Zusammenfassung der 1. Vorlesung

Größe: px
Ab Seite anzeigen:

Download "Zusammenfassung der 1. Vorlesung"

Transkript

1 Zusammenfassung der 1. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Zeitdiskretes Signal Quantisiertes Signal Digitales Signal Kontinuierliches System Abtastsystem Diskretes System Auflösung der der A/D- Umsetzer der der MicroAutoBox Schreibweise diskreter Signale

2 Zusammenfassung der 1. Vorlesung Elementare diskrete Signale Einheitsimpuls, Impulsfolge Einheitssprung, Sprungfolge Energie- und Leistungssignale Eigenschaften diskreter Systeme Linearität, t, Zeitinvarianz,, Kausalität Gewichtsfolge und Faltungssummation Differenzengleichung eines PT 1 -Systems

3 Fourier-Analyse + + = = Zerlegung periodischer Funktionen in in eine Reihe harmonischer Funktionen. Bestimmung und und Bedeutung des des Amplitudenspektrums eines Signals Bedeutung in in den den Bereichen Signalanalyse Schwingungstechnik Akustik

4 Fourier-Reihe Eine Eine periodische Funktion kann in in eine eine Funktionenreihe aus aus Sinus- und und Kosinusfunktionen zerlegt werden. reelle Koeffizienten Reelle Fourier-Reihe a 0 f(t) = + ancos(nω 0t) + bnsin(nω0t) 2 n= 1 [ ] Komplexe Fourier-Reihe f(t) = n= ce n jnω t 0 i.a. komplex Betrag-Phasen Phasen-Darstellung Beispiel: Rechtecksignal f(t) = A + A sin(nω t + ϕ ) 0 n 0 n n= 1 reell

5 Fourier-Transformation Fourier-Transformation versus Laplace-Transformation s = σ + jω Die Die Fourier-Transformation ist ist wie wie die die Laplace- Transformation eine eine Integraltransformation. Für Für r Funktionen f(t) f(t) mit mit f(t) f(t) = 0 für für t< t< 0 entspricht die die Laplacetransformierte von von f(t) f(t) der der Fouriertransformierten von von f(t)e f(t)e -σ -σt t.. Bereits einfache Funktionen wie wie z.b. z.b. die die Sprungfunktion 1(t) 1(t) erfüllen die die Konvergenzbedingung der der Fourier- Transformation nicht. Die Die Fourier-Transformation ist ist besser für ffür r die die Analyse von von Signalen geeignet. Die Die Laplace-Transformation ist ist besser für ffür r die die Analyse und und die die Beschreibung von von Systemen geeignet.

6 Fourier-Transformation (2)

7 Spektrum eines kontinuierlichen Signals Was ist ist das Spektrum eines kontinuierlichen Signals? Das Das Spektrum F(jω) ist ist die die Fourier-Transformierte der der Zeitfunktion f(t). f(t). Das Das Spektrum gibt gibt an, an, welche Frequenzen in in einem Signal vorkommen und und welches Gewicht sie sie haben. Einem periodischen Signal kann über die die Fourier- Reihenentwicklung ein ein diskretes Amplitudenspektrum zugeordnet werden. Das Das Spektrum (Amplitudendichte,, Phase) eines nichtperiodischen Signals ist ist kontinuierlich.

8 Spektrum diskreter Signale Darstellung eines zeitdiskreten Signals mit mit Hilfe einer Folge von von Deltaimpulsen: f*(t) f(t) f(2t) f(t) T 2T 3T t Ersetzen der der Dirac-Impulsfolge durch die die komplexe Fourier-Reihe: ω = A 2π T

9 Fourier-Reihe einer periodischen Folge von Deltaimpulsen f(t) = δ k= (t kt) 1 f(t) Gesucht: Komplexe Fourier-Reihe f(t) = δ(t kt) = ce ν k= ν= jνω t 0-3T -2T -T T 2T 3T ω = 0 2π T 1 jνω0t Fourier-Koeffizienten: c ν = δ(t kt)e dt T T 2 T k= 2 T 2 1 = δ(t) d T T 2 jνω0t e t

10 Fourier-Reihe einer periodischen Folge von Deltaimpulsen (2) Aus Aus der der Ausblendeigenschaft des des Deltaimpulses folgt: c ν T 2 1 = δ T T 2 jνω0t (t)e dt = 1 e T jνω 0 0 = 1 T Fourier-Reihe der Folge von Deltaimpulsen: δ(t kt) = k= 1 T ν= e jνω t 0

11 Spektrum diskreter Signale (2) liefert: Hierauf wird wird jetzt jetzt die die Fourier-Transformation angewendet: Mit Mit Hilfe des des Frequenzverschiebungssatzes erhält man:

12 Frequenzverschiebungssatz Frage: Wie Wie sieht die die Fourier-Transformierte einer mit mit e jνω jνω At At multiplizierten Funktion f(t) f(t) aus? F { j } At f(t) e υω υω ω = j At j t f(t)e e dt = f(t)e j( ω υω )t A dt Mit Mit der der Substitution v = ω νω νω A ergibt A sich: F { f(t) e jυω } At = jvt f(t)e dt = F(jv) = F (j( ω νω )) A Multiplikation mit mit e jνω jνω At At im im Zeitbereich bedeutet eine eine Verschiebung des des Spektrums nach rechts um um νω νω A. A.

