholen verkleinerter Texturen können sich durch Rasterungseffekte unschöne Interferenzerscheinungen
Reell. u(t) Komplex u(t), Zeitabhängig Zeitunabhängig. u(t)e jωt. Reell Û. Elektrische Größe. Spitzenwert. Komplex Û. Reell U. Effektivwert.
Aufgaben Reell u(t) Elektrische Größe Zeitabhängig Zeitunabhängig Spitzenwert Effektivwert Komplex u(t), Reell Û Komplex Û Reell U Komplex U u(t)e jωt Institut für Technische Elektronik, RWTH - Aachen
3. LTI-Systeme im Zeitbereich
SigSys I Zusammenfassung Andreas Biri, D-IE 12.01.14 1. Einteilung der Signale Zeit kontinuierlich diskret Amplitude Kontinuier lich diskret Zeit- & amplitudendiskret -> digital 2. Systemeigenschaften
Der ideale Op-Amp 2. Roland Küng, 2009
Der ideale Op-Amp 2 Roland Küng, 2009 Reiew Reiew o f(, 2 ) L: o /2 + 2 Strom-Spannungswandler Photodiode liefert Strom proportional zur Lichtmenge Einfachstes Ersatzbild: Stromquelle V out -R 2 i in Anwendung:
f = T φ ist negative für nacheilende Funktionen φ ist positive für voreilende Funktionen 2 Signale im Zeitbereich 2.1 Harmonische Funktionen
2 Signale im Zeitbereich 2.1 Harmonische Funktionen = Xˆ sin( ω t) 1 f = T Einheiten: [ f ] = Hz ω = 2 π -1 [ ω] = s f mit Phasenverschiebung (hier: nacheilend) : = Xˆ sin( ω t - ϕ) φ ist negative für
NANO III. Digital-Analog-Wandler. Analog-Digital-Wandler Abtastung. Datenakquisition:
NANO III Digital-Analog-Wandler Datenakquisition: Analog-Digital-Wandler Abtastung Prinzip des DAC (DAC = Digital - Analog - Converter) 2 0 R 1 4Bit DAC 1 12/16 2 1 R 1 / 2 8/16 2 2 R 1 / 4 4/16 2 3 R
Einführung in die Physik I. Schwingungen und Wellen 1
Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten
5. Übung für Übungsgruppen Musterlösung
Grundlagenveranstaltung Systemtheorie WS 6/7 (H.S. Stiehl, AB Kognitive Systeme, Department Informatik der Universität Hamburg) 5. Übung für Übungsgruppen Musterlösung (U. Köthe, Department Informatik,
Kommunikationstechnik II Wintersemester 07/08
Kommunikationstechnik II Wintersemester 07/08 Prof. Dr. Stefan Weinzierl Musterlösung: 3. Aufgabenblatt. Aufgabe: Up-/Downsampling Die Abtastfolge x[n] wird mit dem Faktor M unter- und dem Faktor L überabgetastet.
