Grundlagen der Stochastik

Größe: px
Ab Seite anzeigen:

Download "Grundlagen der Stochastik"

Transkript

1 stoch_09.nb Grundlagen der Stochastik Das vorliegende Skript wurde im Original mit dem Programmsstem MATHEMATICA von WOLFRAM-Research [ geschrieben und erstmals auf den Webseiten der Hochschule für Technik und Wirtschaft in Dresden (Universit of Applied Sciences) [ veröffentlicht. Die Schrift trägt den Charakter eines Arbeitskonzepts, so dass ich für Hinweise und Anregungen aller Art, einschließlich zu Rechtschreibung, Grammatik und Druckbild sehr dankbar bin. Mit meinem Beitrag erhebe ich keinen Anspruch auf irgendeine Vollständigkeit bzw. Allgemeingültigkeit. Ich möchte einzig und allein an exemplarischen Problemstellungen der Baumechanik logisch einfache mathematisch-phsikalische Lösungsmethoden zur Diskussion stellen. Mirko Slavik, Dresden 9 Funktionen von Zufallsvariablen 9. Das Vorliegen einer eindeutigen funktionellen Zuordnung Y = g(x) ermöglicht es uns, die Verteilungsfunktion der Zufallsvariablen Y aus der Verteilungsfunktion der Zufallsgrößen X zu ermitteln. Hierbei muss die Funktion g(x) selbst nicht notwendig stetig sein []. Anmerkung: Um keine Verwechselungen mit der Dichtefunktion f(x) aufkommen zu lassen, verwenden wir für eine funktionelle Zuordnung die Schreibweise g(x). 9.2 Es wird eine Transformation der stetig differenzierbaren Funktion Y = g(x) vorgenommen. Im Intervall [ x, x 2 [ gelten die Beziehungen x ghxl T 0 und = g( x ) bzw. 2 = g( x 2 ). Mit der zu Y = g(x) gehörenden Umkehrfunktion X = h(y) erhält man, wenn die Funktion g(x) eindeutig und ihre Ableitung im Intervall [, 2 [ endlich und stetig ist, gemäß der Variablensubstitution in uneigentlichen Integralen [2] die Beziehungen P ( x < X b x 2 ) = Ÿ x x 2 f X HxL x P Ÿ 2 f X HhHLL À hhlà = P ( < Y b 2 ) für hhl > 0 P Ÿ 2 f X HhHLL À hhlà = P ( 2 < Y b ) für hhl < Die Wahrscheinlichkeitsdichte der Zufallsvariablen Y = g(x) lautet folglich f Y () ª f X HhHLL hhl. 9.4 Als Beispiel betrachten wir die lineare Funktion Y = m X + b. Für deren Umkehrfunktion nebst Ableitung schreiben wir h() = - b m bzw. hhl = m, womit für die Verteilungsdichte f Y() ª f X ( - b m ) À m À folgt. 9.5 Wir testen die Richtigkeit der obigen Ableitung an einem Beispiel. Die Zufallsgröße X sei normalverteilt. Es wird untersucht, ob die Integrationen über die beiden Verteilungsdichten identisch Eins werden. Zusätzlich werden die zugehörigen Mittelwerte, Standardabweichungen und Varianzen verifiziert bzw. neu berechnet. ewx =.234; sx = 2.345; m = 3.456; b = 2.345; fx@xd = sx J x ewx sx N2 2 ; f@d = AbsB m F sx b m ewx 2 sx 2 ;

2 stoch_09.nb 2 Test auf positiv Eins des fx Dichteintegrals :.,... des f Dichteintegrals :. Mittelwert ewx =.234 Standardabweichung sx = Varianz sx 2 = Mittelwert ew =.997 Standardabweichung s = Varianz s 2 = Haben wir ein Sstem von Funktionen vorliegen, für das veky = vekg(vekx) gilt, dann werden mehrdimensionale Transformationsbeziehungen benötigt. Die Funktion vekg sei wieder eindeutig bestimmt und umkehrbar (vgl. Absatz 9.2), sodass man vekx = vekh(veky) bilden kann. Für den zweidimensionalen Fall erhält man folgende Beziehungen: veky = { Y, Y 2 } = { g HX, X 2 L, g 2 HX, X 2 L } also Y = g HX, X 2 L und Y 2 = g 2 HX, X 2 L mit den Umkehrfunktionen vekx = { X, X 2 } = { h HY, Y 2 L, h 2 HY, Y 2 L } also X = h HY,Y 2 L und X 2 = h 2 HY, Y 2 L. 9.7 Die weitere Lösungsstrategie erfolgt in Anlehnung an die bekannte Variablentransformation in Flächenintegralen (vgl. u. a. [3]): Ÿ x2 Ÿ x f X Hx,x 2 L x x 2 ª Ÿ 2 Ÿ f X Hx H, 2 L, x 2 H, 2 LL À JH, 2 LÀ 2 mit der nach Carl Gustav Jacob JACOBI(804-85)) benannten JACOBIdeterminante (Funktionaldeterminante)» J(, 2 )» = Det[ matj ], wobei matj = x x 2 2 x 2 x In Auswertung von Absatz 9.7 lautet die zweidimensionale Dichte der Vektorfunktion veky (vgl. hierzu Absatz 9.3): f Y,Y 2 (, 2 ) = f X,X 2 (x, x 2 ) J 2» bzw. im allgemeiner Form für den n-dimensionalen Fall f veky (veky) = f vekx (vekh(vekx)» J n». 9.9 In den bisherigen Überlegungen waren die Dimensionen von veky und vekx gleich. Wir betrachten jetzt den Fall, dass die Dimension von veky kleiner ist als die von vekx. Als erstes Beispiel diene uns die Gleichung Y = X + X 2. Um die obigen Ansätze zu nutzen, schreibt man: Y = Y = X + X 2 und Y 2 = X 2 = Y - X. Dann folgt X = h HY, Y 2 L = Y - X 2 = Y - Y 2 bzw. X 2 = h 2 HY,Y 2 L = Y 2 also

