Frag die Maus. Sascha Kurz Diskrete Geometrie Universität Bayreuth. Frag die Maus. Sascha Kurz.
|
|
- Henriette Diefenbach
- vor 2 Jahren
- Abrufe
Transkript
1 Universität Bayreuth Diskrete Geometrie
2 Gliederung 1 2
3 Frag doch mal die Maus Frag doch mal die Maus Für alle, die die große Samstagabend-Show im Ersten verpasst haben.
4 Frag doch mal die Maus Frag doch mal die Maus Für alle, die die große Samstagabend-Show im Ersten verpasst haben. Von den eingesandten Fragen mussten 22 in einem Quiz beantwortet werden.
5 Frag doch mal die Maus Frag doch mal die Maus Für alle, die die große Samstagabend-Show im Ersten verpasst haben. Von den eingesandten Fragen mussten 22 in einem Quiz beantwortet werden. Gewonnen hat das Team mit und.
6 Warum ist der Gullydeckel rund? Frage 10
7 Warum ist der Gullydeckel rund? Frage 10
8 Warum ist der Gullydeckel rund? Antwort Antwort b: Zur Sicherheit, damit sie nicht in den Schacht fallen.
9 Warum ist der Gullydeckel rund? Antwort Antwort b: Zur Sicherheit, damit sie nicht in den Schacht fallen. Wie man ihn auch kullert oder wirft: Es ist unmöglich, dass der runde Gullydeckel ins Loch fällt. Anders bei einem z.b. quadratischen Deckel: Der ist zwar schwer, aber man kann ihn problemlos ins Loch werfen.
10 Definition Ein Gleichdick (auch: Roller) ist eine geschlossene Linie, die in jeder Lage innerhalb eines geeigneten Quadrates stets alle vier Seiten berührt, so wie ein Kreis.
11 Definition Ein Gleichdick (auch: Roller) ist eine geschlossene Linie, die in jeder Lage innerhalb eines geeigneten Quadrates stets alle vier Seiten berührt, so wie ein Kreis. Bemerkung Ein gleichseitiges Dreieck mit Kreissegmenten anstelle der geraden Schenkel (aus einem Kreis mit dem Radius der Seitenlänge) ist das einfachste aller und nach dem deutschen Mathematiker Franz Reuleaux ( ) benannt worden.
12
13 Anwendungen Walzen Legt man auf eine Walze mit dem Querschnitt eines s ein Brett, rollt es wie auf einer zylindrischen Walze ohne zu hoppeln. Allerdings hebt und senkt sich der Schwerpunkt der Walze, so dass die Bewegung dennoch irgendwie nicht rund ist.
14 Anwendungen Anwendung Der Kreis als einfachstes (und langweiligstes) Gleichdick hat die größte Fläche aller, das Reuleaux-Dreieck die kleinste, und dazwischen gibt es eine unendliche Anzahl anderer. Man kann also Material sparen: Ein Kreis mit gleichem Durchmesser hat eine größere Fläche, eine zylindrische Walze mehr Volumen!
15 Anwendungen Anwendung Der Kreis als einfachstes (und langweiligstes) Gleichdick hat die größte Fläche aller, das Reuleaux-Dreieck die kleinste, und dazwischen gibt es eine unendliche Anzahl anderer. Man kann also Material sparen: Ein Kreis mit gleichem Durchmesser hat eine größere Fläche, eine zylindrische Walze mehr Volumen! Ein Kleidungs-Knopf in Form eines s passt, wie ein herkömmlicher Knopf, stets genau durch ein Knopfloch.
16 Anwendungen CD-Wechsler Eine weitere Anwendung ist ein CD-Wechsler für 3 CDs. Der Plattenhalter hat einen kleineren Durchmesser als ein kreisförmiger, lässt sich aber mit einem am Rand sitzenden Antrieb fast so gut wie eine Kreisscheibe drehen.
17 Anwendungen Unrunde Bohrer Ein Gleichdick kann zum Bohren von eckigen Löchern genutzt werden. Der britische Ingenieur Harry James Watt erfand 1914 einen Bohrer á la Reuleaux-Dreieck, der beinahe viereckige Löcher erzeugt (US-Patent und folgende).
