Kreissektoren - Bogenlänge und Sektorfläche

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Kreissektoren - Bogenlänge und Sektorfläche"

Transkript

1 Kreissektoren - Bogenlänge und Sektorfläche 1 In folgender Tabelle ist r Radius, b Bogenlänge und φ Mittelpunktswinkel eines Kreissektors A s ist dessen Flächeninhalt Berechne die fehlenden Größen: r φ b A s Lösung: r φ b A s ,6 2, ,0 12,5 4, , Vervollständige die folgenden Tabellen: (a) (b) Lösung: (a) (b) Gradmaß Bogenmaß 4 11π 6 15π 6 3π 4 Gradmaß Bogenmaß Gradmaß Bogenmaß 6 π 11 4 π 3 4 π 11 6 π 15 6 π 11 3 π 3 4 π 13 4 π Gradmaß Bogenmaß 0, 35 3, , , 6 3 Zwei gleiche Kreise 1

2 Die Abbildung oben zeigt zwei völlig identische Kreise Sie sind so angeordnet, dass die Kreislinie des einen Kreises durch den Mittelpunkt des anderen Kreises verläuft Und entsprechend schneidet die Kreislinie des zweiten Kreises den Mittelpunkt des ersten Kreises (a) Wie groß ist der Anteil der Kreislinie eines der beiden Kreise, der sich im zweiten Kreis befindet? (b) Die Kreise haben jeweils einen Radius von 100 Zentimetern Wie groß ist dann der Abstand eines Schnittpunkts der beiden Kreislinien zur Geraden durch die Mittelpunkte beider Kreise? (c) Wenn man die beiden Kreise als eine Fläche betrachtet, welchen Anteil dieser Fläche bildet dann die Schnittmenge der beiden Kreise? Quelle: Fich, O: Mathelogik (2001) Lösung: (a) 1 3 (gleichseitiges Dreieck: Einen Schnittpunkt und die Mittelpunkte betrachten) (b) 86, 6 cm (rechtwinkliges Dreieck: Ein Schnittpunkt, ein Mittelpunkt und Mittelpunkt der Strecke, die Kreismittelpunkte verbindet) (c) 24, 3% (Zu den Dreiecken aus (b) fehlen 4 Bogenstücke über den Dreiecksseiten Diese als Differenz von Kreissektor (60 ) und Dreieck berechenbar) 2

3 4 Was ist größer - Der Kreis oder das Quadrat? Die Abbildung zeigt einen Kreis und ein Quadrat, wobei sich der größte Teil des Kreises innerhalb des Quadrats befindet, während ein kleiner Teil des Kreises außerhalb des Quadrats liegt Kreis und Quadrat haben den gleichen Mittelpunkt Für alle Seiten des Quadrats gilt, dass 60% der Seitenlänge innerhalb des Kreises oder auf der Kreislinie liegen Welche der Figuren hat die größere Fläche? Quelle: Fich, O: Mathelogik (2001) Lösung: Der Kreis ist größer (rechtwinkliges Dreieck: Mittelpunkt, Mittelpunkt einer Quadratseite und angrenzender Schnittpunkt von Kreis und Quadrat) Beispiel: Quadratflächeninhalt = 1, dann Kreisflächeninhalt 1, Eisenrohre werden in einem Bündel wie in der Abbildung geliefert 3

4 (a) Berechnen Sie für das abgebildete Bündel die Länge des Stahlbands, welches das Bündel zusammenhält, wenn der Rohrdurchmesser mit d bezeichnet wird (b) Wie groß ist die Fläche, die im Querschnitt von dem Stahlband umfaßt wird? (Teile geschickt auf) (c) Welchen Prozentsatz davon nehmen die 61 Rohre ein? Lösung: (a) 24d+πd (b) Man zerlege in ein reguläres Sechseck mit Radius 4d, 6 Rechtecke mit der Breite d 2 und der Länge 4d und 6 Kreissektoren mit Radius d 2 : A = 24 3d 2 +12d πd2 (c) 88% 6 Wieviel Grad hat der Mittelpunktswinkel zu einem Kreisbogen, dessen Länge gleich dem Durchmesser des Kreises ist? (Skizze; Berechnung auf 4 geltende Ziffern genau) Lösung: 114,6 7 Ein Kreissektor mit dem Radius r hat den Umfang U = 3r Berechne den Mittelpunktswinkel ϕ und drücke die Fläche A des Sektors durch r aus Lösung: ϕ = 180 π ; A = r2 2 8 Der Umfang eines Kreises mit Radius r ist gleich dem Umfang eines Kreissektors mit gleichem Radius r und einem noch zu bestimmenden Mittelpunktswinkel α Berechnen Sie diesen Mittelpunktswinkel α auf zwei Dezimalstellen gerundet! Lösung: α 245,41 o 9 Einem Kreis mit Radius r ist ein Quadrat einbeschrieben Welchen Mittelpunktswinkel muss ein Kreissektor mit gleichem Radius haben, damit er denselben Flächeninhalt hat wie das Quadrat? Lösung: 720 π 4

5 10 Ein Kreisausschnitt zum Mittelpunktswinkel 27 hat eine Bogenlänge von 1,5cm Welchen Umfang und welchen Flächeninhalt hat der Kreis? Lösung: Umfang: 20cm; Inhalt: 31,8cm 2 11 Wie groß sind Radius r und Mittelpunktswinkel ϕ (Bogenmaß!) eines Kreissektors, dessen Umfang U = 10cm und dessen Flächeninhalt A = 6cm 2 beträgt? Lösung: 1 Möglichkeit: r = 3cm; ϕ = Möglichkeit: r = 2cm; ϕ = 3 12 Die Läufer A(nton) und B(enedikt) starten einen Wettlauf auf einer kreisförmigen Rennbahn Die Kreisbahn von A hat den Radius r A = 19m, die von B den Radius r B = 20m A muss eine Runde laufen Damit beide bis zum Ziel gleich weit laufen, muss der Startpunkt von B um einen bestimmten Winkel vorverlegt werden Bestimmen Sie diesen Winkel B Ziel A α r A r B Lösung:

