Markov-Ketten Proseminar: Das virtuelle Labor Ariane Wietschke

Größe: px
Ab Seite anzeigen:

Download "Markov-Ketten Proseminar: Das virtuelle Labor Ariane Wietschke"

Transkript

1 Markov-Ketten Proseminar: Das virtuelle Labor Ariane Wietschke Ariane Wietschke - Markov-Ketten 1

2 Übersicht 1. Herleitung der Definition 2. Komponenten von Markov-Ketten 3. Arten von Markov-Ketten 4. Anwendungsgebiete 5. To take home Ariane Wietschke - Markov-Ketten 2

3 1. Herleitung der Definition 2. Komponenten von Markov-Ketten 3. Arten von Markov-Ketten 4. Anwendungsgebiete 5. To take home Ariane Wietschke - Markov-Ketten 3

4 Geschichte - Beginn des 20. Jh. Andrej Andrejewitsch, Markov( ), Doeblin, Kolmogorov - praktische Anwendbarkeit fehlte - Bedeutung erst mit Verbreitung der Computertechnologie - heute in nahezu allen Anwendungsgebieten der Mathematik Ariane Wietschke - Markov-Ketten 4

5 Beispiel 1 - Irrfahrt auf Menge {1,2,,N} beginnt in 2 und bewegt sich entsprechend des Ergebnisses eines Münzwurfs nach rechts oder links (hier: Kopffirechts, Zahlfilinks) - Für Randpositionen 1 und N sei Zusatzregel definiert (hier kehre zurück zur Startposition ) Ariane Wietschke - Markov-Ketten 5

6 Beispiel 1 Positionen Zustaende Zustand Kopf/Zahl Kopf Kopf Kopf Kopf Zahl Zahl Kopf Kopf Kopf Zahl Position Ariane Wietschke - Markov-Ketten 6

7 Beispiel 2 - Irrfahrt auf {0,,999} beginnt bei 0. Bewegung aus Position i zur Position (2i+i ) mod 1000, wobei i durch das Werfen eines Würfels (Augenzahl) ermittelt wird Ariane Wietschke - Markov-Ketten 7

8 Beispiel 2 Positionen Zustaende Durchgang Augenzahl Zustand Ariane Wietschke - Markov-Ketten 8

9 Beispiel 3 - Vorbereitung: 4 mal Münze werfen fi Anzahl der Köpfe wird Startposition einer Irrfahrt auf der Menge {0,,999} Bewegung entsprechend des Ergebnisses eines Münzwurfs von Position i zur Position i+1 mod 1000 bzw. zur Position i-1 mod 1000 (hier: Kopffii+1 mod 1000, Zahlfii-1 mod 1000) Ariane Wietschke - Markov-Ketten 9

10 Beispiel 3 Positionen Zustaende 1 mal KopffiStartposition i=1 Durchgang Kopf/Zahl Zahl Kopf KopfKopf KopfZahl KopfZahlZahl Zustand Ariane Wietschke - Markov-Ketten 10

11 Beispiele: Irrfahrten 1. Irrfahrt auf Menge {1,...,N} Beginn in 2 Bewegung entsprechend Münzwurf-Ergebnis nach rechts oder links für 1 und N Zusatzregel(z.B. zurück zum Start) 2. Irrfahrt auf {0,...,999} Beginn bei 0 Bewegung aus i nach 2i+i mod 1000 i wird durch werfen eines Würfels ermittelt 3. 4 mal Münze werfen Kopfanzahl=Startposition einer Irrfahrt auf {0,...,999} Bewegung entsprechend Münzwurfergebnis von i nach i+1mod1000 bzw. i-1mod Ariane Wietschke - Markov-Ketten 11

12 Gemeinsamkeiten - vorgegebene endliche Menge möglicher Positionen - deterministisches oder zufälliges Verfahren zur Bestimmung der Startposition - jeder Position wird zufällig Folgeposition zugeordnet Ariane Wietschke - Markov-Ketten 12

13 Definition: endliche Markov-Kette Stochastischer Prozess bestehend aus: - nichtleerer endlicher Menge S={1,2,...,N} (Zustandsraum) - Vektor p i Wahrscheinlichkeit dafür, im Zustand (Anlaufvektor) zu starten - Matrix P ij Wahrscheinlichkeit dafür, vom Zustand in einem Schritt in Folgezustand überzugehen (stochastische Matrix Ariane Wietschke - Markov-Ketten 13

14 Definition: stochastischer Prozess - bezeichnet Folge von Zufallsexperimenten, die durch Funktion X(t) mit t T beschrieben werden kann - X(t 0 ) Wert der Zufallsvariable zum Zeitpunkt t 0 T M = {X(t) t T} Parameterraum Zustandsraum Ariane Wietschke - Markov-Ketten 14