18 Anwendungen Unrunde Bohrer Ein Gleichdick kann zum Bohren von eckigen Löchern genutzt werden. Der britische Ingenieur Harry James Watt erfand 1914 einen Bohrer á la Reuleaux-Dreieck, der beinahe viereckige Löcher erzeugt (US-Patent und folgende).
19 Andere Vorkommen
20 Satz (Sutherland 1935) In einer planaren Punktmenge aus n Punkten kann der maximale Abstand zwischen zwei Punkten höchstens n mal auftreten.
21 Satz (Sutherland 1935) In einer planaren Punktmenge aus n Punkten kann der maximale Abstand zwischen zwei Punkten höchstens n mal auftreten. Bemerkung Die Punkte der maximalen Konfigurationen liegen auf Reuleaux-Polygonen und der Graph der größten Abstände besteht aus einem Kreis ungerader Länge und weiteren möglichen Knoten vom Grad 1.
22 Gliederung 1 2
23 Streichholzgraphen Problem Finde den kleinsten r-regulären Streichholzgraphen.
24 Streichholzgraphen Problem Finde den kleinsten r-regulären Streichholzgraphen. Antwort
25 Harborthgraph
Warum sind Gullydeckel rund und Pflastersteine viereckig?
Warum sind Gullydeckel rund und Pflastersteine viereckig? Jörn Steuding Heilbronn, 11. März 2015 Rund - Eckig 1. Runde Warum sind Gullydeckel rund? Was wäre wenn...? Wieso braucht man Gullydeckel überhaupt?
Sekundarschulabschluss für Erwachsene
SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60
Das Mathematikabitur. Abiturvorbereitung Geometrie. Autor: Claus Deser Abiturvorbereitung Mathematik 1
Das Mathematikabitur Abiturvorbereitung Geometrie Autor: Claus Deser Abiturvorbereitung Mathematik 1 Gliederung Was sind Vektoren/ ein Vektorraum? Wie misst man Abstände und Winkel? Welche geometrischen
Das Falten-und-Schneiden Problem
Das Falten-und-Schneiden Problem Kristian Bredies Uttendorf, 14. Februar 2005 Inhalt Einleitung Origami Das Falten-und-Schneiden Problem Mathematische Analyse Flaches Origami Lokale Eigenschaften Faltbarkeit
Leseprobe. Monika Noack, Alexander Unger, Robert Geretschläger, Hansjürg Stocker. Mathe mit dem Känguru 3. Die schönsten Aufgaben von 2009 bis 2011
Leseprobe Monika Noack, lexander Unger, Robert Geretschläger, Hansjürg Stocker Mathe mit dem Känguru 3 Die schönsten ufgaben von 009 bis 011 ISN: 978-3-446-480-1 Weitere Informationen oder estellungen
Kapitel D : Flächen- und Volumenberechnungen
Kapitel D : Flächen- und Volumenberechnungen Berechnung einfacher Flächen Bei Flächenberechnungen werden die Masse folgendermassen bezeichnet: = Fläche in m 2, dm 2, cm 2, mm 2, etc a, b, c, d = Bezeichnung
Beispiellösungen zu Blatt 19
µathematischer κorrespondenz- zirkel Mathematisches Institut Georg-August-Universität Göttingen Aufgabe 1 Beispiellösungen zu Blatt 19 a) In dem Buch der Wahrheit stehen merkwürdige Dinge: Auf der ersten
Linienland, Flächenland und der Hyperraum Ein Ausflug durch die Dimensionen
Linienland, Flächenland und der Hyperraum Ein Ausflug durch die Dimensionen Stephan Rosebrock Pädagogische Hochschule Karlsruhe 23. März 2013 Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe)
Aufgaben zur Übung der Anwendung von GeoGebra
Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,
Anmerkungen zur Übergangsprüfung
DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung
Arbeitsblätter zum Thema Papierfalten und Algebra für den Unterricht Hochbegabter in der Sekundarstufe II
Arbeitsblätter zum Thema Papierfalten und Algebra für den Unterricht Hochbegabter in der Sekundarstufe II Robert Geretschläger Graz, Österreich, 2009 Blatt 1 Lösen quadratischer Gleichungen mit Zirkel
Raum- und Flächenmessung bei Körpern
Raum- und Flächenmessung bei Körpern Prismen Ein Prisma ist ein Körper, dessen Grund- und Deckfläche kongruente Vielecke sind und dessen Seitenflächen Parallelogramme sind. Ist der Winkel zwischen Grund-
Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2)
Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 2815 Bremen Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2) Name: Ich 1. 2. 3. So schätze ich meinen Lernzuwachs ein. kann die
Übungsbuch Algebra für Dummies
...für Dummies Übungsbuch Algebra für Dummies von Mary Jane Sterling, Alfons Winkelmann 1. Auflage Wiley-VCH Weinheim 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 527 70800 0 Zu Leseprobe
Wie löst man Mathematikaufgaben?