13 Spektrum diskreter Signale (3) F(j ω) Spektrum des kontinuierlichen Signals bandbegrenztes kontinuierliches Signal ω g * T F(j ω) Spektrum des abgetasteten Signals Seitenbänder nder Spektrum eines zeitdiskreten Signals ist ist periodisch mit mit der der Periode ω A =2π/T A und und mit mit 1/T 1/Tgewichtet

14 Tiefpaßverhalten und Bandbreite Elektrische Drosselklappe (8) RTI Data ADC Drosselklappenwinkel Istwinkel 0,1 30 Hz in 60 s In1 Out1 Winkel in Grad Terminator 0.2 output Chirp Signal Gain DAC Drossellklappennmotor Switch In1 Eingangssignal in Grad Offset 0.18 Offset1 0 Simulink Blockschaltbild

15 Elektrische Drosselklappe (10) Ermittlung der Bandbreite (Amplitudenabfall < 3 db) 1 Hz 2 Hz 4 Hz 10 Hz 20 Hz 25 Hz

16 Elektrische Drosselklappe (11) Abtasttheorem 40 Elektrische Drosselklappe 30 f A = 10 Hz f A = 4 Hz Winkel [Grad] Sollwinkel Istwinkel Zeit [s]

17 Abtasttheorem Periodendauer: T 0 = 0,5 s T 0 o o o o o T Frequenz: f 0 = 2 Hz Abtastintervall: T = 0,25 s Abtastfrequenz: f A = 4 Hz Die Die abgetasteten Werte eines Sinussignals sind sind von von einem Gleichspannungssignal nicht zu zu unterscheiden, wenn die die Abtastfrequenz doppelt so so hoch ist, ist, wie wie die die Frequenz des des Sinussignals.

18 Abtasttheorem (2)

19 Abtasttheorem (3) Beispiel: Audio-CD Frequenzbereich: Abtastfrequenz: 5 Hz 20 khz 44,1 khz Nyquistfrequenzf A /2 liegt 10 % über der Grenzfrequenz 20 khz Amplitudenauflösung: 16 bit (1/32767=0,00003) Speicherbedarf: 16 bit Hz / 8 = 176,4 KByte / s 176,4 KByte / s s 60 s = 10,6 MByte / Minute

20 Frequenzfaltung oder Aliasing Spektrum Spektrum des des kontinuierlichen kontinuierlichen Signals Signals Spektrum Spektrum des des mit mitω A > A 2ω2 2ω g abgetasteten g abgetasteten Signals Signals Spektrum Spektrum des des mit mitω A < A 2ω2 2ω g abgetasteten g abgetasteten Signals Signals ω A ω g

21 Frequenzfaltung oder Aliasing (2) Die Die Spektren des des kontinuierlichen und und des des diskreten Signals stimmen offensichtlich im im Intervall (-ω (-ω A /2 A /2 ω ω A /2) A /2) überein, wenn die die folgenden Forderungen eingehalten werden:

22 Frequenzfaltung oder Aliasing (3) o o f 1 f(t) 1 (t) = -sin -sin2π0,9t o o o o o o o f 2 f(t) 2 (t) = sin sin2π0,1t o o

23 Aliasing-Effekt: Simulink-Simulation Simulation DSP-Blockset Toolbox f = 0,9 Hz T = 1,0 s

24 Frequenzfaltung oder Aliasing (4) Verhinderung der Frequenzfaltung Bei Bei nicht-bandbegrenzten Signalen muß mußman man vor vorder Abtastung mit mit Hilfe eines Tiefpasses (Anti-Aliasing-Filter) Frequenzanteile ab ab der der halben Abtastfrequenz unterdrücken oder am am besten vollständig verschwinden lassen. Bei Bei bandbegrenzten Signalen muß mußdie Abtastfrequenz größer als als das das Doppelte der der höchsten, im im Signal vorkommenden Frequenz sein. Wenn nicht möglich, Einsatz eines Anti-Aliasing-Filters. u(t) Analoges AAF ADU u(k) Diskreter Regler y(k) DAU y(t)

25 Frequenzfaltung oder Aliasing (5) F(jω) F(jω) ω Ideales Antialiasing-Filter ω A /2 ω A /2 F(jω) ω Reales Antialiasing-Filter ω A /2 ω A /2 ω F * (jω) ω A ω A /2 ω A /2 ω A ω

26 Abtastfrequenzen in technischen Systemen Regelkreise im Kraftfahrzeug Regelkreise im Flugzeug Regelkreise in der Verfahrenstechnik CD-Audio-Aufzeichnung Signalverarbeitung mit Mikrocontroller Abtastfrequenz Hz Hz 1 10 Hz 44,1 khz Bis 50 MHz

Digitale Regelung. Vorlesung: Seminarübungen: Dozent: Professor Ferdinand Svaricek Ort: 33/2211 Zeit:Di 15.00 16.30 Uhr

Digitale Regelung. Vorlesung: Seminarübungen: Dozent: Professor Ferdinand Svaricek Ort: 33/2211 Zeit:Di 15.00 16.30 Uhr Vorlesung: Dozent: Professor Ferdinand Svaricek Ort: 33/2211 Zeit:Di 15.00 16.30 Uhr Seminarübungen: Dozent: Alexander Weber Ort: 33/1101 Zeit: Mo 9.45 11.15 Uhr (Beginn: 20.04.2015) Vorlesungsskript:

Mehr

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 4 Fourier-Transformation 3

Mehr

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden:

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden: /5 Fourier-Analyse (periodischer Signale) Grundlagen Ein periodisches, kontinuierliches Signal x(t) der Periodendauer kann als Fourier-Reihe beschrieben werden: wie folgt ( ) = c k x t + e j k 2πf t k=

Mehr

Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT)

Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT) Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT) Inhaltsverzeichnis 1 Allgemeines Filter... 2 2 Filter auf dem Signalprozessor... 2 3 Zusammenhang Zeitsignal und Frequenzspektrum...

Mehr

Zufallssignal Stationär (z.b. gleichverteiltes Rauschen) Nicht-stationär (z.b. normalverteiltes Rauschen mit wechselnder Streuung) Deterministisches

Zufallssignal Stationär (z.b. gleichverteiltes Rauschen) Nicht-stationär (z.b. normalverteiltes Rauschen mit wechselnder Streuung) Deterministisches Zufallssignal Stationär (z.b. gleichverteiltes Rauschen) Nicht-stationär (z.b. normalverteiltes Rauschen mit wechselnder Streuung) Deterministisches Signal Periodisch harmonische Schwingung Summe harmonischer

Mehr

Signale und Systeme. A1 A2 A3 Summe

Signale und Systeme. A1 A2 A3 Summe Signale und Systeme - Prof. Dr.-Ing. Thomas Sikora - Name:............................... Vorname:.......................... Matr.Nr:.............................. Ergebnis im Web mit verkürzter Matr.Nr?