15 Markov-Eigenschaft Markov-Kette ist stochastischer Prozess, dessen zukünftige Zustände vom momentanen Zustand abhängen (Gedächtnislosigkeit des Prozesses) Markov-Prozess 1.Ordnung: genau der vorherige Zeitpunkt ist entscheidend Markov-Prozess 2.Ordnung: mehr Vergangenheit wird berücksichtigt (erweiterte Markov-Eigenschaft Ariane Wietschke - Markov-Ketten 15

16 1. Herleitung der Definition 2. Komponenten von Markov-Ketten 3. Arten von Markov-Ketten 4. Anwendungsgebiete 5. To take home Ariane Wietschke - Markov-Ketten 16

17 Beispiel - Käfer kriecht durch Wegenetz fientscheidet sich an jeder Weggabelung zufällig für einen Weg in Pfeilrichtung fidarf nicht stehen bleiben Ariane Wietschke - Markov-Ketten 17

18 Bestimmung des Zustandsraums Welche Elemente enthält der Zustandsraum M? - Zustände sind die 4 Knotenpunkte fi M = {e 1, e 2, e 3, e 4 } Zustände müssen unabhängig seinfikäfer kann sich nur an einem Knotenpunkt befinden Ariane Wietschke - Markov-Ketten 18

19 Bestimmung der Übergangsmatrix - Übergangsmatrix P ist stochastisch fielemente der Matrix zwischen null und eins: p ik [0;1] 0 p ik 1 fisumme der Elemente einer Zeile ist eins: Allgemein hat Übergangsmatrix die Form: Ariane Wietschke - Markov-Ketten 19

20 Bestimmung der Übergangsmatrix Ariane Wietschke - Markov-Ketten 20

21 Mehrstufige Übergänge - Übergang von e i nach e k in n Schritten fin-stufige Übergangswahrscheinlichkeit Beispiel: Pfadregel: P 14 (3)=e 1 *e 2 *e 3 *e 4 +e 1 *e 2 *e 4 *e 4 +e 1 *e 3 *e 4 *e 4 ): Ariane Wietschke - Markov-Ketten 21

22 Bestimmen der Übergangsmatrix P(n) = P n Elemente der MatrixfiSumme der Wahrscheinlichkeiten aller Pfade die Übergang von e i nach e k in n Schritten ermöglichen P(3) = P 3 = P * P Ariane Wietschke - Markov-Ketten 22

23 Bestimmung des Anlaufvektors = ( p 1 (0), p 2 (0),, p N (0) ) Beispiel: zufällige Anfangsverteilung: =(,,, ) Wenn der Käfer in e 1 starten soll: =(1,0,0,0) Ariane Wietschke - Markov-Ketten 23

24 Wahrscheinlichkeitsverteilung zum Zeitpunkt n Wahrscheinlichkeitsvektor: = (p 1 (n), p 2 (n),, p N (n)) = * P n = *P 3 = * = Ariane Wietschke - Markov-Ketten 24

25 1. Herleitung der Definition 2. Komponenten von Markov-Ketten 3. Arten von Markov-Ketten 4. Anwendungsgebiete 5. To take home Ariane Wietschke - Markov-Ketten 25

26 Arten von Markov-Ketten Homogene Markov-Kette: Übergangswahrscheinlichkeiten zeitunabhängig p ik =P(e k (n) e i (n-1)) Absorbierende Markov-Kette: $ Zustand, der nicht mehr verlassen werden kann p ii = 1 Irreduzible Markov-Kette: alle Zustände gegenseitig erreichbar p ik (n) > Ariane Wietschke - Markov-Ketten 26

27 1. Herleitung der Definition 2. Komponenten von Markov-Ketten 3. Arten von Markov-Ketten 4. Anwendungsgebiete 5. To take home Ariane Wietschke - Markov-Ketten 27

28 Anwendung Biologie:- Ausbreitung von Arten und Wechselwirkungen. - Sequenzberechnung in DNS-Molekülen - Wettervorhersage Physik:- Bewegung von Staubteilchen in der Luft (Brownsche Bewegung). Informatik:- Analyse von Computer-Netzwerken Spracherkennung Ariane Wietschke - Markov-Ketten 28

29 Anwendung Qualitäts- und Sicherheitstechnik: Verfügbarkeit und Sicherheit von technischen Systemen Soziologie:- Beschreibung von sozialen Netzwerken und - sozialem Verhalten - Umzugsbewegungen Wirtschaft:- Dynamik von Börsenkursen und Branchenindizes Ariane Wietschke - Markov-Ketten 29