Leseprobe. Monika Noack, Alexander Unger, Robert Geretschläger, Hansjürg Stocker. Mathe mit dem Känguru 3. Die schönsten Aufgaben von 2009 bis 2011

Leseprobe. Monika Noack, Alexander Unger, Robert Geretschläger, Hansjürg Stocker. Mathe mit dem Känguru 3. Die schönsten Aufgaben von 2009 bis 2011 Leseprobe Monika Noack, lexander Unger, Robert Geretschläger, Hansjürg Stocker Mathe mit dem Känguru 3 Die schönsten ufgaben von 009 bis 011 ISN: 978-3-446-480-1 Weitere Informationen oder estellungen

Mehr

Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2009 Mathematik (2. Sek)

Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2009 Mathematik (2. Sek) Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2009 Mathematik (2. Sek) Gymnasium Unterstrass Zürich Aufnahmeprüfung 2009 Kurzgymnasium (Anschluss 2. Sekundarklasse) Mathematik Name: Die Prüfung

Mehr

n 0 1 2 3 4 5 6 7 8 9 10 11 12 S n 1250 1244, 085 1214, 075 1220, 136 1226, 167 Nach einem Jahr beträgt der Schuldenstand ca. 1177,09.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 S n 1250 1244, 085 1214, 075 1220, 136 1226, 167 Nach einem Jahr beträgt der Schuldenstand ca. 1177,09. Gymnasium Leichlingen 10a M Lö 2007/08.2 2/2 Aufgaben/Lösungen der Klassenarbeit Nr. 4 von Fr., 2008-04-25 2 45 Aufgabe 1: Die A-Bank bietet Kredite zu einem Zinssatz von 6% pro Jahr an. Ein privater Keditvermittler

Mehr

Winkelfunktionen. Dr. H. Macholdt. 21. September 2007

Winkelfunktionen. Dr. H. Macholdt. 21. September 2007 Winkelfunktionen Dr. H. Macholdt 21. September 2007 1 1 Altgrad, Bogenmaß und Neugrad Die Einteilung eines Kreises in 360 Grad ist schon sehr alt und geht auf die Sumerer zurück, die offensichtlich von

Mehr

Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung Aufgabe 1 1.Weg (kurz und einfach):

Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung Aufgabe 1 1.Weg (kurz und einfach): Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung ufgabe 1 1.Weg (kurz und einfach): C! **C* Umlaufsinn erhalten Verschiebung oder Drehung Verbindungsgeraden *, *, CC* nicht parallel Drehung

Mehr

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1 B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,

Mehr

Bei Konstruktionen dürfen nur die folgenden Schritte durchgeführt werden : Beliebigen Punkt auf einer Geraden, Strecke oder Kreislinie zeichnen.

Bei Konstruktionen dürfen nur die folgenden Schritte durchgeführt werden : Beliebigen Punkt auf einer Geraden, Strecke oder Kreislinie zeichnen. Geometrie I. Zeichnen und Konstruieren ================================================================== 1.1 Der Unterschied zwischen Zeichnen und Konstruieren Bei der Konstruktion einer geometrischen

Mehr

THÜRINGER KULTUSMINISTERIUM

THÜRINGER KULTUSMINISTERIUM Prüfungstag: Mittwoch, 16. Juni 1999 Prüfungsbeginn: 8.00 Uhr THÜRINGER KULTUSMINISTERIUM Realschulabschluss 1998/99 MATHEMATIK Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit

Mehr

Y b 2 - a 2 = p 2 - q 2 (*)

Y b 2 - a 2 = p 2 - q 2 (*) Um den Flächeninhalt eines Dreieckes zu bestimmen, das keinen rechten Winkel besitzt, muss man bekanntlich die Längen einer Seite mit der dazugehörigen Höhe kennen Wir setzen voraus, dass uns alle 3 Seitenlängen

Mehr

Sangaku - Probleme. Aufgaben aus der japanischen Tempelgeometrie. ein Beitrag von Ingmar Rubin, Berlin. Abbildung 1: Ein typisches Sangaku-Problem

Sangaku - Probleme. Aufgaben aus der japanischen Tempelgeometrie. ein Beitrag von Ingmar Rubin, Berlin. Abbildung 1: Ein typisches Sangaku-Problem A B O B B G F C C N C L K Sangaku - Probleme Aufgaben aus der japanischen Tempelgeometrie ein Beitrag von Ingmar Rubin, Berlin Abbildung 1: Ein typisches Sangaku-Problem Zusammenfassung Der Beitrag beschäftigt

Mehr

Abschlussprüfung an den Realschulen in Bayern

Abschlussprüfung an den Realschulen in Bayern bschlussprüfung an den Realschulen in Bayern 009 Mathematik II Haupttermin ufgaben - Lösungsmuster und Bewertung EBENE GEOMETRIE. sin PMC sin MCP PC MP PMC ]0 ;90 [ L K sin5 (90,0 50,0)cm sin PMC PMC,

Mehr

Eignungstest Mathematik

Eignungstest Mathematik Eignungstest Mathematik Klasse 4 Datum: Name: Von Punkten wurden Punkte erreicht Zensur: 1. Schreibe in folgende Figuren die Bezeichnungen für die jeweilige Figur! Für eine Rechteck gibt ein R ein, für

Mehr

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin 1 Hausaufgaben vom 12.09.2007 Zahlentheorie 1 Aufgabe 1.1 Berechne die (quadratischen)

Mehr

Schriftliche Realschulprüfung 1997 Mathematik

Schriftliche Realschulprüfung 1997 Mathematik Mecklenburg - Vorpommern Schriftliche Realschulprüfung 1997 Mathematik E Mecklenburg - Vorpommern Realschulprüfung 1997 Ersatzarbeit A/B Seite 2 Hinweise für Schülerinnen und Schüler: Von den vorliegenden