Mehr

Einführung in die Physik I. Schwingungen und Wellen 1

Einführung in die Physik I. Schwingungen und Wellen 1 Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten

Mehr

f = T φ ist negative für nacheilende Funktionen φ ist positive für voreilende Funktionen 2 Signale im Zeitbereich 2.1 Harmonische Funktionen

f = T φ ist negative für nacheilende Funktionen φ ist positive für voreilende Funktionen 2 Signale im Zeitbereich 2.1 Harmonische Funktionen 2 Signale im Zeitbereich 2.1 Harmonische Funktionen = Xˆ sin( ω t) 1 f = T Einheiten: [ f ] = Hz ω = 2 π -1 [ ω] = s f mit Phasenverschiebung (hier: nacheilend) : = Xˆ sin( ω t - ϕ) φ ist negative für

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Speicherbedarf und Kompression 2.3 Digitalisierung Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien

Mehr

Reell. u(t) Komplex u(t), Zeitabhängig Zeitunabhängig. u(t)e jωt. Reell Û. Elektrische Größe. Spitzenwert. Komplex Û. Reell U. Effektivwert.

Reell. u(t) Komplex u(t), Zeitabhängig Zeitunabhängig. u(t)e jωt. Reell Û. Elektrische Größe. Spitzenwert. Komplex Û. Reell U. Effektivwert. Aufgaben Reell u(t) Elektrische Größe Zeitabhängig Zeitunabhängig Spitzenwert Effektivwert Komplex u(t), Reell Û Komplex Û Reell U Komplex U u(t)e jωt Institut für Technische Elektronik, RWTH - Aachen

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004 4 Signalverarbeitung 4.1! Grundbegriffe! 4.2! Frequenzspektren, Fourier-Transformation! 4.3! Abtasttheorem: Eine zweite Sicht Weiterführende Literatur (z.b.):!! Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

Projektdokumentation

Projektdokumentation Thema: Bildschärfung durch inverse Filterung von: Thorsten Küster 11027641 Lutz Kirberg 11023468 Gruppe: Ibv-team-5 Problemstellung: Bei der Übertragung von Kamerabildern über ein Video-Kabel kommt es

Mehr

Technik der Fourier-Transformation

Technik der Fourier-Transformation Was ist Fourier-Transformation? Fourier- Transformation Zeitabhängiges Signal in s Frequenzabhängiges Signal in 1/s Wozu braucht man das? Wie macht man das? k = 0 Fourier- Reihe f ( t) = Ak cos( ωkt) +

Mehr

Grundlagen der Schwingungslehre

Grundlagen der Schwingungslehre Grundlagen der Schwingungslehre Einührung. Vorgänge, bei denen eine physikalische Größe in estem zeitlichen Abstand ein und denselben Werteverlau auweist, werden als periodisch bezeichnet. Den zeitlichen

Mehr

Entwicklung einer digitalen Übertragungsstrecke mit Einplatinencomputern zur Signalanalyse

Entwicklung einer digitalen Übertragungsstrecke mit Einplatinencomputern zur Signalanalyse Entwicklung einer digitalen mit Einplatinencomputern zur Signalanalyse Philipp Urban Jacobs p.1 Inhalt 1 Motivation 2 Grundlagen 3 Umsetzung 4 Verifizierung 5 Fazit p.2 Motivation Signalgenerator ADC Gertboard

Mehr

Digital meets analog. Analoge Welt Messung physikalischer Größen mittels Sensoren analoge Spannung. Analog-Digital-Wandlung (A/D)

Digital meets analog. Analoge Welt Messung physikalischer Größen mittels Sensoren analoge Spannung. Analog-Digital-Wandlung (A/D) Überblick Grundlagen: Spannung, Strom, Widerstand, IV-Kennlinien Elektronische Messgeräte im Elektronikpraktikum Passive Filter Signaltransport im Kabel Transistor Operationsverstärker PID-egler Sensorik

Mehr

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT)

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Ziele In diesem Versuch lernen Sie zwei Anwendungen der Diskreten Fourier-Transformation in der Realisierung als recheneffiziente schnelle

Mehr

Modulationsverfahren

Modulationsverfahren Funktions- und Fehleranalyse Herr Rößger 2011 2012 Modulationsverfahren Definition: Modulation ist die Beeinflussung einer Trägerschwingung durch eine Information. Trägerschwingung: Informationsparameter:

Mehr

Longitudinale und transversale Relaxationszeit

Longitudinale und transversale Relaxationszeit Longitudinale und transversale Relaxationszeit Longitudinale Relaxationszeit T 1 (Zeit, die das System benötigt, um nach dem rf- Puls zurück ins Gleichgewicht zu kommen) Transversale Relaxationszeit T

Mehr

NANO III - MSR. Signalabtastung Analog Digital Converter (ADC) Digital Analog Converter (DAC) Themen: DAC

NANO III - MSR. Signalabtastung Analog Digital Converter (ADC) Digital Analog Converter (DAC) Themen: DAC NANO III - MSR Themen: Signalabtastung Analog Digital Converter (ADC) A ADC D Digital Analog Converter (DAC) D DAC A Nano III MSR Physics Basel, Michael Steinacher 1 Signalabtastung Praktisch alle heutigen

Mehr

Motivation. Diskretisierung. Überblick. Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen. Diskretisierung und Quantisierung

Motivation. Diskretisierung. Überblick. Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen. Diskretisierung und Quantisierung Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen Motivation Analoge Aufnahme von Sprache, Bildern Digitale Speicherung durch Diskretisierung + Quantisierung Informationsverlust

Mehr

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation Bildverarbeitung Herbstsemester 2012 Fourier-Transformation 1 Inhalt Fourierreihe Fouriertransformation (FT) Diskrete Fouriertransformation (DFT) DFT in 2D Fourierspektrum interpretieren 2 Lernziele Sie

Mehr

(Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!)

(Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!) Teil 1: Fragen und Kurzaufgaben (Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!) Frage 1 (6 Punkte) Es wird ein analoges

Mehr

Betrachtetes Systemmodell

Betrachtetes Systemmodell Betrachtetes Systemmodell Wir betrachten ein lineares zeitinvariantes System mit der Impulsantwort h(t), an dessen Eingang das Signal x(t) anliegt. Das Ausgangssignal y(t) ergibt sich dann als das Faltungsprodukt

Mehr

Argumente für die diskrete Realisierung der Fourierintegrale

Argumente für die diskrete Realisierung der Fourierintegrale Argumente für die diskrete Realisierung der Fourierintegrale Die Fouriertransformation gemäß der Beschreibung in Kapitel 3.1 weist aufgrund der unbegrenzten Ausdehnung des Integrationsintervalls eine unendlich

Mehr

4.2 Abtastung und Rekonstruktion zeitkontinuierlicher

4.2 Abtastung und Rekonstruktion zeitkontinuierlicher 7 4 Fouriertransformation für zeitdiskrete Signale und Systeme nicht auf [, ] zeitbegrenzt ist. Es kommt daher zu einer Überlappung der periodischen Fortsetzungen. Für die Herleitung der Poissonschen Summenformel

Mehr

Elektrotechnik II: Kolloquium 4

Elektrotechnik II: Kolloquium 4 Elektrotechnik II: Kolloquium 4 Digitalschaltungen Hubert Abgottspon: abgottspon@eeh.ee.ethz.ch Markus Imhof: imhof@eeh.ee.ethz.ch Inhalt des Kolloquium: Digitale Messkette Sensor 1) Filter S&H- Versträker

Mehr

Einführung in die Signalverarbeitung

Einführung in die Signalverarbeitung Einführung in die Signalverarbeitung Phonetik und Sprachverarbeitung, 2. Fachsemester, Block Sprachtechnologie I Florian Schiel Institut für Phonetik und Sprachverarbeitung, LMU München Signalverarbeitung

Mehr

DFT / FFT der Titel der Präsentation wiederholt (Ansicht >Folienmaster) Dipl.-Ing. Armin Rohnen, Fakultät 03, rohnen@hm.edu

DFT / FFT der Titel der Präsentation wiederholt (Ansicht >Folienmaster) Dipl.-Ing. Armin Rohnen, Fakultät 03, rohnen@hm.edu 1 Grundlagen Abtasttheorem Fenster Zeit - Frequenzauflösung Pegelgenauigkeit Overlap Mittelung 2 2 volle Schwingungen 32 Abtastwerte Amplitude = 1 Pascal Signallänge = 1 Sekunde Eine Frequenzline bei 2

Mehr

All Digital Transceiver

All Digital Transceiver All Digital Transceiver Prinzip Digital-Empfänger ADC, Analog Digital Converter ( Analog-Digital-Wandler ) DDC, Digital Down Converter ( Digitaler Abwärtsmischer ) DSP, Digital Signal Processor SDR-14

Mehr

Elektrische Mess- und Prüftechnik Laborpraktikum. Signale im Zeit- und Frequenzbereich (FFT) USB-Oszilloskop. Testat:

Elektrische Mess- und Prüftechnik Laborpraktikum. Signale im Zeit- und Frequenzbereich (FFT) USB-Oszilloskop. Testat: Fachbereich Elektrotechnik / Informationstechnik Elektrische Mess- und Prüftechnik Laborpraktikum Versuch 2016-E ET(BA) SS 2016 Signale im Zeit- und Frequenzbereich (FFT) USB-Oszilloskop Set:... Studienrichtung:...

Mehr

Kontrollfragen zum Skript Teil 1 beantwortet

Kontrollfragen zum Skript Teil 1 beantwortet Kontrollfragen zum Skript Teil 1 beantwortet Von J.S. Hussmann Fragen zu SW 1.1 Welche Vorteile hat die DSVB? Programmierbar Parametrierbar Reproduzierbar Wie heisst die Umwandlung eines Zeit-diskreten

Mehr

19. Frequenzgangkorrektur am Operationsverstärker

19. Frequenzgangkorrektur am Operationsverstärker 9. Frequenzgangkorrektur am Operationsverstärker Aufgabe: Die Wirkung komplexer Koppelfaktoren auf den Frequenzgang eines Verstärkers ist zu untersuchen. Gegeben: Eine Schaltung für einen nichtinvertierenden

Mehr

Elektrische Messtechnik, Labor Sommersemester 2014

Elektrische Messtechnik, Labor Sommersemester 2014 Institut für Elektrische Messtechnik und Messsignalverarbeitung Elektrische Messtechnik, Labor Sommersemester 2014 Rechnerunterstützte Erfassung und Analyse von Messdaten Übungsleiter: Dipl.-Ing. GALLIEN

Mehr

3) Es soll ein aktives Butterworth-Tiefpassfilter mit folgenden Betriebsparametern entworfen werden: Grunddämpfung: Grenze des Durchlassbereiches:

3) Es soll ein aktives Butterworth-Tiefpassfilter mit folgenden Betriebsparametern entworfen werden: Grunddämpfung: Grenze des Durchlassbereiches: Übungsblatt 4 1) Beim Praktikumsversuch 4 sollten Sie an das aufgebaute iefpassfilter eine Rechteckspannung mit einer Frequenz von 6 Hz anlegen: a) Skizzieren Sie grob den Verlauf der Ausgangsspannung

Mehr

Signale und ihre Spektren

Signale und ihre Spektren Einleitung Signale und ihre Spektren Fourier zeigte, dass man jedes in der Praxis vorkommende periodische Signal in eine Reihe von Sinus- und Cosinusfunktionen unterschiedlicher Frequenz zerlegt werden

Mehr

Signale. und. Systeme. SoSe Übung 01. Charakterisierung. von Signalen

Signale. und. Systeme. SoSe Übung 01. Charakterisierung. von Signalen Signale und Systeme SoSe 9 Übung Charakterisierung von Signalen Aufgabe Zeichnen Siedie folgenden Signale und diskutieren Sie deren Eigenschaften: (a) Impulsfolgen: δ( k), δ( k 4) (b) Sprungfolgen: ε(

Mehr

Technische Grundlagen der Informatik Kapitel 10

Technische Grundlagen der Informatik Kapitel 10 Technische Grundlagen der Informatik Kapitel 10 Prof. Dr.-Ing. S. A. Huss Fachbereich Informatik TU Darmstadt S. A. Huss / Folie 10-1 Inhaltsübersicht Digitale Verarbeitung analoger Signale Signale Wert-

Mehr

Digitalisierung. Digitale Übertragung analoger Signale. störsicher (0/1-Codierung, Fehlerkorrektur) präzise (fixe unveränderliche Codeworte)