30 Anwendung Logistik:- Analyse von Warteschlangen und - Verkehrsnetzwerken - Personalplanung Ariane Wietschke - Markov-Ketten 30

31 1. Herleitung der Definition 2. Komponenten von Markov-Ketten 3. Arten von Markov-Ketten 4. Anwendungsgebiete 5. To take home Ariane Wietschke - Markov-Ketten 31

32 To take home - Stochastischer Prozess bestehend aus: Zustandsraum, Anlaufvektor, Übergangsmatrix - Markov-Eigenschaft: zukünftige Zustände vom momentanen Zustand abhängig - vielseitige Anwendung in Biologie, Informatik, Wirtschaft etc Ariane Wietschke - Markov-Ketten 32

Die Kopplung von Markovketten und die Irrfahrt auf dem Torus

Die Kopplung von Markovketten und die Irrfahrt auf dem Torus Die Kopplung von Markovketten und die Irrfahrt auf dem Torus Verena Monschang Vortrag 20.05.20 Dieser Seminarvortrag thematisiert in erster Linie die Kopplung von Markovketten. Zu deren besseren Verständnis

Mehr

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente Mehrstufige Zufallsexperimente Inhalt 6.1 6.1 Mehrstufige Experimente 6.2 6.2 Bedingte Wahrscheinlichkeiten Seite 2 6.1 Mehrstufige Experimente Grundvorstellung: Viele Viele Experimente werden der der

Mehr

DynaTraffic Modelle und mathematische Prognosen. Simulation der Verteilung des Verkehrs mit Hilfe von Markov-Ketten

DynaTraffic Modelle und mathematische Prognosen. Simulation der Verteilung des Verkehrs mit Hilfe von Markov-Ketten DynaTraffic Modelle und mathematische Prognosen Simulation der Verteilung des Verkehrs mit Hilfe von Markov-Ketten Worum geht es? Modelle von Verkehrssituationen Graphen: Kanten, Knoten Matrixdarstellung

Mehr

Signalverarbeitung 2. Volker Stahl - 1 -

Signalverarbeitung 2. Volker Stahl - 1 - - 1 - Hidden Markov Modelle - 2 - Idee Zu klassifizierende Merkmalvektorfolge wurde von einem (unbekannten) System erzeugt. Nutze Referenzmerkmalvektorfolgen um ein Modell Des erzeugenden Systems zu bauen

Mehr

Vertiefung NWI: 13. Vorlesung zur Wahrscheinlichkeitstheorie

Vertiefung NWI: 13. Vorlesung zur Wahrscheinlichkeitstheorie Fakultät für Mathematik Prof. Dr. Barbara Gentz SS 2013 Vertiefung NWI: 13. Vorlesung zur Wahrscheinlichkeitstheorie Mittwoch, 10.7.2013 13. Markoffketten 13.1 Beispiele 1. Irrfahrt auf dem zweidimensionalen

Mehr

DIPLOMARBEIT. Abschätzungen der Konvergenzgeschwindigkeit von Markov-Ketten gegen die Gleichgewichtsverteilung

DIPLOMARBEIT. Abschätzungen der Konvergenzgeschwindigkeit von Markov-Ketten gegen die Gleichgewichtsverteilung Studiengang Diplom-Mathematik mit Schwerpunkt Biowissenschaften DIPLOMARBEIT Abschätzungen der Konvergenzgeschwindigkeit von Markov-Ketten gegen die Gleichgewichtsverteilung von: Christina Boll geb. Wolf

Mehr

Einführung in Markoff-Ketten

Einführung in Markoff-Ketten Einführung in Markoff-Ketten von Peter Pfaffelhuber Version: 6. Juli 200 Inhaltsverzeichnis 0 Vorbemerkung Grundlegendes 2 Stationäre Verteilungen 6 3 Markoff-Ketten-Konvergenzsatz 8 0 Vorbemerkung Die

Mehr

LANGZEITVERHALTEN VON MARKOW-KETTEN

LANGZEITVERHALTEN VON MARKOW-KETTEN LANGZEITVERHALTEN VON MARKOW-KETTEN NORA LOOSE. Buchstabensalat und Definition Andrei Andreewitsch Markow berechnete Anfang des 20. Jahrhunderts die Buchstabensequenzen in russischer Literatur. 93 untersuchte

Mehr

4 Diskrete Wahrscheinlichkeitsverteilungen

4 Diskrete Wahrscheinlichkeitsverteilungen 4 Diskrete Wahrscheinlichkeitsverteilungen 4.1 Wahrscheinlichkeitsräume, Ereignisse und Unabhängigkeit Definition: Ein diskreter Wahrscheinlichkeitsraum ist ein Paar (Ω, Pr), wobei Ω eine endliche oder

Mehr

1 A dp = P(A B). (1.3)

1 A dp = P(A B). (1.3) Markov-etten Seminar Stochastik vom 4-500 Version Oktober 00 Markus Penz Vorbemerkungen zu bedingten Wahrscheinlichkeiten Sei (Ω, F,P) ein Wahrscheinlichkeitsraum und X : Ω R eine F-messbare sowie integrierbare

Mehr

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen.