3 stoch_09.nb 3 x = 2; x2 = 2; :matj = x x2 2 x 2 x2, Det@matJD> 888, 0<, 8, <<, < Da» J 2» =, folgt f Y,Y 2 (, 2 ) = f X,X 2 (x, x 2 )» J 2» P f Y,Y-X (, - x ) = f X,X 2 ( - x 2, x 2 ). Mit Ÿ - f Y,Y-X H, - x L x 2 = Ÿ - f X,X 2 H - x 2, x 2 L x 2 erhält man die Randdichte f = Ÿ - f x,x 2 H - x 2, x 2 L x 2 (siehe Absatz 8.24) und schließlich die Verteilungsfunktion für die Zufallsvariable Y F Y = Ÿ - Ÿ- f X,X 2 H - x 2, x 2 L x 2. Wenn X und X 2 stochastisch unabhängig sind, gilt F Y = Ÿ - Ÿ- f X H - x 2 L f X2 Hx 2 L x 2 = Ÿ - Ÿ- f X Hx L f X2 H - x L x. Anmerkung zum Term " f Y = Ÿ - f Y,Y -X H, - x L x 2 ": Mit der Beziehung (8.32) für die bedingte Wahrscheinlichkeitsdichte kann auch geschrieben werden Ÿ - f Y,Y -X H, - x L x 2 = Ÿ - f Y, X2 H, x 2 L x 2 P Ÿ - f X2,Y Hx 2 \ L f Y HL x 2 = f Y HL Ÿ - f X2,Y Hx 2 \ L x 2 = f HL. 9.0 Die Integrale Ÿ - f X Hx L f X2 H - x L x bzw. Ÿ - f X H - x 2 L f X2 Hx 2 L x 2 stellen übrigens Faltungsintegrale dar, die in der linearen Sstemanalse eine wichtige Rolle spielen. Man vergleiche hierzu z. B. ihre Anwendung in [4, Abschnitt 0]. 9. Gesucht werden die Wahrscheinlichkeitsdichte sowie die Verteilung für die Summe Y = X + X 2, wenn die beiden Zufallsgrößen X und X 2 in standardisierter Form normalverteilt sind. Es folgt: fx = x2 2 ; fx2 = x22 2 ;f == fx H xl2 2 x 2 f 4

4 stoch_09.nb 4 :F == u 2 4 u, F_Beispiel == u 2 4 u ê. 0 êê N> :F 2 K + ErfB FO, F_Beispiel 0.5> In [3] ist eine anschauliche Anwendung aus dem Gebiet der Hdraulik angeführt. An der Schwachstelle eines Flussdeiches sei ein ausreichender Widerstand nur bis zu einem Volumenstrom (Durchfluss) von Q = 500 m³/s sichergestellt. Unmittelbar vor diesem kritischen Querschnitt liegt der Zusammenfluss zweier Teilströme. Die statistischen Daten ihrer beiden Pegelstände belegen deren stochastische Unabhängigkeit. Die Jahresextrema ihrer Durchflüsse sind exponentiell verteilt und ihre Erwartungswerte betragen ewx P l - = 550 m³ und ewx 2 P l - 2 = 220 m³. s s 9.3 Gesucht ist die Versagenswahrscheinlichkeit P f (Y = X + X 2 > 500) P - F Y (Y = X + X 2 < 500) des Deiches (vgl. hierzu auch [ 8, Abschnitt 4 ]). Der Lösungsalgorithmus ist mit den obigen Überlegungen recht einfach nachvollziehbar, sodass wir uns weitgehend auf den mathematischen Formalismus beschränken. Einzig die Integration bereitet einige Schwierigkeiten. fx =λ λ x ; fx2 =λ2 λ2 x2 ; :ewx == x fx x, ewx2 == x2 fx2 x2> 8ewx 550., ewx2 220.< ClearAll@λ, λ2d f == 0 Iλ λ x λ2 λ2 H xl M x λ2 f λλ2ifbre@λ2d < Re@λD, λ λ2, IntegrateA x λ+x λ2 λ2, 8x, 0, <, Assumptions Re@ λ +λ2d 0EF P f λ λ2 IntegrateA x λ+x λ2 λ2, 8x,0,<, Assumptions Re@λ2D Re@λDE P f