Digitalisierung. Digitale Übertragung analoger Signale. störsicher (0/1-Codierung, Fehlerkorrektur) präzise (fixe unveränderliche Codeworte) Digitale Übertragung analoger Signale Vorteile digitaler Übertragung störsicher (0/1-Codierung, Fehlerkorrektur) präzise (fixe unveränderliche Codeworte) Nachteiler digitaler Übertragung natürliche Signale

Mehr

Einführung in die digitale Signalverarbeitung WS11/12

Einführung in die digitale Signalverarbeitung WS11/12 Einführung in die digitale Signalverarbeitung WS11/12 Prof. Dr. Stefan Weinzierl Musterlösung 11. Aufgabenblatt 1. IIR-Filter 1.1 Laden Sie in Matlab eine Audiodatei mit Sampling-Frequenz von fs = 44100

Mehr

Elektrotechnik-Grundlagen Teil 2 Messtechnik

Elektrotechnik-Grundlagen Teil 2 Messtechnik Version 1.0 2005 Christoph Neuß Inhalt 1. ZIEL DER VORLESUNG...3 2. ALLGEMEINE HINWEISE ZU MESSAUFBAUTEN...3 3. MESSUNG ELEMENTARER GRÖßEN...3 3.1 GLEICHSTROMMESSUNG...3 3.2 WECHSELSTROMMESSUNG...4 4.

Mehr

Kybernetik Laplace Transformation

Kybernetik Laplace Transformation Kybernetik Laplace Transformation Mohamed Oubbati Institut für Neuroinformatik Tel.: (+49) 73 / 50 2453 mohamed.oubbati@uni-ulm.de 08. 05. 202 Laplace Transformation Was ist eine Transformation? Was ist

Mehr

Klausur zur Vorlesung Signale und Systeme

Klausur zur Vorlesung Signale und Systeme Name: 10. Juli 2008, 11.00-13.00 Uhr Allgemeine Hinweise: Dauer der Klausur: Zugelassene Hilfsmittel: 120 min, 2 Zeitstunden Vorlesungsmitschrift, Mitschrift Übungen, Skript, handgeschriebene 2-seitige

Mehr

Digitale Signalverarbeitung auf FPGAs

Digitale Signalverarbeitung auf FPGAs Digitale Signalverarbeitung auf FPGAs INP: Interpolation Upsampling und D/A- Wandlung Teil 1 Upsampling 2016 Dr. Christian Münker INP: Überblick Upsampling D/A-Wandlung Interpolation Oversampling (Sigma-Delta

Mehr

Messung & Darstellung von Schallwellen

Messung & Darstellung von Schallwellen Messung Digitalisierung Darstellung Jochen Trommer jtrommer@uni-leipzig.de Universität Leipzig Institut für Linguistik Phonologie/Morphologie SS 2007 Messung Digitalisierung Darstellung Überblick Messung

Mehr

Netzwerke - Bitübertragungsschicht (1)

Netzwerke - Bitübertragungsschicht (1) Netzwerke - Bitübertragungsschicht (1) Theoretische Grundlagen Fourier-Analyse Jedes Signal kann als Funktion über die Zeit f(t) beschrieben werden Signale lassen sich aus einer (möglicherweise unendlichen)

Mehr

Einführung in die Regelungstechnik II - Reglerentwurf und diskrete Systeme -

Einführung in die Regelungstechnik II - Reglerentwurf und diskrete Systeme - Einführung in die Regelungstechnik II - - Torsten Kröger Technische Universität - 1/64 - Braunschweig - 2/64 - Wiederholung - Einführung in die Regelungstechnik I Blockschema eines Regelkreises Kontinuierliche

Mehr

V 322 Überlagerung und Modulation /AD-Wandler

V 322 Überlagerung und Modulation /AD-Wandler V 322 Überlagerung und Modulation /AD-Wandler 1. Aufgaben 1.1 Digitalisieren Sie ein analoges Signal und experimentieren mit der Abtastrate und Sampleanzahl. 1.2 Überlagern Sie 2 Frequenzen und beobachten

Mehr

Amateurfunkkurs. Erstellt: 2010-2011. Landesverband Wien im ÖVSV. Digitale Signalverarbeitung. R. Schwarz OE1RSA. Übersicht. Definition.

Amateurfunkkurs. Erstellt: 2010-2011. Landesverband Wien im ÖVSV. Digitale Signalverarbeitung. R. Schwarz OE1RSA. Übersicht. Definition. Amateurfunkkurs Landesverband Wien im ÖVSV Erstellt: 2010-2011 Letzte Bearbeitung: 17. September 2012 Themen 1 2 3 4 Analog - Digital Analog-Digital Kontinuierlich-Binär Analog: Kontinuierliche Erfassung

Mehr

Übung 2: Spektrum periodischer Signale

Übung 2: Spektrum periodischer Signale ZHAW, SiSy, Rumc, Übung : Spektrum periodischer Signale Augabe Verschiedene Darstellungen der Fourierreihe. Betrachten Sie das periodische Signal s(t) = + sin(π t). a) Bestimmen Sie die A k - und B k -Koeizienten

Mehr

Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder

Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder Bei der Behandlung reeller elektromagnetischer Felder im Fourierraum ist man mit der Tatsache konfrontiert, dass

Mehr

7 Fourier-Transformation

7 Fourier-Transformation 7 Fourier-Transformation Ausgangspunkt: Die bereits bekannte Fourier-Reihenentwicklung einer T-periodischen, stückweise stetig differenzierbaren Funktion f T : R R, f T (t) = k= γ k e ikωt mit Frequenz

Mehr

Aufgabe 1: Diskrete und kontin. Signale

Aufgabe 1: Diskrete und kontin. Signale AG Digitale Signalverarbeitung - Klausur in Signale und Systeme Frühjahr 2009 Aufgabe : Diskrete und kontin. Signale 25 Pkt. Aufgabe : Diskrete und kontin. Signale 25 Pkt.. Gegeben sei das als Summierer

Mehr

Digitalisierung. Abtasttheorem Quantisierung Pulse-Code-Modulation Übungen Literatur und Quellen. Signale und Systeme VL 5

Digitalisierung. Abtasttheorem Quantisierung Pulse-Code-Modulation Übungen Literatur und Quellen. Signale und Systeme VL 5 Digitalisierung Abtasttheorem Quantisierung Pulse-Code-Modulation Übungen Literatur und Quellen 20.05.2015 Professor Dr.-Ing. Martin Werner Folie 1 Digitalisierung analoger Signale 4 Schritte Bandbegrenzung

Mehr

Modulationsverfahren Inhalt

Modulationsverfahren Inhalt Inhalt 1. Allgemeines... 2 2. Übersicht über... 3 5. Amplitudenmodulation... 3 3.1 Zweiseitenbandmodulation... 5 3.2 Einseitenbandmodulation... 5 4. Winkelmodulation... 6 5. Tastmodulation(Digitale Modulation)...