Mehr

Integration von Schülerinnen und Schülern mit einer Sehschädigung an Regelschulen

Integration von Schülerinnen und Schülern mit einer Sehschädigung an Regelschulen Integration von Schülerinnen und Schülern mit einer Sehschädigung an Regelschulen Didaktikpool Falttechniken zum Einsatz im Mathematikunterricht mit sehgeschädigten Kindern Emmy Csocsán / Christina Blackert

Mehr

Mathematik I Prüfung für den Übertritt aus der 9. Klasse

Mathematik I Prüfung für den Übertritt aus der 9. Klasse Aufnahmeprüfung 015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 9. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

53) Eine Gebäudefront soll die Form eines Rechtecks mit einem aufgesetzten gleichseitigen Dreieck haben. a) Nur für Rg-Schüler:

53) Eine Gebäudefront soll die Form eines Rechtecks mit einem aufgesetzten gleichseitigen Dreieck haben. a) Nur für Rg-Schüler: 47) Die kleine Sonja und die kleine Anna beschädigen beim Spielen eine quadratische Glasplatte der Seitenlänge s=120 (E: cm), wobei die Bruchkurve annähernd eine Strekke ist, wobei AE = 30 und AF = 36

Mehr

Formelsammlung zur Kreisgleichung

Formelsammlung zur Kreisgleichung zur Kreisgleichung Julia Wolters 6. Oktober 2008 Inhaltsverzeichnis 1 Allgemeine Kreisgleichung 2 1.1 Berechnung des Mittelpunktes und Radius am Beispiel..... 3 2 Kreis und Gerade 4 2.1 Sekanten, Tangenten,

Mehr

Klausur zu Physik1 für B_WIng(v201)

Klausur zu Physik1 für B_WIng(v201) M. Anders Wedel, den 13.08.07 Klausur zu Physik1 ür B_WIng(v201) Klausurdatum: 16.2.07, 14:00, Bearbeitungszeit: 90 Minuten Achtung! Es ird nur geertet, as Sie au diesen Blättern oder angeheteten Leerseiten

Mehr

Mathetest 1b. Schulabschlussfragen üben: 20 Fragen in 60 Minuten

Mathetest 1b. Schulabschlussfragen üben: 20 Fragen in 60 Minuten Mathetest 1b. Schulabschlussfragen üben: 20 Fragen in 60 Minuten Name: Datum: Zeit: 60:00 Minuten Frage 1 von 20 Theo und Jenny sollen für eine Messeveranstaltung einen Holztisch mit 100 cm x 100 cm und

Mehr

START MATHEMATIK-STAFFEL 2011 Ihr habt 60 Minuten Zeit für 20 Aufgaben. Die Gesamtzahl der zu erreichenden Punkte ist 500.

START MATHEMATIK-STAFFEL 2011 Ihr habt 60 Minuten Zeit für 20 Aufgaben. Die Gesamtzahl der zu erreichenden Punkte ist 500. START MATHEMATIK-STAFFEL 2011 Ihr habt 60 Minuten Zeit für 20 Aufgaben. Die Gesamtzahl der zu erreichenden Punkte ist 500. Staffel-Aufgaben 1 (20 Punkte, Rest 480 Punkte) Drei gleichschenklige Dreiecke

Mehr

Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben

Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Aufgabe C Gegeben ist eine Funktion f durch f ( ) = + 3. Gesucht sind lineare Funktionen, deren Graphen zum

Mehr

Lernziele Matbu. ch 8

Lernziele Matbu. ch 8 Lernziele Matbu. ch 8 Beachte auch den Refernzrahmen des Stellwerk8 www. stellwerk- check. ch LU Priorität Grobziel (aus Mathbu.ch 8) Lernziele Begriffe 2 1 Mit gebrochenen Zahlen operieren: Gebrochene

Mehr

http://www.olympiade-mathematik.de 7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1967/1968 Aufgaben und Lösungen

http://www.olympiade-mathematik.de 7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1967/1968 Aufgaben und Lösungen 7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1967/1968 Aufgaben und Lösungen 1 OJM 7. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 12 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

Schriftliche Abschlußprüfung Mathematik

Schriftliche Abschlußprüfung Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 1996/97 Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlußprüfung Mathematik Realschulabschluß

Mehr

Definition und Begriffe

Definition und Begriffe Merkblatt: Das Dreieck Definition und Begriffe Das Dreieck ist ein Vieleck. In der Ebene ist es die einfachste Figur, die von geraden Linien begrenzt wird. Ecken: Jedes Dreieck hat drei Ecken, die meist

Mehr

Irena Wosz Łoba. Unter Mitarbeit von: Annette Fouqué. c 2. a 2. b 2. Teil I

Irena Wosz Łoba. Unter Mitarbeit von: Annette Fouqué. c 2. a 2. b 2. Teil I Irena Wosz Łoba Unter Mitarbeit von: Annette Fouqué c a b Teil I Inhaltsverzeichnis Vorwort / Wstęp... 3 Zeichen und Abkürzungen...5 1. Zahlen und Mengen...6. Geometrische Begriffe...15 3. Dreieck...18

Mehr

Erster Prüfungsteil: Aufgabe 1

Erster Prüfungsteil: Aufgabe 1 Erster Prüfungsteil: Aufgabe 1 a) Kreuze an, wie viele Minuten du ungefähr seit deiner Geburt gelebt hast.! 80 000 000! 8 000 000! 800 000! 80 000! 8 000 b) Bei einer Durchschnittsgeschwindigkeit von 80

Mehr

Das Mathematikabitur. Abiturvorbereitung Geometrie. Autor: Claus Deser Abiturvorbereitung Mathematik 1