5 stoch_09.nb Die Versagenswahrscheinlichkeit beträgt P f > % oder anders ausgedrückt, der Deich versagt im Mittel aller 9,24 Jahre. Um beim letzten, inneren Integral in (9.3) die Richtigkeit der Wahl der oberen Integrationsgrenze von statt + besser zu verstehen, berechnen wir die Versagenswahrscheinlichkeit P f mit der in [8, Abschnitt 4.3 ] dargestellten strengen Methode der Zuverlässigkeitstheorie. Die Grenzzustandsgleichung g(vekx) hat im vorliegenden Fall die Form g HvekxL 500 H x 2 + x L Zwecks Veranschaulichung wird zur 3D-Darstellung der zweidimensionalen Verteilungsdichte f X,X 2 H - x 2,x 2 L = f X Hx L f X2 H - x L = f X Hx L f X2 Hx 2 L zusätzlich der ContourPlot einschließlich der Grenzzustandsgleichung (dicke schwarze Linie) ausgewiesen. fx =λ λ x ; fx2 =λ2 λ2 x2 ; oben = 550; ggerade = Show@ Graphics@8AbsoluteThickness@2D, Line@Table@850 i, H il <, 8i, 0, 30<DD<DD; blick = 8.05,.95,.65<; Plot3DAfx fx2, 8x, 0, oben<, 8x2, 0, oben<, PlotRange All, AxesLabel " X " f X,X 2 "=, Mesh False, ColorFunction "CMYKColors", PlotPoints 00, PlotLabel > " ", ViewPoint blicke

6 stoch_09.nb 6 contour = ContourPlot@fx fx2, 8x, 0, oben<, 8x2, 0, oben<, PlotPoints 00, PlotRange All, ContourShading True, Contours 50, ColorFunction "CMYKColors", Frame True, Axes True, GridLines None, LabelStle Black, FrameLabel Black, FontFamil "Arial", Bold, 8DD, None, None, Text@Stle@ "X Black, FontFamil "Arial", Bold, 8DD<, PlotLabel Text@Stle@" Zweidimensionale Verteilungsdichte ", Black, FontFamil "Arial", Italic, Bold, 0DDD; Show@8contour, ggerade<d 9.6 Von entscheidender Bedeutung für das Überlebens- bzw. Versagensintegral sind nun die Integrationsgrenzen, die man aus dem obigen ContourPlot ablesen kann. Rechts von der Grenzzustandsgleichung g(vekx) ist der Versagensbereich Y > 500 m³/s, also g(vekx) < 0. Links folglich der Überlebensbereich Y b 500 m³/s, also g(vekx) r 0. P r f x Hx L f x2 Hx 2 L dx dx 2 P f f x Hx L f x2 Hx 2 L dx dx 2 8vekx» g HvekxL r 0< 8vekx» g HvekxL < 0<

7 stoch_09.nb 7 fx =λ λ x ; fx2 =λ2 λ2 x2 ; PrintB"Test der zweidimensionalen Dichte auf Eins : ", fx fx2 x x2f :P r x fx fx2 x2 x, Pf x2 fx fx2 x x2> Test der zweidimensionalen Dichte auf Eins :. 8P r , P f < Ã Versteckte Zelle zur Problematik der Integrationsgrenzen. 9.7 Ein weiteres wichtiges Problem stellt die Untersuchung des Produktes zweier Zufallsgrößen, also Y = X X 2, dar. Der Lösungsalgorithmus lautet Y = Y = X X 2 und Y 2 = X 2 = Y X dann folgt für X = h HY, Y 2 L = Y Y 2 und X 2 = h 2 HY, Y 2 L = Y 2 also x = 2 ;x2= 2; :matj = x x2 2 x 2 x2, Det@matJD> :::,0>, : 2,>>, > und schließlich f Y = Ÿ - x 2 f X, X 2 x 2, x 2 x 2.

Grundlagen der Stochastik

Grundlagen der Stochastik stoch_08.nb Grundlagen der Stochastik Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOLFRAM-Research [http://www.wolfram.com] geschrieben und erstmals auf den Webseiten

Mehr

Baudynamik und Zustandsanalyse

Baudynamik und Zustandsanalyse Baudynamik und Zustandsanalyse Eine Einführung in die Baudynamik mit Mathematica Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOLFRAM-Research [http://www.wolfram.com]

Mehr

Grundlagen der Stochastik

Grundlagen der Stochastik stoch_7.nb 1 Grundlagen der Stochastik Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOLFRAM-Research [http://www.wolfram.com] geschrieben und erstmals auf den Webseiten

Mehr

Baudynamik und Zustandsanalyse

Baudynamik und Zustandsanalyse Baudynamik und Zustandsanalyse Eine Einführung in die Baudynamik mit Mathematica Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOLFRAM-Research [http://www.wolfram.com]

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 15. April 2019 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 1. April

Mehr

Übung Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung mit

Übung Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung mit Übung 2 24..23 Ü b u n g 2 Aufgabe Die Poissonverteilung P(λ) hat die Wahrscheinlichkeitsfunktion p(x) = λx e λ (x ) x! Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung

Mehr

Statistik I für Betriebswirte Vorlesung 4

Statistik I für Betriebswirte Vorlesung 4 Statistik I für Betriebswirte Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 25. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

Chi-Quadrat-Verteilung

Chi-Quadrat-Verteilung Chi-Quadrat-Verteilung Wikipedia http://de.wikipedia.org/wiki/chi-quadrat-verteilung 1 von 7 6/18/2009 6:13 PM Chi-Quadrat-Verteilung aus Wikipedia, der freien Enzyklopädie Die Chi-Quadrat-Verteilung ist