Mehr

Nachrichtentechnik [NAT] Kapitel 1: Einführung. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 1: Einführung. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 1: Einführung Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 2005 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 1 Einführung 3 1.1 Motivation..................................

Mehr

Probeklausur Signale + Systeme Kurs TIT09ITA

Probeklausur Signale + Systeme Kurs TIT09ITA Probeklausur Signale + Systeme Kurs TIT09ITA Dipl.-Ing. Andreas Ströder 13. Oktober 2010 Zugelassene Hilfsmittel: Alle außer Laptop/PC Die besten 4 Aufgaben werden gewertet. Dauer: 120 min 1 Aufgabe 1

Mehr

Filter und Schwingkreise

Filter und Schwingkreise FH-Pforzheim Studiengang Elektrotechnik Labor Elektrotechnik Laborübung 5: Filter und Schwingkreise 28..2000 Sven Bangha Martin Steppuhn Inhalt. Wechselstromlehre Seite 2.2 Eigenschaften von R, L und C

Mehr

EAH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Filterentwurf WS 12/13

EAH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Filterentwurf WS 12/13 FB ET/IT Filterentwurf WS 2/3 Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner eine selbsterstellte Formelsammlung ein mathematisches Formelwerk Wichtige Hinweise: Ausführungen,

Mehr

Adaptive Systeme. Sommersemester Prof. Dr. -Ing. Heinz-Georg Fehn. Prof. Dr. rer. nat. Nikolaus Wulff

Adaptive Systeme. Sommersemester Prof. Dr. -Ing. Heinz-Georg Fehn. Prof. Dr. rer. nat. Nikolaus Wulff Adaptive Systeme Sommersemester 2015 Prof. Dr. -Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff 1 Adaptive Systeme Adaptives System: ein System, das

Mehr

Signale und Systeme Reaktion linearer Systeme auf stationäre stochastische Signale

Signale und Systeme Reaktion linearer Systeme auf stationäre stochastische Signale Signale und Systeme Reaktion linearer Systeme auf stationäre stochastische Signale Gerhard Schmidt Christian-Albrechts-Universität zu Kiel Technische Faculty of Engineering Fakultät Elektrotechnik Institute

Mehr

Skriptum zur 4. Laborübung. Spektren

Skriptum zur 4. Laborübung. Spektren Elektrotechnische Grundlagen der Informatik (LU 182.085) Skriptum zur 4. Laborübung Spektren Christof Pitter Wolfgang Puffitsch Technische Universität Wien Institut für Technische Informatik (182) 1040,

Mehr

Übertragungsglieder mit Sprung- oder Impulserregung

Übertragungsglieder mit Sprung- oder Impulserregung Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Protokoll-Nr.: 4 Übertragungsglieder mit Sprung- oder Impulserregung Protokollant: Jens Bernheiden Gruppe: Aufgabe durchgeführt:

Mehr

Einführung in die Medieninformatik 1

Einführung in die Medieninformatik 1 Einführung in die Medieninformatik 1 Wintersemester 2007/08 Prof. Dr. Rainer Malaka, Digitale Medien Medieninformatik 1 1 Plan (vorläufig) 31.10. Einführung 7.11. Menschen: Wahrnehmung 14.11. Menschen:

Mehr

Digitale Regelung. Professor Dr.-Ing. Ferdinand Svaricek

Digitale Regelung. Professor Dr.-Ing. Ferdinand Svaricek Digitale Regelung Professor Dr.-Ing. Ferdinand Svaricek Institut für Steuer und Regelungstechnik Fakultät für Luft und Raumfahrttechnik Universität der Bundeswehr München Vorwort Diese Arbeitsblätter beschreiben

Mehr

Seminarübungen: Dozent: PD Dr. Gunther Reißig Ort: 33/1201 Zeit: Mo Uhr (Beginn )

Seminarübungen: Dozent: PD Dr. Gunther Reißig Ort: 33/1201 Zeit: Mo Uhr (Beginn ) Vorlesung : Dozent: Professor Ferdinand Svaricek Ort: 33/040 Zeit: Do 5.00 6.30Uhr Seminarübungen: Dozent: PD Dr. Gunther Reißig Ort: 33/20 Zeit: Mo 5.00 6.30 Uhr (Beginn 8.0.206 Vorlesungsskript: https://www.unibw.de/lrt5/institut/lehre/vorlesung/rt_skript.pdf

Mehr

Fourier - Transformation

Fourier - Transformation Fourier - Transformation Kurzversion 2. Sem. Prof. Dr. Karlheinz Blankenbach Hochschule Pforzheim, Tiefenbronner Str. 65 75175 Pforzheim Überblick / Anwendungen / Motivation: Die Fourier-Transformation

Mehr

1.3 Digitale Audiosignale

1.3 Digitale Audiosignale Seite 22 von 86 Abb. 1.2.12 - Wirkung der Schallverzögerung Effekte sind: Delay, Echo, Reverb, Flanger und Chorus Hört man ein akustisches Signal im Raum, dann werden die Signale von Wänden und anderen

Mehr

Seminar Digitale Signalverarbeitung

Seminar Digitale Signalverarbeitung Universität Koblenz-Landau Institut für integrierte aturwissenschaften Abteilung Physik Dr. Merten Joost Seminar Digitale Signalverarbeitung Thema: Fast Fourier Transformation Praktische Durchführung einer