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen. Dieses Quiz soll Ihnen helfen, Kapitel 2.5-2. besser zu verstehen. Frage Wir betrachten ein Würfelspiel. Man wirft einen fairen, sechsseitigen Würfel. Wenn eine oder eine 2 oben liegt, muss man 2 SFr zahlen.

Mehr

3 Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen

3 Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen.1 Pfadregeln.1.1 Pfadmultiplikationsregel Eine faire Münze und

Mehr

BACHELORARBEIT. Markov-Ketten und ihre Greensche Funktion. Jasmin Riegler. Wien, Jänner 2013

BACHELORARBEIT. Markov-Ketten und ihre Greensche Funktion. Jasmin Riegler. Wien, Jänner 2013 BACHELORARBEIT Markov-Ketten und ihre Greensche Funktion Jasmin Riegler Wien, Jänner 203 Studienkennzahl: A 033 62 Studienrichtung: Mathematik Betreuer: Privatdoz. Dr. Mag. Bernhard Krön Inhaltsverzeichnis

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

LANGZEITVERHALTEN VON MARKOW-KETTEN

LANGZEITVERHALTEN VON MARKOW-KETTEN LANGZEITVERHALTEN VON MARKOW-KETTEN NORA LOOSE. Buchstabensalat und Definition Andrei Andreewitsch Markow berechnete Anfang des 20. Jahrhunderts die Buchstabensequenzen in russischer Literatur. 93 untersuchte

Mehr

Population und Stichprobe: Wahrscheinlichkeitstheorie

Population und Stichprobe: Wahrscheinlichkeitstheorie Population und Stichprobe: Wahrscheinlichkeitstheorie SS 2001 4. Sitzung vom 15.05.2001 Wahrscheinlichkeitstheorie in den Sozialwissenschaften: Stichprobenziehung: Aussagen über Stichprobenzusammensetzung

Mehr

Vernetzte Systeme. Übungsstunde Adrian Schüpbach 09. Juni 2006

Vernetzte Systeme. Übungsstunde Adrian Schüpbach 09. Juni 2006 Vernetzte Systeme Übungsstunde 09.06.2006 Adrian Schüpbach scadrian@student.ethz.ch 09. Juni 2006 Adrian Schüpbach (ETH Zürich) Vernetzte Systeme SS 2006 1 / 28 Übersicht 1 TCP-Zustandsdiagramm 2 Proxy

Mehr

Die Abbildung zeigt die Kette aus dem "

Die Abbildung zeigt die Kette aus dem ½ Ô ½ 0 1 2 Õ Eine Markov-Kette mit absorbierenden Zustanden Die Abbildung zeigt die Kette aus dem " gamblers ruin problem\ fur m = 2. Man sieht sofort, dass hier sowohl 1 = (1; 0; 0) als auch 2 = (0;

Mehr

3. Kombinatorik und Wahrscheinlichkeit

3. Kombinatorik und Wahrscheinlichkeit 3. Kombinatorik und Wahrscheinlichkeit Es geht hier um die Bestimmung der Kardinalität endlicher Mengen. Erinnerung: Seien A, B, A 1,..., A n endliche Mengen. Dann gilt A = B ϕ: A B bijektiv Summenregel:

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Teil V Wahrscheinlichkeitsrechnung Inhaltsangabe 6 Einführung in die Wahrscheinlichkeitsrechnung 125 6.1 Kombinatorik......................... 125 6.2 Grundbegri e......................... 129 6.3 Wahrscheinlichkeiten.....................

Mehr

Simulation von Zufallsvariablen und Punktprozessen

Simulation von Zufallsvariablen und Punktprozessen Simulation von Zufallsvariablen und Punktprozessen 09.11.2009 Inhaltsverzeichnis 1 Einleitung 2 Pseudozufallszahlen 3 Punktprozesse Zufallszahlen Definition (Duden): Eine Zufallszahl ist eine Zahl, die

Mehr

Satz 2.8.3: Sei Q eine Intensitätsmatrix. Dann hat die

Satz 2.8.3: Sei Q eine Intensitätsmatrix. Dann hat die Satz 2.8.3: Sei Q eine Intensitätsmatrix. Dann hat die Rückwärtsgleichung P (t) = QP (t), P (0) = E eine minimale nicht negative Lösung (P (t) : t 0). Die Lösung bildet eine Matrix Halbgruppe, d.h. P (s)p