5. Fourier-Transformation
Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf
Systemtheorie Teil B
d + d z + c d z + c uk [ ] d + + yk [ ] z d + c d z + c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme - Manfred Strohrmann Urban Brunner Änderungsindex Version Datum Verfasser Änderungen 7 5.3.5
Signale und Systeme I
TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Signale und Systeme I Formelsammlung v.5 Inhaltsverzeichnis Mathematische Formeln. Trigonometrische
R. Oldenbourg Verlag München Wien 1997
Systemtheorie 1 Allgemeine Grundlagen, Signale und lineare Systeme im Zeit- und Frequenzbereich von Professor Dr.-Ing. Rolf Unbehauen 7., überarbeitete und erweiterte Auflage Mit 260 Abbildungen und 148
Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung
28. September 2016 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung Aufgabe 1. Die nachfolgende Grafik stellt das Oszillogramm zweier sinusförmiger Spannungen
Vorlesung 2 Medizininformatik. Sommersemester 2017
Vorlesung 2 Medizininformatik Zeitplan Medizininformatik () Vorlesung (2 SWS) Montags 8:30-10:00 Übung (1 SWS) 10:15-11:00 1. 24.4 1.5 2. 8.5 3. 15.5 4. 22.5 Computer Architecture Begrüssung, Review: Daten
Kapitel 3 Trigonometrische Interpolation
Kapitel 3 Trigonometrische Interpolation Einführung in die Fourier-Reihen Trigonometrische Interpolation Schnelle Fourier-Transformation (FFT) Zusammenfassung Numerische Mathematik II Herbsttrimester 212
Laplace-Transformation
Laplace-Transformation Gegeben: Funktion mit beschränktem Wachstum: x(t) Ke ct t [, ) Definition: Laplace-Transformation: X(s) = e st x(t) dt = L{x(t)} s C Re(s) >c Definition: Inverse Laplace-Transformation:
Audio-Bearbeitung. Diese Freq. Anteile «verschwinden» nach dem unterabtasten Filter muß schmal genug sein! Nach Unterabtastung
Audio Signal Audio-Bearbeitung Ampl Vor Unterabtastung Teilband Grenzen Normierte Frequenz (normierte Abtastrate, maximale Frequenz ist pi oder 1) Teilbänder Diese Freq. Anteile «verschwinden» nach dem
und mit t in Sekunden wird mit einer Frequenz von 8000 Hz abgetastet. Die Abtastung beginnt bei t=0 mit dem Zeitindex n=0.
Aufgabe 1 Das periodische Signal x t) 0,5 sin(2 f t) 0,5 cos(2 f t) mit f 1000Hz und mit f 2000Hz ( 1 2 1 2 und mit t in Sekunden wird mit einer Frequenz von 8000 Hz abgetastet. Die Abtastung beginnt bei
Fourier-Reihen und Fourier-Transformation
Fourier-Reihen und Fourier-Transformation Matthias Dreÿdoppel, Martin Koch, Bernhard Kreft 25. Juli 23 Einleitung Im Folgenden sollen dir und die Fouriertransformation erläutert und mit Beispielen unterlegt
Einführung in die Systemtheorie
Einführung in die Systemtheorie Von Professor Dr.-Ing. Bernd Girod Priv.-Doz. Dr.-Ing. habil. Rudolf Rabenstein und Dipl.-Ing. Alexander Stenger Universität Erlangen-Nürnberg Mit 259 Bildern B.G. Teubner
Musterlösung zur Aufgabe A1.1
Abschnitt: 1.1 Prinzip der Nachrichtenübertragung Musterlösung zur Aufgabe A1.1 a) Im markierten Bereich (20 Millisekunden) sind ca 10 Schwingungen zu erkennen. Daraus folgt für die Signalfrequenz näherungsweise
Versuch 252 Digitale Filter
Drittes Physikalisches Institut der Universität Göttingen Bürgerstraße 42-44 D-3773 Göttingen Oktober 998 Praktikum für Fortgeschrittene Versuch 252 Digitale Filter Analoge Signale werden heute zunehmend
Projektdokumentation
Thema: Bildschärfung durch inverse Filterung von: Thorsten Küster 11027641 Lutz Kirberg 11023468 Gruppe: Ibv-team-5 Problemstellung: Bei der Übertragung von Kamerabildern über ein Video-Kabel kommt es
Signale und Systeme Ergänzungen zu den Spektraltransformationen
Signale und Systeme Ergänzungen zu den Spektraltransformationen Gerhard Schmidt Christian-Albrechts-Universität zu Kiel Technische Faculty of Engineering Fakultät Elektrotechnik Institute of Electrical
Lösung zur Übung 4.5.1/1: 2005 Mesut Civan
Lösung zur Übung 4.5.1/1: 5 Mesut Civan x e t= x e [t t t 1 ] x a t=ht für x e t=t x a t= x e [ht ht t 1 ] x a t= x e [ht ht t 1 ] a) t 1 T e Da die Impulsdauer t 1 des Eingangsimpulses größer ist als
Digital Signal Processing
- for Master Study by TFH Bochum - Analog Signal I OO O I I I O O O Digital Signal Seite 1 Zielsetzung der Signalverarbeitung Analyse: H(t), H(f) Modellieren y(t) {} Physikalische Größe und Prozesse Synthese
einige Zusatzfolien für s Seminar
Signale und Systeme einige Zusatzfolien für s Seminar Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme Fourierreihe reelle Fourierreihe betrachtet wird ein periodisches Zeitsignal u p mit
Klausur im Lehrgebiet. Signale und Systeme. - Prof. Dr.-Ing. Thomas Sikora - Name:... Bachelor ET Master TI Vorname:... Diplom KW Magister...