Mehr

Wichtige Eigenschaft: zeitliche Abnahme der Schallintensität. Akustische Ereignisse sind zeitliche Phänomene mit Anfang und Ende

Wichtige Eigenschaft: zeitliche Abnahme der Schallintensität. Akustische Ereignisse sind zeitliche Phänomene mit Anfang und Ende Schallaufzeichnung Wichtige Eigenschaft: zeitliche Abnahme der Schallintensität Akustische Ereignisse sind zeitliche Phänomene mit Anfang und Ende Akustische Ereignisse sind vergänglich Akustische Ereignisse

Mehr

Struktur eines Regelkreises mit Mikroprozessor als Regler:

Struktur eines Regelkreises mit Mikroprozessor als Regler: Institut für Leistungselektronik und Elektrische Antriebe Prof. Dr.-Ing. J. Roth-Stielow Struktur eines Regelkreises mit Mikroprozessor als Regler: Unterlagen zur Vorlesung Regelungstechnik 2 Kapitel 4

Mehr

Sinneswahrnehmungen des Menschen

Sinneswahrnehmungen des Menschen Sinneswahrnehmungen des Menschen Tastsinn Gleichgewicht Geruch Sehen Gehör Sprache Aktion Multimedia - Kanäle des Menschen Techniken für Medien im Wandel Multimediale Kommunikation Text : Bücher, Zeitschriften

Mehr

Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω)

Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω) 4 Systeme im Frequenzbereich (jω) 4.1 Allgemeines Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω) 1 4.2 Berechnung des Frequenzgangs Beispiel: RL-Filter

Mehr

Elektrische Messtechnik Protokoll - Bestimmung des Frequenzgangs durch eine Messung im Zeitbereich

Elektrische Messtechnik Protokoll - Bestimmung des Frequenzgangs durch eine Messung im Zeitbereich Elektrische Messtechnik Protokoll - Bestimmung des Frequenzgangs durch eine Messung im Zeitbereich André Grüneberg Janko Lötzsch Mario Apitz Friedemar Blohm Versuch: 19. Dezember 2001 Protokoll: 6. Januar

Mehr

Ü bung GIT- Teil Nachrichtentechnik, 17.11.2015

Ü bung GIT- Teil Nachrichtentechnik, 17.11.2015 Ü bung GIT- Teil Nachrichtentechnik, 17.11.2015 1 OSI Schichtenmodell Systeme der Nachrichtentechnik werden häufig mittels des OSI-Referenzmodells charakterisiert. a) Benennen Sie die Schichten des OSI-Referenzmodells!

Mehr

Aufgabe 1: Kontinuierliche und diskrete Signale

Aufgabe 1: Kontinuierliche und diskrete Signale Klausur zur Vorlesung: Signale und Systeme Aufgabe : Kontinuierliche und diskrete Signale. Zwei Systeme sollen auf ihre Eigenschaften untersucht werden: v(t) S { } y (t) v(t) S { } y (t) Abbildung : zeitkontinuierliche

Mehr

2. Eigenschaften digitaler Nachrichtensignale

2. Eigenschaften digitaler Nachrichtensignale FH OOW / Fachb. Technik / Studiengang Elektrotechnik u. Automatisierungstechnik Seite 2-2. Eigenschaften digitaler Nachrichtensignale 2. Abgrenzung zu analogen Signalen Bild 2.- Einteilung der Signale

Mehr

Technische Beschreibung der akustischen Signalkette

Technische Beschreibung der akustischen Signalkette Technische Beschreibung der akustischen Signalkette Wichtige Aufgabe: Vielfältige Medien Gestaltung akustischer Kommunikationsketten (Sprache, Geräusche, Musik, CD, Radio, mp3,...) Unterschiedlichste Information

Mehr

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS Dämpfung. Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung 5. Dämpfung 5-1 1. Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische Energie

Mehr

SV3: Switched-Capacitor Filter

SV3: Switched-Capacitor Filter Signal and Information Processing Laboratory Institut für Signal- und Informationsverarbeitung 20. August 205 Fachpraktikum Signalverarbeitung Einführung SV3: Switched-Capacitor Filter Switched-Capacitor-Filter

Mehr

HS D FB Hochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik

HS D FB Hochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik HS D FB 4 Hochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik Elektrotechnik und elektrische Antriebstechnik Prof. Dr.-Ing. Jürgen Kiel Praktikum Elektrotechnik und Antriebstechnik Versuch

Mehr

Digitale Signalverarbeitung Juli 2004

Digitale Signalverarbeitung Juli 2004 Westfälische Wilhelms-Universität Münster Institut für Angewandte Physik xperimentelle Übungen für Fortgeschrittene Digitale Signalverarbeitung Juli 2004 In der Digitaltechnik ist es nicht möglich, physikalische

Mehr

GT- Labor. Inhaltsverzeichnis

GT- Labor. Inhaltsverzeichnis Inhaltsverzeichnis Seite 1. Versuchsvorbereitung 2 1.1 Qualitatives Spektrum der Ausgangsspannung des Eintaktmodulators 2 1.2 Spektrum eines Eintaktmodulators mit nichtlinearem Element 2 1.3 Bandbreite

Mehr

Praktikum Elektronische Messtechnik WS 2007/2008. Versuch OSZI. Tobias Doerffel Andreas Friedrich Heiner Reinhardt

Praktikum Elektronische Messtechnik WS 2007/2008. Versuch OSZI. Tobias Doerffel Andreas Friedrich Heiner Reinhardt Praktikum Elektronische Messtechnik WS 27/28 Versuch OSZI Tobias Doerffel Andreas Friedrich Heiner Reinhardt Chemnitz, 9. November 27 Versuchsvorbereitung.. harmonisches Signal: Abbildung 4, f(x) { = a

Mehr

1 Analoge und digitale Signale

1 Analoge und digitale Signale Hochfrequenztechnik II Modulationsverfahren MOD/1 1 Analoge und digitale Signale Modulationsverfahren werden benötigt, um ein vorhandenes Basisbandsignal s(t) über ein hochfrequentes Trägersignal zu übertragen.