Das Mathematikabitur. Abiturvorbereitung Geometrie. Autor: Claus Deser Abiturvorbereitung Mathematik 1 Das Mathematikabitur Abiturvorbereitung Geometrie Autor: Claus Deser Abiturvorbereitung Mathematik 1 Gliederung Was sind Vektoren/ ein Vektorraum? Wie misst man Abstände und Winkel? Welche geometrischen

Mehr

Curriculum Mathematik. Bereich Schulabschluss

Curriculum Mathematik. Bereich Schulabschluss Curriculum Mathematik Bereich Schulabschluss Im Folgenden finden Sie eine Übersicht über alle Lerneinheiten im Fach Mathematik. Das Fach Mathematik ist in Lernstufen, Kapitel, Lerneinheiten und Übungen

Mehr

MATHEMATIKLEHRPLAN 4. SCHULJAHR SEKUNDARSTUFE

MATHEMATIKLEHRPLAN 4. SCHULJAHR SEKUNDARSTUFE Europäische Schulen Büro des Generalsekretärs Abteilung für pädagogische Entwicklung Ref.:2010-D-581-de-2 Orig.: EN MATHEMATIKLEHRPLAN 4. SCHULJAHR SEKUNDARSTUFE Kurs 4 Stunden/Woche VOM GEMISCHTER PÄDAGOGISCHER

Mehr

Vergleichsarbeit Mathematik

Vergleichsarbeit Mathematik Senatsverwaltung für Bildung, Jugend und Sport Vergleichsarbeit Mathematik 3. Mai 005 Arbeitsbeginn: 0.00 Uhr Bearbeitungszeit: 0 Minuten Zugelassene Hilfsmittel: - beiliegende Formelübersicht (eine Doppelseite)

Mehr

Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein. Zentrale Abschlussarbeit 2013. Realschulabschluss

Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein. Zentrale Abschlussarbeit 2013. Realschulabschluss Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein Zentrale Abschlussarbeit 2013 Realschulabschluss Impressum Herausgeber Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein

Mehr

Mathematik-Verlag. Mathematik-Verlag, www.matheverlag.com Kopieren und Ausdrucken verboten!

Mathematik-Verlag. Mathematik-Verlag, www.matheverlag.com Kopieren und Ausdrucken verboten! Mathematik-Verlag Algebra: Quadratische Gleichungen 1. Wie lautet die p, q Formel zur Lösung der quadratischen Gleichung x 2 + px + q = 0? 2. Berechne mit der p, q Formel die Lösungen der Gleichungen:

Mehr

Grundwissen Mathematik 7I

Grundwissen Mathematik 7I Winkel m Kreis Grundwissen themtik 7I Rndwinkelstz Der Winkel heißt ittelpunktswinkel über der Sehne []. Die Winkel n sind die Rndwinkel über der Sehne []. lle Rndwinkel über einer Sehne eines Kreises

Mehr

positive Zahlen (z.b. 216 / 1,2 / 3 4 5 ) negative Zahlen (z.b. 216 / 1,2 / 3 4 5 )

positive Zahlen (z.b. 216 / 1,2 / 3 4 5 ) negative Zahlen (z.b. 216 / 1,2 / 3 4 5 ) 3.1. Zahlengerade (1.1.) Seite 9 Mit dem Zahlenstrahl können wir die positiven Zahlen darstellen. Die Zahlengerade ermöglicht uns, auch die negativen Zahlen darzustellen. Auf dieser Zahlengeraden gibt

Mehr

Darstellende Geometrie Übungen. Tutorial. Übungsblatt: Perspektive - Rekonstruktion

Darstellende Geometrie Übungen. Tutorial. Übungsblatt: Perspektive - Rekonstruktion Darstellende Geometrie Übungen Institut für Architektur und Medien Tutorial Übungsblatt: Perspektive - Rekonstruktion Gegeben sind ein Foto von einem quaderförmigen Objekt sowie die Abmessungen des Basisrechteckes.

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

sketchometry Autor sketchometry.org Carsten Miller Lehrstuhl für Mathematik und ihre Didaktik Universität Bayreuth 95440 Bayreuth

sketchometry Autor sketchometry.org Carsten Miller Lehrstuhl für Mathematik und ihre Didaktik Universität Bayreuth 95440 Bayreuth sketchometry Autor Carsten Miller Lehrstuhl für Mathematik und ihre Didaktik Universität Bayreuth 95440 Bayreuth 2015 Universität Bayreuth sketchometry.org 1 Inhaltsverzeichnis Überblick 3 Galerie 8 Zeichenfläche

Mehr

Frag die Maus. Sascha Kurz sascha.kurz@uni-bayreuth.de. Diskrete Geometrie 09.05.2006. Universität Bayreuth. Frag die Maus. Sascha Kurz.

Frag die Maus. Sascha Kurz sascha.kurz@uni-bayreuth.de. Diskrete Geometrie 09.05.2006. Universität Bayreuth. Frag die Maus. Sascha Kurz. sascha.kurz@uni-bayreuth.de Universität Bayreuth Diskrete Geometrie 09.05.2006 Gliederung 1 2 Frag doch mal die Maus Frag doch mal die Maus Für alle, die die große Samstagabend-Show im Ersten verpasst

Mehr

Falten regelmäßiger Vielecke

Falten regelmäßiger Vielecke Blatt 1 Gleichseitige Dreiecke Ausgehend von einem quadratischen Stück Papier kann man ohne weiteres Werkzeug viele interessante geometrische Figuren nur mit den Mitteln des Papierfaltens (Origami) erzeugen.

Mehr

Euklides: Dedomena. Was gegeben ist.

Euklides: Dedomena. Was gegeben ist. Euklides: Dedomena. (Die "Data" des Euklid) Was gegeben ist. Verzeichnis der Lehrsätze Dedomena Ins Deutsche übertragen von Dr. phil. Rudolf Haller mit Benützung von Euclidis Opera Omnia, ediderunt I.