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

Finanzmathematische Modelle und Simulation

Finanzmathematische Modelle und Simulation Finanzmathematische Modelle und Simulation WS 9/1 Rebecca Henkelmann In meiner Ausarbeitung Grundbegriffe der Stochastik I, geht es darum die folgenden Begriffe für die nächsten Kapitel einzuführen. Auf

Mehr

Statistik für Ingenieure Vorlesung 3

Statistik für Ingenieure Vorlesung 3 Statistik für Ingenieure Vorlesung 3 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 14. November 2017 3. Zufallsgrößen 3.1 Zufallsgrößen und ihre Verteilung Häufig sind

Mehr

Baudynamik und Zustandsanalyse

Baudynamik und Zustandsanalyse Baudynamik und Zustandsanalyse Eine Einführung in die Baudynamik mit Mathematica Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOLFRAM-Research [http://www.wolfram.com]

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Musterlösung zur Klausur im Fach Fortgeschrittene Statistik am Gesamtpunktzahl: 60

Musterlösung zur Klausur im Fach Fortgeschrittene Statistik am Gesamtpunktzahl: 60 WESTFÄLISCHE WILHELMS - UNIVERSITÄT MÜNSTER Wirtschaftswissenschaftliche Faktultät Prof. Dr. Bernd Wilfling Professur für VWL, insbesondere Empirische Wirtschaftsforschung Musterlösung zur Klausur im Fach

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Baudynamik und Zustandsanalyse

Baudynamik und Zustandsanalyse Baudynamik und Zustandsanalyse Eine Einführung in die Baudynamik mit Mathematica Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOFRAM-Research [http://www.wolfram.com]

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 12. Übung SS 18: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 12. Übung SS 18: Woche vom Übungsaufgaben 12. Übung SS 18: Woche vom 2. 7. 6. 7. 2018 Stochastik VI: Zufallsvektoren; Funktionen von ZG Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen

Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Oktober 2018 Prof. Dr. Hans-Jörg

Mehr

i =1 i =2 i =3 x i y i 4 0 1

i =1 i =2 i =3 x i y i 4 0 1 Aufgabe (5+5=0 Punkte) (a) Bei einem Minigolfturnier traten 6 Spieler gegeneinander an. Die Anzahlen der von ihnen über das gesamte Turnier hinweg benötigten Schläge betrugen x = 24, x 2 = 27, x = 2, x

Mehr

1.5 Mehrdimensionale Verteilungen

1.5 Mehrdimensionale Verteilungen Poisson eine gute Näherung, da np = 0 und 500p = 5 00 = n. Wir erhalten somit als Näherung Exakte Rechnung ergibt P(2 X 0) = k=2 0 k=2 π (k) = 0,26424. 0 ( ) 00 P(2 X 0) = 0,0 k 0,99 00 k = 0,264238. k.4.2.4

Mehr

10 Transformation von Zufallsvariablen

10 Transformation von Zufallsvariablen 10 Transformation von Zufallsvariablen Sei X : Ω R eine Zufallsvariable mit Verteilungsfunktion F X (x) = P(X < x). Wir betrachten eine Funktion g: R R und sei Zufallsvariable Y : Ω R mit Y = g(x). Y :

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

3 Produktmaße und Unabhängigkeit

3 Produktmaße und Unabhängigkeit 3 Produktmaße und Unabhängigkeit 3.1 Der allgemeine Fall Im Folgenden sei I eine beliebige Indexmenge. i I sei (Ω i, A i ein messbarer Raum. Weiter sei Ω : i I Ω i ein neuer Ergebnisraum. Wir definieren

Mehr

VERTEILUNGEN VON FUNKTIONEN EINER ZUFALLSVARIABLEN

VERTEILUNGEN VON FUNKTIONEN EINER ZUFALLSVARIABLEN KAPITEL 15 VETEILUNGEN VON FUNKTIONEN EINE ZUFALLSVAIABLEN In diesem Kapitel geht es darum, die Verteilungen für gewisse Funktionen von Zufallsvariablen zu bestimmen. Wir werden uns auf den Fall absolut

Mehr

Kapitel VII - Funktion und Transformation von Zufallsvariablen

Kapitel VII - Funktion und Transformation von Zufallsvariablen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VII - Funktion und Transformation von Zufallsvariablen Markus Höchstötter Lehrstuhl

Mehr

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Version: 22. September 2015 Evelina Erlacher 1 Mengen Es sei Ω eine Menge (die Universalmenge ) und A, B seien Teilmengen von Ω. Dann schreiben

Mehr

1. Grundbegri e der Stochastik

1. Grundbegri e der Stochastik . Grundbegri e der Stochastik Raum der Ereignisse. Die einelementigen Teilmengen f!g heißen auch Elementarereignisse. Das Ereignis A tritt ein, wenn ein! A eintritt. A ist ein geeignetes System von Teilmengen

Mehr

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung 4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung Häufig werden mehrere Zufallsvariablen gleichzeitig betrachtet, z.b. Beispiel 4.1. Ein Computersystem bestehe aus n Teilsystemen. X i sei der Ausfallzeitpunkt

Mehr

Klausur zur Vorlesung

Klausur zur Vorlesung Institut für Mathematische Stochastik WS 2006/2007 Universität Karlsruhe 12. Februar 2007 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Aufgabe 1 (15 Punkte) Klausur zur Vorlesung Statistik für Biologen

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 20. April 2017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 18.