Mehr

Markovketten. Bsp. Page Ranking für Suchmaschinen. Wahlfach Entscheidung unter Risiko und stat. Datenanalyse 07.01.2015

Markovketten. Bsp. Page Ranking für Suchmaschinen. Wahlfach Entscheidung unter Risiko und stat. Datenanalyse 07.01.2015 Markovketten Markovketten sind ein häufig verwendetes Modell zur Beschreibung von Systemen, deren Verhalten durch einen zufälligen Übergang von einem Systemzustand zu einem anderen Systemzustand gekennzeichnet

Mehr

Die Voraussetzungen aus Klasse 8-10

Die Voraussetzungen aus Klasse 8-10 Die Voraussetzungen aus Klasse 8-10 I. Grundlagen der Wahrscheinlichkeitsrechnung Zusammenstellung der Voraussetzungen: Pfadregel Ereignisse Additionssatz Ge gener eignis A B A B P(A B) = P(A) + P(B) P(A

Mehr

Die Umsetzung der Lehrplaninhalte in Fokus Mathematik Einführungsphase auf der Basis des Kerncurriculums Mathematik in Nordrhein-Westfalen

Die Umsetzung der Lehrplaninhalte in Fokus Mathematik Einführungsphase auf der Basis des Kerncurriculums Mathematik in Nordrhein-Westfalen Die Umsetzung der Lehrplaninhalte in auf der Basis des Kerncurriculums Mathematik in Nordrhein-Westfalen Schulinternes Curriculum Schülerbuch 978-3-06-041672-1 Lehrerfassung des Schülerbuchs 978-3-06-041673-8

Mehr

Klausur zur Vorlesung,,Algorithmische Mathematik II

Klausur zur Vorlesung,,Algorithmische Mathematik II Institut für angewandte Mathematik, Institut für numerische Simulation Sommersemester 2015 Prof. Dr. Anton Bovier, Prof. Dr. Martin Rumpf Klausur zur Vorlesung,,Algorithmische Mathematik II Bitte diese

Mehr

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Wichtige Tatsachen und Formeln zur Vorlesung Mathematische Grundlagen für das Physikstudium 3 Franz Embacher http://homepage.univie.ac.at/franz.embacher/

Mehr

Technische Universität München

Technische Universität München Stand der Vorlesung Kapitel 2: Auffrischung einiger mathematischer Grundlagen Mengen, Potenzmenge, Kreuzprodukt (Paare, Tripel, n-tupel) Relation: Teilmenge MxN Eigenschaften: reflexiv, symmetrisch, transitiv,

Mehr

Würfelspiele und Zufall

Würfelspiele und Zufall Würfelspiele und Zufall Patrik L. Ferrari 29. August 2010 1 Random horse die Irrfahrt des Pferdchens Betrachte ein Schachbrett mit einem Pferd (Springer), welches sich nach den üblichen Springer-Regeln

Mehr

Vorlesung 9b. Bedingte Verteilungen und bedingte Wahrscheinlichkeiten

Vorlesung 9b. Bedingte Verteilungen und bedingte Wahrscheinlichkeiten Vorlesung 9b Bedingte Verteilungen und bedingte Wahrscheinlichkeiten 1 Voriges Mal: Aufbau der gemeinsamen Verteilung von X 1 und X 2 aus der Verteilung ρ von X 1 und Übergangswahrscheinlichkeiten P(a

Mehr

Wahrscheinlichkeitstheorie

Wahrscheinlichkeitstheorie Kapitel 2 Wahrscheinlichkeitstheorie Josef Leydold c 2006 Mathematische Methoden II Wahrscheinlichkeitstheorie 1 / 24 Lernziele Experimente, Ereignisse und Ereignisraum Wahrscheinlichkeit Rechnen mit Wahrscheinlichkeiten

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

2.1 Importance sampling: Metropolis-Algorithmus

2.1 Importance sampling: Metropolis-Algorithmus Kapitel 2 Simulationstechniken 2.1 Importance sampling: Metropolis-Algorithmus Eine zentrale Fragestellung in der statistischen Physik ist die Bestimmung von Erwartungswerten einer Observablen O in einem

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Was du wissen musst: Die Begriffe Zufallsexperiment, Ereignisse, Gegenereignis, Zufallsvariable und Wahrscheinlichkeit sind dir geläufig. Du kannst mehrstufige Zufallsversuche

Mehr

Proseminarvortrag. Markov-Ketten in der Biologie (Anwendungen)