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

Original-Prüfungsaufgaben 2009

Original-Prüfungsaufgaben 2009 Zentrale Prüfung 10 Finale Prüfungstraining NRW 2010 Original-Prüfungsaufgaben 2009 Prüfungsteil 1: Aufgabe 1 a) Bestimme den Inhalt der grauen Fläche. Beschreibe z. B. mithilfe der Abbildung, wie du vorgegangen

Mehr

MATHEMATIK-WETTBEWERB 2010/2011 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2010/2011 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2010/2011 DES LANDES HESSEN 2. RUNDE AUFGABENGRUPPE A 03.03.2011 Hinweis: Von jeder Schülerin/jedem Schüler werden vier Aufgaben gewertet. Werden mehr als vier Aufgaben bearbeitet,

Mehr

CAD/CAM mit der Software nccad7 / 7.5 - Grundeinstellungen -

CAD/CAM mit der Software nccad7 / 7.5 - Grundeinstellungen - CAD/CAM mit der Software nccad7 / 7.5 - Grundeinstellungen - 1. Datei CAD/CAM Fräsen - Neue Zeichnung es erscheint das Icon-Menü mit der Zeichenfläche: 2. LINIEN Linien-Dicke: mittel Mausklick auf das

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Realschulabschluss Schuljahr 2008/2009. Mathematik

Realschulabschluss Schuljahr 2008/2009. Mathematik Prüfungstag: Mittwoch, 20. Mai 2009 Prüfungsbeginn: 8.00 Uhr Realschulabschluss Schuljahr 2008/2009 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit beträgt 150 Minuten.

Mehr

Gegeben ist die Funktion f durch. Ihr Schaubild sei K.

Gegeben ist die Funktion f durch. Ihr Schaubild sei K. Aufgabe I 1 Gegeben ist die Funktion f durch. Ihr Schaubild sei K. a) Geben Sie die maximale Definitionsmenge D f an. Untersuchen Sie K auf gemeinsame Punkte mit der x-achse. Bestimmen Sie die Intervalle,

Mehr

Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Wahlteil sind von den vier Wahlaufgaben mindestens zwei zu bearbeiten.

Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Wahlteil sind von den vier Wahlaufgaben mindestens zwei zu bearbeiten. Mittlere-Reife-Prüfung 2010 Mathematik Seite 2 Hinweise für Schülerinnen und Schüler: Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Pflichtteil sind alle Aufgaben zu bearbeiten.

Mehr

Abiturprüfung 2000 MATHEMATIK. als Grundkursfach. Arbeitszeit: 180 Minuten

Abiturprüfung 2000 MATHEMATIK. als Grundkursfach. Arbeitszeit: 180 Minuten Abiturprüfung 000 MATHEMATIK als Grundkursfach Arbeitszeit: 180 Minuten Der Fachausschuss wählt je eine Aufgabe aus den Gebieten GM1, GM und GM zur Bearbeitung aus. - - GM1. INFINITESIMALRECHNUNG I. 10

Mehr

Wassily Kandinsky: Structure joyeuse. Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft.

Wassily Kandinsky: Structure joyeuse. Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft. 6 Flächen Wie heißen die Figuren? a) Dreiecke Viereck d) Quadrat b) Kreis Quadrate e) Dreiecke Rechteck c) Rechtecke Viereck f) Kreis Wassily Kandinsky: Structure joyeuse Lege Vierecke. a) Nimm vier gleich

Mehr

Gymnasium. Testform B

Gymnasium. Testform B Mathematiktest für Schülerinnen und Schüler der 8 Klassenstufe Teil 1 Gymnasium Testform B Zentrum für empirische pädagogische Forschung und Fachbereich Psychologie an der Universität Koblenz-Landau im

Mehr

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man die kleinste Primzahl zwischen 0 und 60 zwischen 0 und 10 zwischen 60 und 70 zwischen 70 und 80 zwischen 80 und 90 zwischen 90 und 100 zwischen 10 und 20 zwischen 20 und 0 zwischen 0 und 40 zwischen 40

Mehr

Orientierungsaufgaben für das ABITUR 2014 MATHEMATIK

Orientierungsaufgaben für das ABITUR 2014 MATHEMATIK Orientierungsaufgaben für das ABITUR 01 MATHEMATIK Im Auftrag des TMBWK erarbeitet von: Aufgabenkommission Mathematik Gymnasium, Fachberater Mathematik Gymnasium, CAS-Multiplikatoren Hinweise für die Lehrerinnen

Mehr

Quadratische Gleichungen

Quadratische Gleichungen Quadratische Gleichungen Aufgabe: Versuche eine Lösung zu den folgenden Zahlenrätseln zu finden:.) Verdoppelt man das Quadrat einer Zahl und addiert, so erhält man 00..) Addiert man zum Quadrat einer Zahl

Mehr

1.2 Einführung der Zahl Dominik Schomas Clemens Blank

1.2 Einführung der Zahl Dominik Schomas Clemens Blank 1.2 Einführung der Zahl Dominik Schomas Clemens Blank Die Zahl wird über den konstanten Quotienten eingeführt. Der Umfang sowie der Durchmesser werden von den Schülern experimentell gemessen mit und in

Mehr

DOWNLOAD 7 Mathe-Dominos differenziert: Geometrie Klasse 9

DOWNLOAD 7 Mathe-Dominos differenziert: Geometrie Klasse 9 DOWNLOAD Birte Pöhler Jennifer Vollmer 7 Mathe-Dominos differenziert: Geometrie Klasse 9 Kreisberechnung Körperberechnung Downloadauszug aus dem Originaltitel: Das Werk als Ganzes sowie in seinen Teilen

Mehr

Die goldenen Linien auf dem Geobrett und das ägyptische Dreieck

Die goldenen Linien auf dem Geobrett und das ägyptische Dreieck Die goldenen Linien auf dem Geobrett und das ägyptische Dreieck Horst Steibl TU Braunschweig GDM-Tagung Berlin 2007 1 Die goldenen Linien auf dem Geobrett und das ägyptische Dreieck Wie Tim und Tom, die