Mehr

4 MEHRDIMENSIONALE VERTEILUNGEN

4 MEHRDIMENSIONALE VERTEILUNGEN 4 MEHRDIMENSIONALE VERTEILUNGEN 4.14 Stochastische Vektoren 1. Der Merkmalraum des stochastischen Vektors (X, Y ) sei M = R 2. Betrachten Sie die folgenden Ereignisse und ihre Wahrscheinlichkeiten: A 1

Mehr

Zulassungsprüfung Stochastik,

Zulassungsprüfung Stochastik, Zulassungsprüfung Stochastik, 5.5. Wir gehen stets von einem Maßraum (Ω, A, µ) bzw. einem Wahrscheinlichkeitsraum (Ω,A,P) aus. Die Borel σ-algebra auf R n wird mit B n bezeichnet, das Lebesgue Maß auf

Mehr

Stochastik Musterlösung 7

Stochastik Musterlösung 7 ETH Zürich HS 216 RW, D-MATL, D-MAVT Prof. Dr. Martin Schweizer Koordinator Calypso Herrera Stochastik Musterlösung 7 1. a) Es sind folgende zwei Eigenschaften zu zeigen: f X,Y (x, y) für alle (x, y) R

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr 1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen Sei X eine kontinuierliche Zufallsvariable. Wir können aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir

Mehr

Diskrete Zufallsvariablen (Forts.) I

Diskrete Zufallsvariablen (Forts.) I 9 Eindimensionale Zufallsvariablen Diskrete Zufallsvariablen 9.4 Diskrete Zufallsvariablen (Forts.) I T (X ) ist endlich oder abzählbar unendlich, die Elemente von T (X ) werden daher im Folgenden häufig

Mehr

Diskrete Zufallsvariablen (Forts.) I

Diskrete Zufallsvariablen (Forts.) I 9 Eindimensionale Zufallsvariablen Diskrete Zufallsvariablen 9.4 Diskrete Zufallsvariablen (Forts.) I T (X ) ist endlich oder abzählbar unendlich, die Elemente von T (X ) werden daher im Folgenden häufig

Mehr

Das hier ist mein file mit den Übungsbeispielen die zu Analysis 3 entstanden sind.

Das hier ist mein file mit den Übungsbeispielen die zu Analysis 3 entstanden sind. Das hier ist mein file mit den Übungsbeispielen die zu Analysis 3 entstanden sind. MfG Kuntner Nikolaj.5..5..5..5.5..5..5..5 Funktionalwert.5..5..5.5 3 4 5 6 Parameter t,π In[7]:= SetOptions Plot, ImageSize

Mehr

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Wahrscheinlichkeitstheorie und Statistik Definitionen und Sätze Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2018 2.5.2018 Diskrete Wahrscheinlichkeitsräume Diskreter

Mehr

Baudynamik und Zustandsanalyse

Baudynamik und Zustandsanalyse Baudynamik und Zustandsanalyse Eine Einführung in die Baudynamik mit Mathematica Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOLFRAM-Research [http://www.wolfram.com]

Mehr

Einführung in die angewandte Stochastik

Einführung in die angewandte Stochastik Einführung in die angewandte Stochastik Fabian Meyer 5. April 2018 Inhaltsverzeichnis 1 Wahrscheinlichkeitsrechnung 3 1.1 Definitionen................................... 3 1.2 Wahrscheinlichkeitsmaß, Wahrscheinlichkeitsverteilung,

Mehr

Wahrscheinlichkeitstheorie und Statistik für Studierende des Maschinenbaus vom

Wahrscheinlichkeitstheorie und Statistik für Studierende des Maschinenbaus vom Institut für Stochastik WS 009/10 Karlsruher Institut für Technologie (KIT) Dr. B. Klar Klausur Wahrscheinlichkeitstheorie und Statistik für Studierende des Maschinenbaus vom 08.0.010 Musterlösungen Aufgabe

Mehr

Statistik für Ingenieure Vorlesung 6

Statistik für Ingenieure Vorlesung 6 Statistik für Ingenieure Vorlesung 6 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 05. Dezember 2017 3.4.3 Stetige Gleichverteilung Parameter: Intervall [a, b] R. Zufallsgröße

Mehr

Übungsscheinklausur,

Übungsscheinklausur, Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...

Mehr

Verteilungen eindimensionaler stetiger Zufallsvariablen Stetige Verteilungen. Chi-Quadrat-Verteilung Studentverteilung Fisher-Verteilung

Verteilungen eindimensionaler stetiger Zufallsvariablen Stetige Verteilungen. Chi-Quadrat-Verteilung Studentverteilung Fisher-Verteilung Verteilungen eindimensionaler stetiger Zufallsvariablen Stetige Verteilungen Chi-Quadrat-Verteilung Studentverteilung Fisher-Verteilung Typisierung der stetigen theoretischen Verteilungen Bibliografie:

Mehr

Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse

Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse Die Gamma-Verteilung 13.12.212 Diese Verteilung dient häufig zur Modellierung der Lebensdauer von langlebigen Industriegüstern. Die Dichte

Mehr

8 Verteilungsfunktionen und Dichten

8 Verteilungsfunktionen und Dichten 8 Verteilungsfunktionen und Dichten 8.1 Satz und Definition (Dichten) Eine Funktion f : R R heißt Dichtefunktion, kurz Dichte, wenn sie (Riemann-) integrierbar ist mit f(t) 0 für alle t R und Setzt man