Proseminarvortrag. Markov-Ketten in der Biologie (Anwendungen) Proseminarvortrag Markov-Ketten in der Biologie (Anwendungen) von Peter Drössler 20.01.2010 2 Markov-Ketten in der Biologie (Peter Drössler, KIT 2010) Inhalt 1. Das Wright-Fisher Modell... 3 1.1. Notwendige

Mehr

Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME

Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME Fassung vom 12. Januar 2001 121 WAHRSCHEINLICHKEITS-RÄUME Stichproben-Raum. 9.1 9.1 Stichproben-Raum. Die bisher behandelten Beispiele von Naturvorgängen oder Experimenten

Mehr

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

Theoretische Überlegungen zur Ausbreitung von Infektionserregern auf Kontaktnetzen. Hartmut Lentz, Maria Kasper, Ansgar Aschfalk und Thomas Selhorst

Theoretische Überlegungen zur Ausbreitung von Infektionserregern auf Kontaktnetzen. Hartmut Lentz, Maria Kasper, Ansgar Aschfalk und Thomas Selhorst Theoretische Überlegungen zur Ausbreitung von Infektionserregern auf Kontaktnetzen Hartmut Lentz, Maria Kasper, Ansgar Aschfalk und Thomas Selhorst Netzwerke / Graphen verschiedene Typen von Graphen: einfache

Mehr

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung lausthal Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Begriffe Definition: Unter einem Zufallsexperiment versteht man einen,

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

3. Das Reinforcement Lernproblem

3. Das Reinforcement Lernproblem 3. Das Reinforcement Lernproblem 1. Agierender Agent in der Umgebung 2. Discounted Rewards 3. Markov Eigenschaft des Zustandssignals 4. Markov sche Entscheidung 5. Werte-Funktionen und Bellman sche Optimalität

Mehr

Überblick. Linguistische Anwendungen: æ Spracherkennung æ Textretrival æ probabilistische Grammatiken: z.b. Disambiguierung. Problem: woher Daten?

Überblick. Linguistische Anwendungen: æ Spracherkennung æ Textretrival æ probabilistische Grammatiken: z.b. Disambiguierung. Problem: woher Daten? 1 Überblick æ Beschreibende Statistik: Auswertung von Experimenten und Stichproben æ Wahrscheinlichkeitsrechnung: Schlüsse aus gegebenen Wahrscheinlichkeiten, Hilfsmittel: Kombinatorik æ Beurteilende Statistik:

Mehr

Populationsentwicklung

Populationsentwicklung Populationsentwicklung Lewis (942) und Leslie (945) entwickelten ein Modell, mit dem die Entwicklung einer Population unter Einbeziehung der Altersstruktur untersucht werden kann. Die Population wird z.b.

Mehr

P (A B) P (B) = P ({3}) P ({1, 3, 5}) = 1 3.

P (A B) P (B) = P ({3}) P ({1, 3, 5}) = 1 3. 2 Wahrscheinlichkeitstheorie Beispiel. Wie wahrscheinlich ist es, eine Zwei oder eine Drei gewürfelt zu haben, wenn wir schon wissen, dass wir eine ungerade Zahl gewürfelt haben? Dann ist Ereignis A das

Mehr

STOCHASTISCHE PROZESSE. Vorlesungsskript

STOCHASTISCHE PROZESSE. Vorlesungsskript STOCHASTISCHE PROZESSE I: Markovketten in diskreter und stetiger Zeit Wolfgang König Vorlesungsskript Universität Leipzig Sommersemester 2005 Inhaltsverzeichnis 1 Grundlagen 3 1.1 Einleitung........................................

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

Thema: Eigenschaften von Funktionen (Wiederholung und Symmetrie, Nullstellen, Transformation)

Thema: Eigenschaften von Funktionen (Wiederholung und Symmetrie, Nullstellen, Transformation) 1. Halbjahr EF 2. Halbjahr EF Einführungsphase (EF) Vektoren, ein Schlüsselkonzept (Punkte, Vektoren, Rechnen mit Vektoren, Betrag) Eigenschaften von Funktionen (Wiederholung und Symmetrie, Nullstellen,

Mehr

Schriftlicher Test Teilklausur 2

Schriftlicher Test Teilklausur 2 Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Künstliche Intelligenz: Grundlagen und Anwendungen Wintersemester 2009 / 2010 Albayrak, Fricke (AOT) Opper, Ruttor (KI) Schriftlicher

Mehr

Gemeinsame Wahrscheinlichkeitsverteilungen

Gemeinsame Wahrscheinlichkeitsverteilungen Gemeinsame Wahrscheinlichkeitsverteilungen Worum geht es in diesem Modul? Gemeinsame Wahrscheinlichkeits-Funktion zweier Zufallsvariablen Randverteilungen Bedingte Verteilungen Unabhängigkeit von Zufallsvariablen