Signale und Systeme - Prof. Dr.-Ing. Thomas Sikora - Name:............................ Bachelor ET Master TI Vorname:......................... Diplom KW Magister.............. Matr.Nr:..........................
Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT)
Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Ziele In diesem Versuch lernen Sie zwei Anwendungen der Diskreten Fourier-Transformation in der Realisierung als recheneffiziente schnelle
Betrachtetes Systemmodell
Betrachtetes Systemmodell Wir betrachten ein lineares zeitinvariantes System mit der Impulsantwort h(t), an dessen Eingang das Signal x(t) anliegt. Das Ausgangssignal y(t) ergibt sich dann als das Faltungsprodukt
Entwicklung einer digitalen Übertragungsstrecke mit Einplatinencomputern zur Signalanalyse
Entwicklung einer digitalen mit Einplatinencomputern zur Signalanalyse Philipp Urban Jacobs p.1 Inhalt 1 Motivation 2 Grundlagen 3 Umsetzung 4 Verifizierung 5 Fazit p.2 Motivation Signalgenerator ADC Gertboard
3. Leistungsdichtespektren
Stochastische Prozesse: 3. Leistungsdichtespektren Wird das gleiche Geräusch mehrmals gemessen, so ergeben sich in der Regel unterschiedliche zeitliche Verläufe des Schalldrucks. Bei Geräuschen handelt
Digital meets analog. Analoge Welt Messung physikalischer Größen mittels Sensoren analoge Spannung. Analog-Digital-Wandlung (A/D)
Überblick Grundlagen: Spannung, Strom, Widerstand, IV-Kennlinien Elektronische Messgeräte im Elektronikpraktikum Passive Filter Signaltransport im Kabel Transistor Operationsverstärker PID-egler Sensorik
Zeitfunktionen. Kapitel Elementarfunktionen
Kapitel Zeitfunktionen Systeme werden durch Eingangsgrößen (Ursache, Eingangssignal, Erregung) angeregt und man interessiert sich für die Ausgangsgrößen (Wirkung, Ausgangssignal, Antwort). Die praktisch
Grundlagen der Schwingungslehre
Grundlagen der Schwingungslehre Einührung. Vorgänge, bei denen eine physikalische Größe in estem zeitlichen Abstand ein und denselben Werteverlau auweist, werden als periodisch bezeichnet. Den zeitlichen
Dipl.-Ing. (TU) Jürgen Wemheuer
Dipl.-Ing. (TU) Jürgen Wemheuer wemheuer@ewla.de http://ewla.de 1 Statt kontinuierlicher (Amplituden-)Werte einer stetigen Funktion sind nur diskontinuierliche, diskrete Werte möglich (begrenzter Wertevorrat):
Approximation von Funktionen
von Funktionen Fakultät Grundlagen Februar 6 Fakultät Grundlagen von Funktionen Übersicht Problemstellung Taylorpolynom Taylorenreihe Zusammenhang von e-funktion und trigonometrischen Funktionen 3 Fakultät
Zusammenfassung der 7. Vorlesung
Zusammenfassung der 7. Vorlesung Steuer- und Erreichbarkeit zeitdiskreter Systeme Bei zeitdiskreten Systemen sind Steuer-und Erreichbarkeit keine äquivalente Eigenschaften. Die Erfüllung des Kalmankriteriums
Bildpunkt auf dem Gitter: Pixel (picture element) (manchmal auch Pel)