Mehr

Grundlagen der Stochastik

Grundlagen der Stochastik stoch_00_05.nb 1 Grundlagen der Stochastik Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von OLFRAM-Research [http://www.wolfram.com] geschrieben und erstmals auf den ebseiten

Mehr

TU DORTMUND Sommersemester 2018

TU DORTMUND Sommersemester 2018 Fakultät Statistik. April 08 Blatt Aufgabe.: Wir betrachten das Zufallsexperiment gleichzeitiges Werfen zweier nicht unterscheidbarer Würfel. Sei A das Ereignis, dass die Augensumme beider Würfel ungerade

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis Vorbemerkungen 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 6 5 Hilfsmittel aus der Kombinatorik 7 6 Bedingte

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

Zentralübung zur Vorlesung Diskrete Wahrscheinlichkeitstheorie

Zentralübung zur Vorlesung Diskrete Wahrscheinlichkeitstheorie SS 2014 Zentralübung zur Vorlesung Diskrete Wahrscheinlichkeitstheorie Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2014ss/dwt/uebung/ 5. Juni 2014 ZÜ DWT ZÜ VI Übersicht:

Mehr

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Version: 15. Jänner 2017 Evelina Erlacher Inhaltsverzeichnis 1 Mengen 2 2 Wahrscheinlichkeiten 3 3 Zufallsvariablen 5 3.1 Diskrete Zufallsvariablen............................

Mehr

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen David Geier und Sven Middelberg RWTH Aachen, Sommersemester 27 Inhaltsverzeichnis Information 2 Aufgabe 4 Aufgabe 2 6 4 Aufgabe

Mehr

Statistik III. Walter Zucchini Fred Böker Andreas Stadie

Statistik III. Walter Zucchini Fred Böker Andreas Stadie Statistik III Walter Zucchini Fred Böker Andreas Stadie Inhaltsverzeichnis 1 Zufallsvariablen und ihre Verteilung 1 1.1 Diskrete Zufallsvariablen........................... 1 1.2 Stetige Zufallsvariablen............................

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

Stochastik Musterlösung 4

Stochastik Musterlösung 4 ETH Zürich HS 218 RW, D-MATL, D-MAVT Prof. Marloes H. Maathuis Koordinator Dr. Marvin S. Müller Stochastik Musterlösung 4 1. Die Zufallsvariable, die die Anzahl eingehender Telefonanrufe in einer Telefonzentrale

Mehr

Kapitel VII. Einige spezielle stetige Verteilungen

Kapitel VII. Einige spezielle stetige Verteilungen Kapitel VII Einige spezielle stetige Verteilungen D. 7.. (Normalverteilung) Eine stetige Zufallsgröße X sei als normalverteilt bezeichnet, wenn sie folgende Wahrscheinlichkeitsdichte besitzt: µ f ( ; µ,

Mehr

Übung 1: Wiederholung Wahrscheinlichkeitstheorie

Übung 1: Wiederholung Wahrscheinlichkeitstheorie Übung 1: Wiederholung Wahrscheinlichkeitstheorie Ü1.1 Zufallsvariablen Eine Zufallsvariable ist eine Variable, deren numerischer Wert solange unbekannt ist, bis er beobachtet wird. Der Wert einer Zufallsvariable

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 1. Dezember 21 1 Integralrechnung Flächeninhalt Stammfunktion Rechenregeln 2 Dichten von Erwartungswert und Varianz

Mehr

Vorlesung 7b. Der Zentrale Grenzwertsatz

Vorlesung 7b. Der Zentrale Grenzwertsatz Vorlesung 7b Der Zentrale Grenzwertsatz 1 Zentraler Grenzwertsatz (Tschebyscheff) Die standardisierte Summe von unabhängigen, identisch verteilten R-wertigen Zufallsvariablen konvergiert in Verteilung

Mehr

Die n-dimensionale Normalverteilung

Die n-dimensionale Normalverteilung U. Mortensen Die n-dimensionale Normalverteilung Es wird zunächst die -dimensionale Normalverteilung betrachtet. Die zufälligen Veränderlichen X und Y seien normalverteilt. Gesucht ist die gemeinsame Verteilung

Mehr

Gegenbeispiele in der Wahrscheinlichkeitstheorie

Gegenbeispiele in der Wahrscheinlichkeitstheorie Gegenbeispiele in der Wahrscheinlichkeitstheorie Mathias Schaefer Universität Ulm 26. November 212 1 / 38 Übersicht 1 Normalverteilung Definition Eigenschaften Gegenbeispiele 2 Momentenproblem Definition

Mehr

Mathematica: u=5;s=1;plot[exp[-0.5((x-u)/s)^2],{x,0,10}] 76

Mathematica: u=5;s=1;plot[exp[-0.5((x-u)/s)^2],{x,0,10}] 76 4. Normalverteilung Gauß'sche Glockenkurve: P(a X b) = b 1 x 1 a e dx 1 0.8 0.6 0.4 0. 4 6 8 10 Mathematica: u=5;s=1;plot[exp[-0.5((x-u)/s)^],{x,0,10}] 76 Zentraler Grenzwertsatz: Es sei X 1, X,... eine

Mehr

Musterlösung zu Serie 8

Musterlösung zu Serie 8 Dr. Markus Kalisch Statistik I für Biol./Pharm. Wiss./HST) FS 15 Musterlösung zu Serie 8 1. a) Damit fx) eine Dichte ist, muss die Fläche des Dreiecks gleich 1 sein. Es muss also gelten c = 1. Daraus folgt

Mehr

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Stefan Etschberger für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2017 Normalverteilung Eine Zufallsvariable X mit einer Dichtefunktion f(x) =

Mehr

Name Vorname Fachrichtg. Matrikelnr. Punkte Klausur Aufgabe max. Punkte Punkte. Bitte beachten!