Mehr

Realschule Bayern C.C. BUCHNER

Realschule Bayern C.C. BUCHNER Realschule Bayern Herausgegeben von Michael Kleine und Patricia Weiler Bearbeitet von Andreas Gilg, Michael Kleine, Evelyn Mühlbauer, Andreas Schüßler, Andreas Strobel, Katja Trost, Patricia Weiler, Simon

Mehr

umlaufendes Dichtband Dichtschlämme Randdämmstreifen 9 cm

umlaufendes Dichtband Dichtschlämme Randdämmstreifen 9 cm 80 30 92 80 Radius 50 cm mit fest verbundenem, umlaufendes / / Viertelkreisform, 80 x 80 cm 104 90 35 90 Radius 55 cm mit fest verbundenem, umlaufendes / / Viertelkreisform, 90 x 90 cm 118 100 45 100 Radius

Mehr

Basteln und Zeichnen

Basteln und Zeichnen Titel des Arbeitsblatts Seite Inhalt 1 Falte eine Hexentreppe 2 Falte eine Ziehharmonika 3 Die Schatzinsel 4 Das Quadrat und seine Winkel 5 Senkrechte und parallele Linien 6 Ein Scherenschnitt 7 Bastle

Mehr

b) Berechnen Sie den Höhenunterschied, den die jeweilige Bahn auf einer schrägen Strecke von 2,5 km (S ) zurücklegt! (Der Rechenweg ist nachzuweisen!

b) Berechnen Sie den Höhenunterschied, den die jeweilige Bahn auf einer schrägen Strecke von 2,5 km (S ) zurücklegt! (Der Rechenweg ist nachzuweisen! Zwischenprüfung Seite 1 Aufgabe 1 Steigungsverhältnisse (8 Punkte) Die nachfolgend genannten Bahnen überwinden eine Steigung von: a) Eisenbahn 25 b) Zahnradbahn 25% c) Drahtseilbahn 78% d) Seilbahn 105%

Mehr

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau Berufsreifeprüfung Studienberechtigung Mathematik Einstiegsniveau Zusammenstellung von relevanten Unterstufenthemen, die als Einstiegsniveau für BRP /SBP Kurse Mathematik beherrscht werden sollten. /brp

Mehr

Aufgabe 1: Der Weidezaun

Aufgabe 1: Der Weidezaun Aufgabe 1: Der Weidezaun Eine quadratische Viehweide mit der Fläche 870 m² soll eingezäunt werden. Dabei sollen 3 m für ein Tor freigelassen werden. Wie viel Meter Zaun werden benötigt? Informative Figur:

Mehr

JAHRESPRÜFUNG MATHEMATIK. 1. Klassen Kantonschule Reussbühl Luzern. 27. Mai 2014 Zeit: 13:10 14:40 (90 Minuten)

JAHRESPRÜFUNG MATHEMATIK. 1. Klassen Kantonschule Reussbühl Luzern. 27. Mai 2014 Zeit: 13:10 14:40 (90 Minuten) KLASSE: NAME: VORNAME: Mögliche Punktzahl: 51 48 Pte. = Note 6 Erreichte Punktzahl: Note: JAHRESPRÜFUNG MATHEMATIK 1. Klassen Kantonschule Reussbühl Luzern 7. Mai 014 Zeit: 1:10 14:40 (90 Minuten) Allgemeines

Mehr

Zählen kann doch jeder

Zählen kann doch jeder Inhalt Zählen kann doch jeder (Aufgaben 1 5) 6 Ganz schön schräge Flächen (Aufgaben 6 10) 8 Lauter gewichtige Aufgaben (Aufgaben 11 15) 10 Alles ganz logisch, oder (Aufgaben 16 20) 12 Weg und Zeit kommen

Mehr

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung),

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung), Extremwertaufgaben x. Ein Landwirt will an einer Mauer einen rechteckigen Hühnerhof mit Maschendraht abgrenzen. 0 Meter Maschendraht stehen zur Verfügung. Wie groß müssen die Rechteckseiten gewählt werden,

Mehr

Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( )

Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( ) 1.1 Der Kreis Der Kreis Umfang Flächeninhalt Der Kreissektor (Kreisausschnitt) mit Mittelpunktswinkel Bogenlänge Flächeninhalt Grundwissen 10. Klasse Mathematik Wie ändert sich der Flächeninhalt eines

Mehr

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Grundkurs Mathematik

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Grundkurs Mathematik Abitur 008 LA / AG II. Abenteuerspielplatz Der Gemeinderat beschlie t, einen eher langweiligen Spielplatz zu einem Abenteuerspielplatz umzugestalten. Das Motto lautet Auf hoher See. Daher soll ein Piratenschiff

Mehr

Lernen an Stationen Thema: Flächenberechnung

Lernen an Stationen Thema: Flächenberechnung Lernen an Stationen Thema: Flächenberechnung 8. Jahrgang Mathematics is a way of thinking, not a collection of facts! Ausgehend von dieser grundsätzlichen Überzeugung sollte ein Unterricht zum Thema Flächenberechnung

Mehr

Industrielle Bildverarbeitung

Industrielle Bildverarbeitung Industrielle Bildverarbeitung Übungen 1. Aufgabe Ein Objektiv mit der Brennweite 12.5mm kann auf Entfernungen zwischen 0.5 m und eingestellt werden. Wie gross ist dann jeweils die Bildweite? Dieses Objektiv

Mehr

1 Finanzmathematik (20 Punkte)

1 Finanzmathematik (20 Punkte) - 2-1 Finanzmathematik (20 Punkte) Herr Lindner hat vor fünf Jahren bei seiner Bank für 20.548,17 einen Sparbrief erworben, der in diesem Jahr fällig wird. Herr Lindner bekommt 25.000,00 ausbezahlt. 1.1