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 6 5 Hilfsmittel aus der Kombinatorik 7 1 Vorbemerkungen

Mehr

Boolesche Netzwerke mit zufälligen Regeln: ein regelbasiertes Modell mit zufälligen Regeln für regulatorische genetische Netzwerke

Boolesche Netzwerke mit zufälligen Regeln: ein regelbasiertes Modell mit zufälligen Regeln für regulatorische genetische Netzwerke Boolesche Netzwerke mit zufälligen Regeln: ein regelbasiertes Modell mit zufälligen Regeln für regulatorische genetische Netzwerke Ausarbeitung Julia Kroos Münster, 21. Juni 2012 Bachelor- und Masterseminar

Mehr

Vorlesung 8b. Bedingte Erwartung, bedingte Varianz, bedingte Verteilung, bedingte Wahrscheinlichkeiten

Vorlesung 8b. Bedingte Erwartung, bedingte Varianz, bedingte Verteilung, bedingte Wahrscheinlichkeiten Vorlesung 8b Bedingte Erwartung, bedingte Varianz, bedingte Verteilung, bedingte Wahrscheinlichkeiten 1 Wie gehabt, denken wir uns ein zufälliges Paar X = (X 1,X 2 ) auf zweistufige Weise zustande gekommen:

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 5 Hilfsmittel aus der Kombinatorik 7 Bedingte

Mehr

Didaktik der Stochastik

Didaktik der Stochastik Didaktik der Stochastik. Didaktik der Stochastik Didaktik der Stochastik. Inhaltsverzeichnis Didaktik der Stochastik Ziele und Inhalte Beschreibende Statistik Wahrscheinlichkeitsrechnung Beurteilende Statistik

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik. Mögliche Ergebnisse, auch Elementarereignisse bezeichnet

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik. Mögliche Ergebnisse, auch Elementarereignisse bezeichnet Kapitel 10 Zufall und Wahrscheinlichkeit 10.1. Grundbegriffe Wahrscheinlichkeitsrechnung Zufallsvorgang Klein-Omega ω Groß-Omega Ω Stellt Modelle bereit, die es erlauben zufallsabhängige Prozesse abzuschätzen

Mehr

9 Erwartungswert, Varianz und Standardabweichung einer Zufallsgröÿe

9 Erwartungswert, Varianz und Standardabweichung einer Zufallsgröÿe Übungsmaterial 9 Erwartungswert, Varianz und Standardabweichung einer Zufallsgröÿe 9. Erwartungswert Fragt man nach dem mittleren Wert einer Zufallsgröÿe X pro Versuch, so berechnet man den Erwartungswert

Mehr

Profil 1: Gerechtigkeit als menschliche Herausforderung

Profil 1: Gerechtigkeit als menschliche Herausforderung Profil 1: Gerechtigkeit als menschliche Herausforderung ( Std. unter Einhaltung Religion 4 Biologie 4 der PGW (*) Geographie (*) der zwei Fächer Philosophie 2 Chemie 2 Physik 2 Informatik 2 wichtig: 4.

Mehr

Basistext - Wahrscheinlichkeitsrechnung

Basistext - Wahrscheinlichkeitsrechnung Basistext - Wahrscheinlichkeitsrechnung Die Wahrscheinlichkeitsrechnung beschäftigt sich mit Vorgängen, die in ihrem Ausgang unbestimmt sind. Sie versucht mögliche Ergebnisse der Vorgänge zu quantifizieren.

Mehr

Mathematik Matrizenrechnung

Mathematik Matrizenrechnung Mathematik Matrizenrechnung Einstufige Prozesse Rechenregeln für Matrizen Mehrstufige Prozesse Inverse Matrix Stochastische Prozesse 6 Zyklisches Verhalten Einstufige Prozesse Einstufige Prozesse Zur Beschreibung

Mehr

Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure

Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure Von Prof. Hubert Weber Fachhochschule Regensburg 3., überarbeitete und erweiterte Auflage Mit zahlreichen Bildern, Tabellen sowie

Mehr

Werner Sandmann: Modellierung und Analyse 4 1. Kapitel 4. Markovketten

Werner Sandmann: Modellierung und Analyse 4 1. Kapitel 4. Markovketten Werner Sandmann: Modellierung und Analyse 4 1 Kapitel 4 Markovketten Werner Sandmann: Modellierung und Analyse Kapitel 4 Markovketten 4.1 Grundlagen 4 2 Abschnitt 4.1 Grundlagen Werner Sandmann: Modellierung

Mehr

Vorläufiger schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik

Vorläufiger schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik Vorläufiger schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Mathematik 2.1.1 ÜBERSICHTSRASTER UNTERRICHTSVORHABEN EINFÜHRUNGSPHASE Unterrichtsvorhaben I: Unterrichtsvorhaben II: Beschreibung