Wie löst man Mathematikaufgaben? Manfred Dobrowolski Universität Würzburg Wie löst man Mathematikaufgaben? 1 Das Schubfachprinzip 2 Das Invarianzprinzip 3 Das Extremalprinzip Das Schubfachprinzip Verteilt
Einstein-Wellen-Mobil
Arbeitsvorschlag für interaktive Station Relativistische Fahrradfahrt Bebachten Sie die Szenerie beim Anfahren und Beschleunigen. Bewegen Sie sich tatsächlich zunächst rückwärts? Wie können Sie das feststellen?
Steinmikado I. Steinmikado II. Steinzielwerfen. Steinwerfen in Dosen
Steinmikado I Steinmikado II : ab 4 : ab 4 : 20 Steine : 20 Steine Spielregel : M 10-01 In der Mitte des Raumes schichten wir einen Steinberg auf. Die Aufgabe besteht darin, vom Fuße des Berges jeweils
Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt
Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik Prof. Dr. A. Taraz, Dipl-Math. A. Würfl, Dipl-Math. S. König Weihnachtsblatt Aufgabe W.1 Untersuchen Sie nachstehenden
1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)
Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus
AutoDesk Inventor. Teil 5.2. Bohrungen Bauteile mit Parameterbemaßung und Exceltabelle bestimmen. Arbeiten mit 2001/08. AutoCAD Schulungen FRANK
Datum : Inventor 5.2 Seite : 1 Arbeiten mit AutoDesk Inventor Bohrungen Bauteile mit Parameterbemaßung und Exceltabelle bestimmen Teil 5.2 2001/08 Datum : Inventor 5.2 Seite : 2 Erstellen und bemaßen von
Vergleichsarbeit Mathematik
Senatsverwaltung für Bildung, Jugend und Sport Vergleichsarbeit Mathematik 3. Mai 005 Arbeitsbeginn: 0.00 Uhr Bearbeitungszeit: 0 Minuten Zugelassene Hilfsmittel: - beiliegende Formelübersicht (eine Doppelseite)
Untersuchungen von Funktionen 1
Untersuchungen von Funktionen 1 Führen Sie für die Funktionen diese Untersuchungen durch : Untersuchen Sie den Graphen auf Symmetrie. Untersuchen Sie das Verhalten der Funktionswerte im Unendlichen. Bestimmen
Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel
Lösungen Übung 7 Aufgabe 1. Skizze (mit zusätzlichen Punkten): Die Figur F wird begrenzt durch die Strecken AB und BC und den Kreisbogen CA auf l. Wir werden die Bilder von AB, BC und CA unter der Inversion
SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten
Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung
1. Teil. Für den 1.Teil hast Du maximal 45 min. Zeit! Du darfst keinen Taschenrechner benutzen!
1. Teil Für den 1.Teil hast Du maximal 45 min. Zeit! Du darfst keinen Taschenrechner benutzen! Teil 1 Kurzform Kreuze die richtigen Lösungen an bzw. schreibe dein Ergebnis in den Antwortbereich. Für Nebenrechnungen
n 0 1 2 3 4 5 6 7 8 9 10 11 12 S n 1250 1244, 085 1214, 075 1220, 136 1226, 167 Nach einem Jahr beträgt der Schuldenstand ca. 1177,09.