Mehr

Objekte ausrichten in CorelDRAW 12 Von Steve Bain

Objekte ausrichten in CorelDRAW 12 Von Steve Bain Objekte ausrichten in CorelDRAW 12 Von Steve Bain Haben Sie auch schon einmal stundenlang erfolglos versucht, den Cursor an einem Objekt auszurichten? Dank den neu gestalteten Ausrichtungsfunktionen in

Mehr

Kepler sche Gesetze. = GMm ; mit v = 2rπ. folgt 3. Keplersches Gesetz

Kepler sche Gesetze. = GMm ; mit v = 2rπ. folgt 3. Keplersches Gesetz Kepler sche Gesetze 1. 3. Keplersche Gesetz (a) Wie kann man das 3. Keplersche Gesetz aus physikalischen Gesetzen ableiten? Welche vereinfachenden Annahmen werden dazu gemacht? (b) Welche Verfeinerung

Mehr

A(3/1/2) B(6/2/2) C(5/9/4) D(1/4/3)

A(3/1/2) B(6/2/2) C(5/9/4) D(1/4/3) Ein Raumviereck ABCD kann eben sein oder aus zwei gegeneinander geneigten Dreiecken bestehen. In einem ebenen Viereck schneiden sich die Diagonalen. Überprüfen Sie, ob die gegebenen Vierecke eben sind.

Mehr

Arbeitsblätter zum Thema Papierfalten und Algebra für den Unterricht Hochbegabter in der Sekundarstufe II

Arbeitsblätter zum Thema Papierfalten und Algebra für den Unterricht Hochbegabter in der Sekundarstufe II Arbeitsblätter zum Thema Papierfalten und Algebra für den Unterricht Hochbegabter in der Sekundarstufe II Robert Geretschläger Graz, Österreich, 2009 Blatt 1 Lösen quadratischer Gleichungen mit Zirkel

Mehr

Erläutern von Arbeitsschritten bei mathematischen. Vergleichen und Bewerten verschiedener Lösungswege

Erläutern von Arbeitsschritten bei mathematischen. Vergleichen und Bewerten verschiedener Lösungswege Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen / Schwerpunkte Arithmetik/Algebra mit Zahlen und Symbolen umgehen Termumformungen Lineare Gleichungen mit zwei Variablen - Systeme linearer Gleichungen

Mehr

MatheBlatt (Version 2)

MatheBlatt (Version 2) MatheBlatt (Version 2) Bilder und Formvorlagen für Mathe-Arbeitsblätter / Inhaltsverzeichnis Copyright Hans Zybura Software, 2008. Alle Rechte vorbehalten. Formatvorlagen aus Word-Zeichnen Elementen und

Mehr

a' c' Aufgabe: Spiegelung an den Dreiecksseiten und Anti-Steinersche Punkte Darij Grinberg

a' c' Aufgabe: Spiegelung an den Dreiecksseiten und Anti-Steinersche Punkte Darij Grinberg ufgabe: Spiegelung an den Dreiecksseiten und nti-steinersche Punkte Darij Grinberg Eine durch den Höhenschnittpunkt H eines Dreiecks B gehende Gerade g werde an den Dreiecksseiten B; und B gespiegelt;

Mehr

Lösung: a) 1093 1100 b) 1093 1090

Lösung: a) 1093 1100 b) 1093 1090 OvTG Guting, Grundwissen Mthemtik 5. Klsse 1. Ntürliche Zhlen Dezimlsystem Mn nennt die Zhlen, die mn zum Zählen verwendet, 10963 = 1 10000+ 0 1000+ 9 100+ 6 10 + 3 1 ntürliche Zhlen. Der Stellenwert der

Mehr

Bewegliche Geometrie mit dem Computer Was beobachtest Du? (Warum ist das so?)

Bewegliche Geometrie mit dem Computer Was beobachtest Du? (Warum ist das so?) Bewegliche Geometrie mit dem Computer Was beobachtest Du? (Warum ist das so?) 12.10.2009, Oliver Seif nach einer Vorlage von H.Hischer/A. Lambert 1 Das Werkzeug Computer (dynamische Geometriesoftware,

Mehr

Themenkreise der Klasse 5

Themenkreise der Klasse 5 Mathematik Lernzielkatalog bzw. Inhalte in der MITTELSTUFE Am Ende der Mittelstufe sollten die Schüler - alle schriftlichen Rechenverfahren beherrschen. - Maßeinheiten umformen und mit ihnen rechnen können.

Mehr

http://www.olympiade-mathematik.de 2. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1962/1963 Aufgaben und Lösungen

http://www.olympiade-mathematik.de 2. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1962/1963 Aufgaben und Lösungen 2. Mathematik Olympiade Saison 1962/1963 Aufgaben und Lösungen 1 OJM 2. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr

Musterzwischenprüfung Seite 1

Musterzwischenprüfung Seite 1 Musterzwischenprüfung Seite 1 Aufgabe 1 Steigungsverhältnisse (8 Punkte) Die nachfolgend genannten Bahnen überwinden eine Steigung von: a) Eisenbahn 25 b) Zahnradbahn 25% c) Drahtseilbahn 78% d) Seilbahn

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Hauptprüfung Abiturprüfung 205 (ohne CAS) Baden-Württemberg Wahlteil Analysis Hilfsmittel: GTR und Formelsammlung allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com März 205 Aufgabe A

Mehr

QUALIFIZIERENDER HAUPTSCHULABSCHLUSS 2010 MATHEMATIK

QUALIFIZIERENDER HAUPTSCHULABSCHLUSS 2010 MATHEMATIK QUALIFIZIERENDER HAUPTSCHULABSCHLUSS 010 BESONDERE LEISTUNGSFESTSTELLUNG AM 0.06.01 O Teil A: 8.0 Uhr bis 9.00 Uhr (Teil B: 9.10 Uhr bis 10.0 Uhr) MATHEMATIK Teil A Bei Teil A der besonderen Leistungsfeststellung