Name Vorname Fachrichtg. Matrikelnr. Punkte Klausur Aufgabe max. Punkte Punkte. Bitte beachten! Fakultät für Mathematik Institut für Algebra und Geometrie Prof. Dr. Martin Henk, Dr. Michael Höding Modulprüfung Mathematik III Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik,

Mehr

1. Die gemeinsame Dichtefunktion der Zufallsvariablen X,Y sei. 1 für 0 x 1 und 0 y 1 0 sonst. 1 Volumen über schraffierter Fläche = = 0.

1. Die gemeinsame Dichtefunktion der Zufallsvariablen X,Y sei. 1 für 0 x 1 und 0 y 1 0 sonst. 1 Volumen über schraffierter Fläche = = 0. Übungsbeispiele. Die gemeinsame Dichtefunktion der Zufallsvariablen X,Y sei { für und f(,) sonst (a) Skizzieren Sie die Dichtefunktion. f(,) (b) Berechnen Sie P(.5,.75) Lösung:.75 Volumen über schraffierter

Mehr

Referenten: Gina Spieler, Beatrice Bressau, Laura Uhlmann Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn

Referenten: Gina Spieler, Beatrice Bressau, Laura Uhlmann Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn 8.5 Eindimensionale stetige Zufallsvariablen Eine Zufallsvariable X heißt stetig, wenn es eine Funktion f(x) gibt, sodass die Verteilungsfunktion von X folgende Gestalt hat: x F(x) = f(t)dt f(x) heißt

Mehr

1 Dichte- und Verteilungsfunktion

1 Dichte- und Verteilungsfunktion Tutorium Yannick Schrör Klausurvorbereitungsaufgaben Statistik Lösungen Yannick.Schroer@rub.de 9.2.26 ID /455 Dichte- und Verteilungsfunktion Ein tüchtiger Professor lässt jährlich 2 Bücher drucken. Die

Mehr

Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen

Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR STOCHASTIK SS 2010 Karlsruher Institut für Technologie Priv.-Doz. Dr. D. Kadelka Klausur Wahrscheinlichkeitstheorie und Statistik vom 14.9.2010 Musterlösungen Aufgabe 1: Gegeben sei eine Urliste

Mehr

3.5.2 Mehrere Funktionen von einem Satz von Zufallszahlen

3.5.2 Mehrere Funktionen von einem Satz von Zufallszahlen 3.5. NICHT-LINEARE FUNKTIONEN VON ZUFALLSVARIABLEN 43 3.5. Mehrere Funktionen von einem Satz von Zufallszahlen Wir betrachten jetzt den allgemeineren Fall, dass m Funktionen g (g 1,...,g m ) von den gleichen

Mehr

Statistik Klausur Sommersemester 2013 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN!

Statistik Klausur Sommersemester 2013 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Statistik 2 1. Klausur Sommersemester 2013 Hamburg, 26.07.2013 A BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................ Vorname:.............................................................................

Mehr

Satz 105 (Gedächtnislosigkeit) Beweis: Sei X exponentialverteilt mit Parameter λ. Dann gilt Pr[X > x + y X > y] = Pr[X > y] Pr[X > x + y] = Pr[X > y]

Satz 105 (Gedächtnislosigkeit) Beweis: Sei X exponentialverteilt mit Parameter λ. Dann gilt Pr[X > x + y X > y] = Pr[X > y] Pr[X > x + y] = Pr[X > y] Gedächtnislosigkeit Satz 105 (Gedächtnislosigkeit) Eine (positive) kontinuierliche Zufallsvariable X mit Wertebereich R + ist genau dann exponentialverteilt, wenn für alle x, y > 0 gilt, dass Pr[X > x

Mehr

Y = g 2 (U 1,U 2 ) = 2 ln U 1 sin 2πU 2

Y = g 2 (U 1,U 2 ) = 2 ln U 1 sin 2πU 2 Bsp. 72 (BOX MÜLLER Transformation) Es seien U 1 und U 2 zwei unabhängige, über dem Intervall [0, 1[ gleichverteilte Zufallsgrößen (U i R(0, 1), i = 1, 2), U = (U 1,U 2 ) T ein zufälliger Vektor. Wir betrachten

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 5 29.03.2011 1 Inhalt der heutigen Übung Vorrechnen der Hausübung D.3 Gemeinsames Lösen der Übungsaufgaben D.4: Zufallsvektoren D.5: Multivariate Wahrscheinlichkeiten

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x

Mehr

Kennwerteverteilungen von Häufigkeiten und Anteilen

Kennwerteverteilungen von Häufigkeiten und Anteilen Kennwerteverteilungen von Häufigkeiten und Anteilen SS200 6.Sitzung vom 29.05.200 Die hypergeometrische Verteilung Wahrscheinlichkeitsverteilung der Häufigkeit eines binären Merkmals bei Einfacher Zufallsauswahl