Gymnasium Leichlingen 10a M Lö 2007/08.2 2/2 Aufgaben/Lösungen der Klassenarbeit Nr. 4 von Fr., 2008-04-25 2 45 Aufgabe 1: Die A-Bank bietet Kredite zu einem Zinssatz von 6% pro Jahr an. Ein privater Keditvermittler
Lösungen V.1. Pfeile bedeuten ist auch ein. (Lambacher-Schweizer Geometrie 2, S. 150)
Lösungen V.1 I: Trapez (zwei parallele Seiten; keine Symmetrie) II: gleichschenkliges Trapez (zwei parallele Seiten, die anderen beiden gleich lang; achsensymmetrisch) III: Drachen(viereck) (jeweils zwei
Spielideen mit dem Frisbee
Departement Schule und Sport Sportamt Bewegungstipps Spielideen mit dem Frisbee Frisbee-Passen 1. In Zweier-Gruppen: 2 Personen stehen sich im Abstand von 5 bis 10 Metern gegenüber. Gezählt werden die
Basteln und Zeichnen
Titel des Arbeitsblatts Seite Inhalt 1 Falte eine Hexentreppe 2 Falte eine Ziehharmonika 3 Die Schatzinsel 4 Das Quadrat und seine Winkel 5 Senkrechte und parallele Linien 6 Ein Scherenschnitt 7 Bastle
T Nach- bzw. Wiederholungsprüfung:
Schriftliche Abschlussprüfung an Fachoberschulen/ Prüfung zum Erwerb der Fachhochschulreife in beruflichen Bildungsgängen im Schuljahr 00/0 Hauptprüfung: Nach- bzw. Wiederholungsprüfung: 0.0.0 Schularten:
Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung
Herzlich willkommen zur der Um sich schnell innerhalb der ca. 350.000 Mathematikaufgaben zu orientieren, benutzen Sie unbedingt das Lesezeichen Ihres Acrobat Readers: Das Icon finden Sie in der links stehenden
Mathetest 1b. Schulabschlussfragen üben: 20 Fragen in 60 Minuten
Mathetest 1b. Schulabschlussfragen üben: 20 Fragen in 60 Minuten Name: Datum: Zeit: 60:00 Minuten Frage 1 von 20 Theo und Jenny sollen für eine Messeveranstaltung einen Holztisch mit 100 cm x 100 cm und
( ) als den Punkt mit der gleichen x-koordinate wie A und der
ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der
Vorlesung. Komplexe Zahlen
Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems
Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate
Mathematik-Lexikon HM00 Abszisse Die x-koordinate eines Punktes -> Ordinate Aufstellen von Funktionstermen Gesucht: Ganzrationale Funktion n-ten Grades: ƒ(x) = a n x n + a n-1 x n-1 + a n- x n- +... +
Vom goldenen Schnitt zum Alexanderplatz in Berlin
Vom goldenen Schnitt zum Alexanderplatz in Berlin Mathematik von 1200 bis 2004 Stefan Kühling, Fachbereich Mathematik skuehling @ fsmath.mathematik.uni-dortmund.de Schnupper Uni 26. August 2004 1 1 Goldener
6 Conways Chequerboard-Armee
6 Conways Chequerboard-Armee Spiele gehören zu den interessantesten Schöpfungen des menschlichen Geistes und die Analyse ihrer Struktur ist voller Abenteuer und Überraschungen. James R. Newman Es ist sehr
8 Diskrete Optimierung
8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von
WERRATALSCHULE Gesamtschule mit gymnasialer Oberstufe Heringen (Werra)
WERRATALSCHULE Gesamtschule mit gymnasialer Oberstufe Heringen (Werra) SCHULCURRICULUM IM FACH MATHEMATIK BILDUNGSGANG HAUPTSCHULE Fachcurriculum Klasse 7H Mathematik Schwerpunkte Kompetenzen Inhalte Mathematische
Aufgabe 1: Der Weidezaun
Aufgabe 1: Der Weidezaun Eine quadratische Viehweide mit der Fläche 870 m² soll eingezäunt werden. Dabei sollen 3 m für ein Tor freigelassen werden. Wie viel Meter Zaun werden benötigt? Informative Figur:
WF Mathematik: 1. Grundbegriffe der Geometrie
WF Mathematik: 1. Grundbegriffe der Geometrie Geometrie setzt sich aus den beiden griechischen Wörtern geo (Erde) und metrein (messen) zusammen, bedeutet ursprünglich Erdvermessen. Alle Gegenstände unseres