4. Digitalisierung und Bildoperationen 4.1 Digitalisierung (Sampling, Abtastung) Rasterung auf 2D-Bildmatrix mathematisch: Abb. einer 2-dim. Bildfunktion mit kontinuierlichem Definitionsbereich auf digitales
Signale und Systeme I
TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Signale und Systeme I Modulklausur SS 2017 Prüfer: Prof. Dr.-Ing. Gerhard Schmidt Datum:
Biosignalverarbeitung (Schuster)
Biosignalverarbeitung (Schuster) 9. FOURIER - TRANSFORMATION: 4 Ausprägungen der Transformation: Zeitbereich Frequenzbereich Laplace-Transformation Fourier-Transformation kontinuierlicher Signale (FT,
Systemtheorie abbildender Systeme
Bandbegrenzung Bild in (b) nicht band-begrenzt: scharfe Kanten = Dirac-Funktionen = weißes Spektrum Erfordert Tapering vor Digitalisierung (Multiplikation mit geeigneter Fensterfunktion; auf Null drücken
Modulationsverfahren
Funktions- und Fehleranalyse Herr Rößger 2011 2012 Modulationsverfahren Definition: Modulation ist die Beeinflussung einer Trägerschwingung durch eine Information. Trägerschwingung: Informationsparameter:
Technik der Fourier-Transformation
Was ist Fourier-Transformation? Fourier- Transformation Zeitabhängiges Signal in s Frequenzabhängiges Signal in 1/s Wozu braucht man das? Wie macht man das? k = 0 Fourier- Reihe f ( t) = Ak cos( ωkt) +
3. Fourieranalyse und Amplitudenspektren
3.1 Fourieranalyse 3.1.1 Einleitung Laut dem französischen Mathematiker Fourier (1768-1830) kann jedes periodische Signal in eine Summe von sinusförmigen Signalen mit unterschiedlichen Amplituden, Frequenzen
Beschreibung linearer Systeme im Frequenzbereich
Beschreibung linearer Systeme im Frequenzbereich Jan Albersmeyer Seminar Regelungstechnik Ziel Man möchte das Verhalten linearer Systeme der Form in Abhängigkeit der Steuerungen u(t) beschreiben. 22.11.2002
d 1 P N G A L S2 d 2
Abschlussprüfung Nachrichtentechnik 28. Juli 2014 Name:... Vorname:... Matrikelnr.:... Studiengang:... Aufgabe 1 2 3 4 Summe Note Punkte Hinweis: Die Teilaufgaben (a), (b) und (c) können unabhängig voneinander
Aufgabe 1 - Pegelrechnung und LTI-Systeme
KLAUSUR Nachrichtentechnik 06.08.0 Prof. Dr.-Ing. Dr. h.c. G. Fettweis Dauer: 0 min. Aufgabe 3 4 Punkte 5 0 4 50 Aufgabe - Pegelrechnung und LTI-Systeme Hinweis: Die Teilaufgaben (a), (b) und (c) können
Kontinuierliche Fourier-Transformation. Laplace-Transformation
Kontinuierliche Fourier-Transformation. Laplace-Transformation Jörn Loviscach Versionsstand: 16. Juni 2010, 17:56 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu:
Diskontinuierliche Signale und Systeme
Diskontinuierliche Signale und Systeme Fourier-Transformation für diskontinuierliche Funktionen Eigenschaften und Sätze, Fourier-Paare Diskrete Fourier-Transformation (DFT) Zeitdiskrete LTI-Systeme, Faltung