Mehr

Musterlösung zu Blatt 1

Musterlösung zu Blatt 1 Musterlösung zu Blatt Analysis III für Lehramt Gymnasium Wintersemester 0/4 Überprüfe zunächst die notwendige Bedingung Dfx y z = 0 für die Existenz lokaler Extrema Mit x fx y z = 8x und y fx y z = + z

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, 4. Mai 2017 Dr. Michael O. Distler

Mehr

Mathematik 2 für Bauingenieure

Mathematik 2 für Bauingenieure Mathematik 2 für Bauingenieure Name (bitte ausfüllen): Prüfung am 6.3.2015 Reinhard Winkler Matrikelnummer (bitte ausfüllen): Die mündliche Prüfung findet in der Woche von 16. bis 20.3.2015 statt. Wenn

Mehr

Statistik für Informatiker, SS Grundlagen aus der Wahrscheinlichkeitstheorie

Statistik für Informatiker, SS Grundlagen aus der Wahrscheinlichkeitstheorie 1/19 Statistik für Informatiker, SS 2018 1 Grundlagen aus der Wahrscheinlichkeitstheorie 1.3 Bedingte Wahrscheinlichkeiten, Unabhängigkeit, gemeinsame Verteilung 1.3.4 Matthias Birkner http://www.staff.uni-mainz.de/birkner/statinfo18/

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 7. Mai 2018 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 5 Version: 30. April

Mehr

Vorlage für das Schulcurriculum Qualifikationsphase

Vorlage für das Schulcurriculum Qualifikationsphase Vorlage für das Schulcurriculum Qualifikationsphase Grundkurs/grundlegendes Anforderungsniveau Kompetenzen/ Fähigkeiten L1 Leitidee: Algorithmus und Zahl - lösen lineare Gleichungssysteme mithilfe digitaler

Mehr

7 Integralrechnung für Funktionen einer Variablen

7 Integralrechnung für Funktionen einer Variablen 7 Integralrechnung für Funktionen einer Variablen In diesem Kapitel sei stets D R, und I R ein Intervall. 7. Das unbestimmte Integral (Stammfunktion) Es sei f : I R eine Funktion. Eine differenzierbare

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungen stetiger Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

1 Grundlagen der Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsräume. Ein erster mathematischer Blick auf Zufallsexperimente...

1 Grundlagen der Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsräume. Ein erster mathematischer Blick auf Zufallsexperimente... Inhaltsverzeichnis 1 Grundlagen der Wahrscheinlichkeitsrechnung 1 1.1 Wahrscheinlichkeitsräume Ein erster mathematischer Blick auf Zufallsexperimente.......... 1 1.1.1 Wahrscheinlichkeit, Ergebnisraum,

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:

Mehr

Kapitel 8: Zufallsvektoren

Kapitel 8: Zufallsvektoren Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse 03.12.2015 Kapitel 8: Zufallsvektoren Statt einem Merkmal werden häufig mehrere Merkmale gleichzeitig betrachtet, z.b. Körpergröße und

Mehr

Begriffe Wahrscheinlichkeitstheorie I

Begriffe Wahrscheinlichkeitstheorie I Begriffe Wahrscheinlichkeitstheorie I Träger / Alphabet einer diskreten Zufallsgröße nach ( 0.0) Der Träger S X R der diskreten Zufallsgröße X ist die Menge aller Werte x, die die Zufallsgröße (mit einer

Mehr

Vorlesung Stetige Verteilungen / Mathematische Behandlung

Vorlesung Stetige Verteilungen / Mathematische Behandlung B E A C D Z Faultät Verehrswissenschaften Friedrich List Professur für Verehrsströmungslehre Verehrssystemtheorie I+II (V.-Wirtschaft) Vorlesung..0 Stetige Verteilungen / Mathematische Behandlung Neufert,

Mehr

Fourier-Transformation

Fourier-Transformation ANHANG A Fourier-Transformation In diesem Anhang werden einige Definitionen Ergebnisse über die Fourier-Transformation dargestellt. A. Definition Theorem & Definition: Sei f eine integrable komplexwertige

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management für Betriebswirtschaft und internationales Management Sommersemester 2015 Prof. Dr. Stefan Etschberger Hochschule Augsburg Normalverteilung Eine Zufallsvariable X mit einer Dichtefunktion und σ > 0 heißt

Mehr

Vorlesung 5a. Zufallsvariable mit Dichten

Vorlesung 5a. Zufallsvariable mit Dichten Vorlesung 5a 1 Vorlesung 5a Zufallsvariable mit Dichten Vorlesung 5a Zufallsvariable mit Dichten Teil 1 Uniforme Verteilung, Exponentialverteilung. Kontinuierlich uniform verteilte Zufallsvariable: 2 Kontinuierlich

Mehr

Statistik für Ingenieure Vorlesung 5

Statistik für Ingenieure Vorlesung 5 Statistik für Ingenieure Vorlesung 5 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 28. November 2017 3.4 Wichtige stetige Verteilungen 3.4.1 Exponentialverteilung Parameter:

Mehr

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen Zusammenfassung: e und e Verteilungen Woche 4: Gemeinsame Verteilungen Wahrscheinlichkeitsverteilung p() Wahrscheinlichkeitsdichte f () WBL 15/17, 11.05.2015 Alain Hauser P(X = k

Mehr