Kreis und Kreisteile. - Aufgaben Teil 1 -
Am Ende der Aufgabensammlung finden Sie eine Formelübersicht. a) Gib das Bogenmaß,3 im Gradmaß an. b) Gib das Bogenmaß im Gradmaß an. 9 c) Gib das Gradmaß 44 im Bogenmaß als Bruchteil von an. d) Gib das
Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008
Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin 1 Hausaufgaben vom 12.09.2007 Zahlentheorie 1 Aufgabe 1.1 Berechne die (quadratischen)
Eignungstest Mathematik
Eignungstest Mathematik Klasse 4 Datum: Name: Von Punkten wurden Punkte erreicht Zensur: 1. Schreibe in folgende Figuren die Bezeichnungen für die jeweilige Figur! Für eine Rechteck gibt ein R ein, für
DSM Das Mathe-Sommer-Ferien-Vergnügen Klasse 9 auf 10 Juni 2016 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10
Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10 Die Aufgaben sollen während der Sommerferien gelöst werden, damit notwendige Grundkenntnisse und Grundfertigkeiten nicht
Geometrie-Dossier Kreis 2
Geometrie-Dossier Kreis 2 Name: Inhalt: Konstruktion im Kreis (mit Tangenten, Sekanten, Passanten und Sehnen) Grundaufgaben Verwendung: Dieses Geometriedossier orientiert sich am Unterricht und liefert
Tafelbild zum Einstieg
Tafelbild zum Einstieg 69 Name: Symbol: Stammgruppenfarbe: Definition: Kissing Number Das Kissing Number Problem Figur / Körper Kreise Quadrate gleichseitige Dreiecke Kugeln Kissing Number Skizze der Anordnung
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
Minimalziele Mathematik
Jahrgang 5 o Kopfrechnen, Kleines Einmaleins o Runden und Überschlagrechnen o Schriftliche Grundrechenarten in den Natürlichen Zahlen (ganzzahliger Divisor, ganzzahliger Faktor) o Umwandeln von Größen
Mathematik Geometrie
Inhalt: Mathematik Geometrie 6.2003 2003 by Reto Da Forno bbildung / bbildungsvorschriften - Ähnlichkeitsabbildungen Seite 1 - Zentrische Streckung Seite 1 - Die Strahlensätze Seite 1 - Kongruenzabbildungen
Technische Universität München Zentrum Mathematik. Übungsblatt 4
Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=
min km/h
Proportionalität 1. Gegeben sind die folgenden Zuordnungen: 1) x - 3-1 0 0,5 4 y 9 3 0-1,5-6 -1 y : x - 3-3 ) km/h 30 45 60 70 85 100 min 45 30,5 13,5 min km/h 1350 1350 1350 3) s -,5 3,3 7, 8 9,1 4) t
Geometrie. Homepage zur Veranstaltung: Lehre Geometrie
Geometrie 4.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 4.2 Inhaltsverzeichnis Geometrie 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen 3 Längen-,
Elementare Geometrie. Inhaltsverzeichnis. info@mathenachhilfe.ch. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)
fua0306070 Fragen und Antworten Elementare Geometrie (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis 1 Geometrie 1.1 Fragen............................................... 1.1.1 Rechteck.........................................
Tag der Mathematik 2007
Tag der Mathematik 2007 Gruppenwettbewerb Einzelwettbewerb Speed-Wettbewerb Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind
1.4 Steigung und Steigungsdreieck einer linearen Funktion
Werner Zeyen 1. Auflage, 2013 ISBN: 978-3-86249-250-3 Mathe mit GeoGebra 7/8 Dreiecke, Vierecke, Lineare Funktionen und Statistik Arbeitsheft mit CD RS-MA-GEGE2 1.4 Steigung und Steigungsdreieck einer
DOWNLOAD Geometrie: Umfang und Flächeninhalt
DOWNLOAD Sabine Gutjahr Geometrie: Umfang und Flächeninhalt Differenzierte Übungsmaterialien Downloadauszug aus dem Originaltitel: Das Werk als Ganzes sowie in seinen Teilen unterliegt dem deutschen Urheberrecht.