Mehr

4 Erzeugung von Tonsignalen

4 Erzeugung von Tonsignalen 4 Erzeugung von Tonsignalen 4.1 Etwas Theorie: Sample, Samplefrequenz, Abtasten Zeit in ms u1(t) 0 0 1 3,09 2 5,88 3 8,09 4 9,51 5 10 6 9,51 7 8,09 8 5,88 9 3,09 10 0 11-3,09 12-5,88 13-8,09 14-9,51 15-10

Mehr

Faltung, Korrelation, Filtern

Faltung, Korrelation, Filtern Faltung, Korrelation, Filtern Wie beschreibe ich lineare Systeme (z.b. Seismometer) -> Faltung, Konvolution, Dekonvolution? Wie quantifiziere ich die Ähnlichkeit von Zeitreihen (-> Korrelation) Wie quantifiziere

Mehr

Universität Koblenz Institut für integrierte Naturwissenschaften Abteilung Physik. Signale. Seminar Digitale Signalverarbeitung Dr.

Universität Koblenz Institut für integrierte Naturwissenschaften Abteilung Physik. Signale. Seminar Digitale Signalverarbeitung Dr. Universität Koblenz Institut für integrierte Naturwissenschaften Abteilung Physik Signale Seminar Digitale Signalverarbeitung Dr. Merten Joost von Ralf Töppner Matrikelnr.: 201210387 Koblenz, den 10. Juni

Mehr

5 Modulationsverfahren

5 Modulationsverfahren U: Latex-docs/Angewandte Physik/2004/VorlesungWS04-05, 21. Dezember 2004 89 5 Modulationsverfahren Abbildung 1: Schema eines Übertragungssystems Bei der Übertragung von Signalen durch Übertragungskanäle

Mehr

Titel: Fouriertransformation. Titel-Kürzel: FT. Autoren: Ulrich Gysel, gys, Niklaus Schmid, sni; Koautoren: G. Lekkas Version-v2.0: 31.

Titel: Fouriertransformation. Titel-Kürzel: FT. Autoren: Ulrich Gysel, gys, Niklaus Schmid, sni; Koautoren: G. Lekkas Version-v2.0: 31. Titel: Titel-Kürzel: FT Autoren: Ulrich Gysel, gys, Niklaus Schmid, sni; Koautoren: G. Lekkas Version-v2.: 3. Oktober 25 Lernziele: Sie wissen, warum bei aperiodischen Signalen nicht mehr mit der Fourierreihe,

Mehr

Realisierung digitaler Filter FHTW-Berlin Prof. Dr. F. Hoppe 1

Realisierung digitaler Filter FHTW-Berlin Prof. Dr. F. Hoppe 1 Realisierung digitaler Filter FHTW-Berlin Prof. Dr. F. Hoppe System zur digitalen Signalverarbeitung: Signal- Quelle AAF ADC DAC RCF DSP Po rt Po rt Signal- Ziel Das Bild zeigt ein allgemeines System zur

Mehr

Musterlösung zur Aufgabe A4.1

Musterlösung zur Aufgabe A4.1 Musterlösung zur Aufgabe A4.1 a) Mit N = 8 Bit können insgesamt 2 8 Quantisierungsintervalle dargestellt werden M = 256. b) Nummeriert man die Quantisierungsintervalle von 0 bis 255, so steht die Bitfolge

Mehr

(Fast) Fourier Transformation und ihre Anwendungen

(Fast) Fourier Transformation und ihre Anwendungen (Fast) Fourier Transformation und ihre Anwendungen Johannes Lülff Universität Münster 14.01.2009 Inhaltsverzeichnis 1 Einführung 2 FFT 3 Anwendungen 4 Beschränkungen 5 Zusammenfassung Definition Fouriertransformation

Mehr

PRAKTIKUM REGELUNGSTECHNIK 2

PRAKTIKUM REGELUNGSTECHNIK 2 FACHHOCHSCHULE LANDSHUT Fachbereich Elektrotechnik Prof. Dr. G. Dorn PRAKTIKUM REGELUNGSTECHNIK 2 1 Versuch 2: Übertragungsfunktion und Polvorgabe 1.1 Einleitung Die Laplace Transformation ist ein äußerst

Mehr

Simulink: Einführende Beispiele

Simulink: Einführende Beispiele Simulink: Einführende Beispiele Simulink ist eine grafische Oberfläche zur Ergänzung von Matlab, mit der Modelle mathematischer, physikalischer bzw. technischer Systeme aus Blöcken mittels plug-and-play

Mehr

Abtastung schmalbandiger Signale und ihre Anwendung zur Hüllkurvenanalyse bei rechnergestützten schwingungsdiagnostischen Systemen

Abtastung schmalbandiger Signale und ihre Anwendung zur Hüllkurvenanalyse bei rechnergestützten schwingungsdiagnostischen Systemen tm Technisches Messen 74 (2007) 2 / DOI 10.1524/teme.2007.74.2.63 Oldenbourg Verlag 63 Abtastung schmalbandiger Signale und ihre Anwendung zur Hüllkurvenanalyse bei rechnergestützten schwingungsdiagnostischen

Mehr

P4.1 Einführung in die Signalverarbeitung

P4.1 Einführung in die Signalverarbeitung P4.1 Einführung in die Signalverarbeitung Phonetik und Sprachverarbeitung, 2. Fachsemester, Block 4 Sprachtechnologie I Florian Schiel Institut für Phonetik und Sprachverarbeitung, LMU München Signalverarbeitung

Mehr

A-196 PLL. 1. Einführung VCO. LPF Frequ. doepfer System A - 100 PLL A-196

A-196 PLL. 1. Einführung VCO. LPF Frequ. doepfer System A - 100 PLL A-196 doepfer System A - 100 PLL A-196 1. Einführung A-196 PLL VCO CV In Offset Das Modul A-196 enthält eine sogenannte Phase Locked Loop (PLL) - im deutschen mit Nachlaufsynchronisation bezeichnet, die aus

Mehr

Multiplikation und Division in Polarform

Multiplikation und Division in Polarform Multiplikation und Division in Polarform 1-E1 1-E Multiplikation und Division in Polarform: Mathematisches Rüstzeug n m b b = b n+m bn bm = bn m ( b n )m = b n m Additionstheoreme: cos 1 = cos 1 cos sin

Mehr