Mehr

Teil A Arbeitsblatt. Teil B Pflichtaufgaben

Teil A Arbeitsblatt. Teil B Pflichtaufgaben Sächsisches Staatsministerium für Kultus und Sport Schuljahr 2009/2010 Geltungsbereich: für Klassenstufe 9 an - Mittelschulen - Förderschulen - Abendmittelschulen Hauptschulabschluss und qualifizierender

Mehr

INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN

INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN Liebe Schülerinnen und Schüler, wie schnell man einen bereits einmal gekonnten Stoff wieder vergisst, haben Sie sicherlich bereits schon

Mehr

- 2 - AP WS 09M. 1.3 Stellen Sie einen Tilgungsplan für die ersten zwei Jahre auf, wenn Annuitätentilgung vereinbart ist.

- 2 - AP WS 09M. 1.3 Stellen Sie einen Tilgungsplan für die ersten zwei Jahre auf, wenn Annuitätentilgung vereinbart ist. - - AP WS 09M 1 Finanzmathematik Punkte Frau Seufert möchte für den Bau eines Mietshauses, den sie in sechs Jahren beginnen will, ein Startkapital in Höhe von 10.000 ansparen. 1.1 Berechnen Sie, wie hoch

Mehr

Mathematik Thema Vielecke

Mathematik Thema Vielecke Them Vielecke Im Jnur 2006 Florin Vetter, Klsse 8, Riegelhof Relschule Seite 1 von 15 INHALTSVERZEICHNES 1. EINLEITUNG 3 2. ARTEN VON VIELECKEN 4 2.1. DREIECK 4 2.2. VIERECK 4 2.2.1. RECHTECK 4 2.2.2.

Mehr

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte März 2008 Zusammenfassung IB 1. Lagebeziehungen zwischen geometrischen Objekten 1.1 Punkt-Gerade Ein Punkt kann entweder auf einer gegebenen

Mehr

4 Sketcher. 4.1 Grundlagen zur Arbeitsumgebung Sketcher. Wichtige Schritte beim Erstellen von 2D-Skizzen. 4 CATIA V5 R21 - Grundlagen

4 Sketcher. 4.1 Grundlagen zur Arbeitsumgebung Sketcher. Wichtige Schritte beim Erstellen von 2D-Skizzen. 4 CATIA V5 R21 - Grundlagen 4 Sketcher In diesem Kapitel erfahren Sie wie Sie skizzieren und parametrisch bemaßen wie Sie 2D-Skizzen erstellen und ändern können wie Sie Abhängigkeiten vergeben und löschen können Voraussetzungen Grundkenntnisse

Mehr

Schriftliche Abschlussprüfung Mathematik

Schriftliche Abschlussprüfung Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 2004/2005 Geltungsbereich: für Klassen 9 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Mathematik Qualifizierender

Mehr

QUALIFIZIERENDER HAUPTSCHULABSCHLUSS 2010. MATHEMATIK ( 54 Abs. 1 Nr. 1 VSO)

QUALIFIZIERENDER HAUPTSCHULABSCHLUSS 2010. MATHEMATIK ( 54 Abs. 1 Nr. 1 VSO) QUALIFIZIERENDER HAUPTSCHULABSCHLUSS 00 BESONDERE LEISTUNGSFESTSTELLUNG AM 30.06.00 Teil A: Teil B: 8.30 Uhr bis 9.00 Uhr 9.0 Uhr bis 0.0 Uhr MATHEMATIK ( Abs. Nr. VSO) Hinweise zu:. Auswahl. Korrektur

Mehr

Abschlussprüfung. im Ausbildungsberuf Vermessungstechniker/in Wintertermin 2004/2005. Vermessungskunde

Abschlussprüfung. im Ausbildungsberuf Vermessungstechniker/in Wintertermin 2004/2005. Vermessungskunde Abschlussprüfung im Ausbildungsberuf Vermessungstechniker/in Wintertermin 2004/2005 Vermessungskunde Zeit: Hilfsmittel: Hinweise: 2 Stunden Rechner (nicht programmierbar), Maßstab, Dreieck, Lineal, Zirkel

Mehr

Aufgabenblatt. Mlnlsterium filr Kultus, Ju96nd und Sport Baden-Württ mb rg H.uptichulabrchlußprtlfung Kl..8e9. 4cm 8cm 4cm KM B.-W.

Aufgabenblatt. Mlnlsterium filr Kultus, Ju96nd und Sport Baden-Württ mb rg H.uptichulabrchlußprtlfung Kl..8e9. 4cm 8cm 4cm KM B.-W. Fach: M.th.maük - Grundauigab.n Hauottermin'1998 Mlnlsterium filr Kultus, Ju96nd und Sport Baden-Württ mb rg H.uptichulabrchlußprtlfung Kl..8e9 Aufgabenblatt Arbalt z.ft: ttg Mhuron Jede tichtig gelöste

Mehr

1. Teil. Für den 1.Teil hast Du maximal 45 min. Zeit! Du darfst keinen Taschenrechner benutzen!

1. Teil. Für den 1.Teil hast Du maximal 45 min. Zeit! Du darfst keinen Taschenrechner benutzen! 1. Teil Für den 1.Teil hast Du maximal 45 min. Zeit! Du darfst keinen Taschenrechner benutzen! Teil 1 Kurzform Kreuze die richtigen Lösungen an bzw. schreibe dein Ergebnis in den Antwortbereich. Für Nebenrechnungen

Mehr

Hauptschule G-Kurs. Testform B

Hauptschule G-Kurs. Testform B Mathematiktest für Schülerinnen und Schüler der 8 Klassenstufe Teil 1 Hauptschule G-Kurs Testform B Zentrum für empirische pädagogische Forschung und Fachbereich Psychologie an der Universität Koblenz-Landau

Mehr