Graphentheorie 1. Diskrete Strukturen. Sommersemester Uta Priss ZeLL, Ostfalia. Hausaufgaben Graph-Äquivalenz SetlX
Graphentheorie 1 Diskrete Strukturen Uta Priss ZeLL, Ostfalia Sommersemester 2016 Diskrete Strukturen Graphentheorie 1 Slide 1/19 Agenda Hausaufgaben Graph-Äquivalenz SetlX Diskrete Strukturen Graphentheorie
ACG - Projekt. Konstruktion einer. E-Gitarre
ACG - Projekt Konstruktion einer E-Gitarre 1. Grundriss des Gitarrenkörpers anfertigen Konstruktion des Grundrisses durch Hilfskreise und Linien: Maße der Kreise (Radius): A: 5,7 cm B: 2,7 cm C: 5,2 cm
Berufsmaturitätsprüfung 2009 Mathematik
GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmaturitätsschule Berufsmaturitätsprüfung 2009 Mathematik Zeit: 180 Minuten Hilfsmittel: Formel- und Tabellensammlung ohne gelöste Beispiele, Taschenrechner
1 C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R
C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R L Ö S U N G E N Seite 7 n Wenn vier Menschen auf einem Quadratmeter stehen, dann hat jeder eine Fläche von 50 mal 50 Zentimeter
Übersicht. 1. Zuordnungen. Arbeitsblätter... 15 32 Lösungen...255 257. 2. Prozent- und Zinsrechnung. Arbeitsblätter... 33 54 Lösungen...
Übersicht 1. Zuordnungen Arbeitsblätter... 15 32 Lösungen...255 257 2. Prozent- und Zinsrechnung Arbeitsblätter... 33 54 Lösungen...258 260 3. Geometrie: Figuren - Kongruenz Arbeitsblätter... 55 118 Lösungen...261
Realschule / Gymnasium. Klassen 9 / 10. - Aufgaben - Am Ende der Aufgabensammlung finden Sie eine Formelübersicht
Am Ende der Aufgabensammlung finden Sie eine Formelübersicht 1. a) Leite eine Formel her für den Umfang eines Kreises bei gegebener Fläche. b) Wieviel mal größer wird der Umfang eines Kreises, wenn man
Lösungen Crashkurs 7. Jahrgangsstufe
Lösungen Crashkurs 7. Jahrgangsstufe I. Symmetrie und Grundkonstruktionen 1. 2. Jede Raute hat die Eigenschaften: a, b, d, e, g. 3. Der gesuchte Treffpunkt befindet sich dort, wo die Mittelsenkrechte der
Maturitätsprüfung Mathematik
Maturitätsprüfung 007 Mathematik Klasse 4bN Kantonsschule Solothurn Mathematisch-naturwissenschaftliches Maturitätsprofil Name: Note: Hinweise zur Bearbeitung der Prüfung: Zur Lösung der Aufgaben stehen
Zentrale Klassenarbeit 2003
Zentrale Klassenarbeit 2003 Tipps ab Seite 21, Lösungen ab Seite 31 ZK Mathematik 2003 1. Aufgabe (8 Punkte) [ b 3 a) Vereinfache so weit wie möglich b) Löse die Gleichung 3 2x 3 x = 6. b5 : an 2 c 2n
Literatur zu geometrischen Konstruktionen
Literatur zu geometrischen Konstruktionen Hadlock, Charles Robert, Field theory and its classical problems. Carus Mathematical Monographs, 19. Mathematical Association of America, Washington, D.C., 1978.
1. Mathematikschulaufgabe
Klasse 8 / I I 1.0 Gib in Mengenschreibweise an: 1.1 Zur Menge M gehören alle Punkte, deren Abstand von parallelen Geraden g und h gleich ist, oder die von einem Punkt A mehr als 4 cm entfernt sind. 1.
Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Grundkurs Mathematik
Abitur 008 LA / AG II. Abenteuerspielplatz Der Gemeinderat beschlie t, einen eher langweiligen Spielplatz zu einem Abenteuerspielplatz umzugestalten. Das Motto lautet Auf hoher See. Daher soll ein Piratenschiff
Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau
Berufsreifeprüfung Studienberechtigung Mathematik Einstiegsniveau Zusammenstellung von relevanten Unterstufenthemen, die als Einstiegsniveau für BRP /SBP Kurse Mathematik beherrscht werden sollten. /brp
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere
Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2009 Mathematik (2. Sek)
Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2009 Mathematik (2. Sek) Gymnasium Unterstrass Zürich Aufnahmeprüfung 2009 Kurzgymnasium (Anschluss 2. Sekundarklasse) Mathematik Name: Die Prüfung
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere
Grundregeln der Perspektive und ihre elementargeometrische Herleitung
Vortrag zu Mathematik, Geometrie und Perspektive von Prof. Dr. Bodo Pareigis am 15.10.2007 im Vorlesungszyklus Naturwissenschaften und Mathematische Wissenschaften im Rahmen des Seniorenstudiums der LMU.
Welle. CAD Catia Solids. Arbeitsunterlagen. Prof. Dr.-Ing. A. Belei. Prof. Dr.-Ing. A. Belei CAD CATIA V5 Solids Welle.
Prof. Dr.-Ing. A. Belei CAD Catia Solids Arbeitsunterlagen 2006 Seite 1 / 20 Inhaltsverzeichnis: 1 Allgemeines... 3 2 Skizze als Profil (Variante 1)... 7 3 Skizze als Kreis (Variante 2)... 8 4 Verrundung,
Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)
Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,
Symmetrien; die Welt wird einfacher und schöner
Symmetrien; die Welt wird einfacher und schöner Philosophieren: Was ist Symmetrie? verschieben, drehen, spiegeln, umklappen, falten, wiederholen - schön Aufgabe 1: Falte ein Papier einmal durch, kleckse
Basistext Geometrie Grundschule. Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten:
Basistext Geometrie Grundschule Geometrische Figuren Strecke Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten: Gerade Eine Gerade ist eine Strecke ohne Endpunkte. Die Gerade geht
AutoCAD Inventor: Erstellung eines einfaches Modells!
AutoCAD Inventor: Erstellung eines einfaches Modells! Modellieren eines einfaches Inventor Modell mit schrittweiser Führung! Wir werden direkt und nur die notwendigen Schritte zur Erstellung eines Modells
Lange Nacht der Wissenschaft. Ein Klassiker. Die Mathematik der Kürzesten Wege
Lange Nacht der Wissenschaft Ein Klassiker Die Mathematik der Kürzesten Wege 09.06.2007 schlechte@zib.de Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB) http://www.zib.de/schlechte 2 Überblick
Schulcurriculum des Faches Mathematik. für die Klassenstufen 5 10
Schulcurriculum des Faches Mathematik für die Klassenstufen 5 10 Mathematik - Klasse 5 Ganze Zahlen Potenzen und Zweiersystem /das unendlich Große in der Mathematik Messen und Rechnen mit Größen Messungen
Erläutern von Arbeitsschritten bei mathematischen. Vergleichen und Bewerten verschiedener Lösungswege
Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen / Schwerpunkte Arithmetik/Algebra mit Zahlen und Symbolen umgehen Termumformungen Lineare Gleichungen mit zwei Variablen - Systeme linearer Gleichungen
Rahmenplanbezug. Größen / Sachrechnen Geld (Cent, Euro) Kalender: Einheiten (Tag, Woche) Uhrzeit (volle Stunde) Förderung/Differenzierung
Klasse 1 Allgemeine Kommunizieren Darstellen Problemlösen Argumentieren Modellieren Arithmetik Zahlenraum bis 20 Zahlen bis 20 erfassen und auf verschiedene Weise darstellen Zahlen bis 20 lesen und schreiben
Hurra, Hurra, die Feuerwehr ist da oder: Schulgeometrie ausnahmsweise realitätsnahe
Hurra, Hurra, die Feuerwehr ist da oder: Schulgeometrie ausnahmsweise realitätsnahe Markus Buchtele markus.buchtele buchtele@uni-klu.ac.at http://www www.mathematik.uni-kl.de/~ kl.de/~mamaeusch/ http://www
50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte
50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien
Integration von Schülerinnen und Schülern mit einer Sehschädigung an Regelschulen
Integration von Schülerinnen und Schülern mit einer Sehschädigung an Regelschulen Didaktikpool Falttechniken zum Einsatz im Mathematikunterricht mit sehgeschädigten Kindern Emmy Csocsán / Christina Blackert
WS 2013/14. Diskrete Strukturen
WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314
Übertrittsprüfung 2015
Departement Bildung, Kultur und Sport Abteilung Volksschule Übertrittsprüfung 2015 Aufgaben Prüfung an die 3. Klasse Bezirksschule Prüfung Name und Vorname der Schülerin / des Schülers... Prüfende Schule...
K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte
K2 MATHEMATIK KLAUSUR 26.2.24 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 28 5 5 2 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 2 4 5 3 3 4 3 Punkte WT Ana A.a b A.c Summe P. (max 7 5
2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.
2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es
Verfasser: M. Krokowski, R. Dietrich Einzelteilzeichnung CATIA-Praktikum. Ableitung einer. Einzelteilzeichnung. mit CATIA P2 V5 R11
Ableitung einer Einzelteilzeichnung mit CATIA P2 V5 R11 Inhaltsverzeichnis 1. Einrichten der Zeichnung...1 2. Erstellen der Ansichten...3 3. Bemaßung der Zeichnung...6 3.1 Durchmesserbemaßung...6 3.2 Radienbemaßung...8
Musteraufgaben für das Fach Mathematik
Musteraufgaben für das Fach Mathematik zur Vorbereitung der Einführung länderübergreifender gemeinsamer Aufgabenteile in den Abiturprüfungen ab dem Schuljahr 013/14 Impressum Das vorliegende Material wurde
Zeichnet man nun über die Seiten des Dreiecks die Quadrate der jeweiligen Seiten, dann ergibt sich folgendes Bild:
9. Lehrsatz von Pythagoras Pythagoras von Samos war ein griechischer Philosoph und Mathematiker, der von ca. 570 v.chr. bis 510 n.chr lebte. Obwohl es über seine gesallschaftliche Stellung verschiedene
Computerviren, Waldbrände und Seuchen - ein stochastisches Modell für die Reichweite einer Epidemie
Computerviren, Waldbrände und Seuchen - ein stochastisches für die Reichweite einer Epidemie Universität Hildesheim Schüler-Universität der Universität Hildesheim, 21.06.2012 Warum Mathematik? Fragen zum
Materialien zur Mathematik II
Joachim Stiller Materialien zur Mathematik II Die Quadratur des Kreises Alle Rechte vorbehalten Euklidische Geometrie Die Griechen kannten innerhalb der Euklidischen Geometrie drei Probleme, die auf direktem
x 2 x 1 x 3 5.1 Lernen mit Entscheidungsbäumen
5.1 Lernen mit Entscheidungsbäumen Falls zum Beispiel A = {gelb, rot, blau} R 2 und B = {0, 1}, so definiert der folgende Entscheidungsbaum eine Hypothese H : A B (wobei der Attributvektor aus A mit x
DOWNLOAD. Arbeiten im Baumarkt. Mathe-Aufgaben aus dem. Pools, Pumpen, Wassermengen. Karin Schwacha. Downloadauszug aus dem Originaltitel:
DOWNLOAD Karin Schwacha Arbeiten im Baumarkt Mathe-Aufgaben aus dem Berufsalltag: Pools, Pumpen, Wassermengen Mathe-Aufgaben aus dem Berufsalltag Klasse 8 10 auszug aus dem Originaltitel: Aus vielen Berufen
2. Propädeutische Geometrie Klasse 5/6. Für den Geometrieunterricht ausnützen!
2. Propädeutische Geometrie Klasse 5/6 2.1 Zur Entwicklung der Schüler Kinder im Alter von 10-12 Jahren sind wissbegierig neugierig leicht zu motivieren anhänglich (Lehrperson ist Autorität) zum Spielen
Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 5
Funktionen 1 Natürliche Zahlen Lesen Informationen aus Text, Bild, Tabelle mit eigenen Worten wiedergeben Problemlösen Lösen Näherungswerte für erwartete Ergebnisse durch Schätzen und Überschlagen ermitteln
Verlauf Material LEK Glossar Lösungen. Passend konstruiert ein Puzzle aus Dreiecken und Vierecken. Wolfgang Göbels, Bergisch Gladbach VORANSICHT
Reihe 5 S 1 Verlauf Material Passend konstruiert ein Puzzle aus Dreiecken und Vierecken Wolfgang Göbels, Bergisch Gladbach Klasse: 7 9 (G8) Dauer: Inhalt: 3 4 Stunden In ein Puzzle eingekleidete Dreiecks-