Mehr

Einführung in die Wahrscheinlichkeitsrechnung

Einführung in die Wahrscheinlichkeitsrechnung Einführung in die Wahrscheinlichkeitsrechnung Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) Wahrscheinlichkeitsrechnung

Mehr

Hans Humenberger. Das PageRank-System von Google eine aktuelle Anwendung im MU

Hans Humenberger. Das PageRank-System von Google eine aktuelle Anwendung im MU Hans Humenberger Das PageRank-System von Google eine aktuelle Anwendung im MU Google und seine Gründer Google etwas Riesengroßes nach der unglaublichen Fülle des WWW Googol = 10^100 1938 durch E. Kasner

Mehr

Ziegenproblem, Monty-Hall-Problem, Wahrscheinlichkeitsrechnung. Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem

Ziegenproblem, Monty-Hall-Problem, Wahrscheinlichkeitsrechnung. Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Wahrscheinlichkeitsrechnung Theorie Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Ziegenproblem,

Mehr

Angewandte Stochastik

Angewandte Stochastik Angewandte Stochastik Dr. C.J. Luchsinger 3 Grundbegriffe von Markov-Ketten Literatur Kapitel 3 * Grimmett & Stirzaker: Kapitel 6.1 * Krengel: 15 Begrifflich: 1. A. A. Markov war ein russischer Mathematiker

Mehr

Diskrete Strukturen WiSe 2012/13 in Trier

Diskrete Strukturen WiSe 2012/13 in Trier Diskrete Strukturen WiSe 2012/13 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 11. Januar 2013 1 Diskrete Strukturen Gesamtübersicht Organisatorisches und Einführung Mengenlehre Relationen

Mehr

Kurs 2 Stochastik EBBR Vollzeit (1 von 2)

Kurs 2 Stochastik EBBR Vollzeit (1 von 2) Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 281 Bremen Kurs 2 Stochastik EBBR Vollzeit (1 von 2) Name: Ich 1. 2. 3. 4.. 6. 7. So schätze ich meinen Lernzuwachs ein.

Mehr

Weihnachtszettel zur Vorlesung. Stochastik I. Wintersemester 2011/2012

Weihnachtszettel zur Vorlesung. Stochastik I. Wintersemester 2011/2012 Weihnachtszettel zur Vorlesung Stochastik I Wintersemester 0/0 Aufgabe. Der Weihnachtsmann hat vergessen die Weihnachtsgeschenke mit Namen zu beschriften und muss sie daher zufällig verteilen. Dabei enthält

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Boltzmann Maschine David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2014 Übersicht Boltzmann Maschine Neuronale Netzwerke Die Boltzmann Maschine Gibbs

Mehr

Markov-Ketten und Irrfahrten auf Z d

Markov-Ketten und Irrfahrten auf Z d Markov-Ketten und Irrfahrten auf Z d Diana Atzmüller 20. März 2013 1 Inhaltsverzeichnis 1 Einleitung 3 2 Markov-Ketten 4 2.1 Grundlagen............................ 4 2.2 Übergangswahrscheinlichkeit in

Mehr

8. Wahrscheinlichkeitsrechnung

8. Wahrscheinlichkeitsrechnung Didaktik der Geometrie und Stochastik WS 09/10 Bürker 27. 1. 11 8. Wahrscheinlichkeitsrechnung 8.1 Begriffe 8.1.1 Zufallsexperiment Was ist ein Zufallsexperiment? a) Mehrere Ergebnisse möglich b) Ergebnis

Mehr

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über

Mehr

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu Herleitung der oppenecker-formel (Wiederholung) Für ein System ẋ Ax + Bu (B habe Höchstrang) wird eine Zustandsregelung u x angesetzt. Der geschlossene egelkreis gehorcht der Zustands-Dgl. ẋ (A B)x. Die

Mehr

Zelluläre Automaten. Sommerakademie Ftan Daniel Abler

Zelluläre Automaten. Sommerakademie Ftan Daniel Abler Zelluläre Automaten Sommerakademie Ftan 2004 Daniel Abler Zelluläre Automaten 1.Merkmale komplexer Systeme bzw. zellulärer Automaten 2.Grundcharakteristika - Game of Life 3.Definition 4.Eigenschaften und

Mehr

BONUS MALUS SYSTEME UND MARKOV KETTEN

BONUS MALUS SYSTEME UND MARKOV KETTEN Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik, Institut für Mathematische Stochastik BONUS MALUS SYSTEME UND MARKOV KETTEN Klaus D. Schmidt Ringvorlesung TU Dresden Fakultät MN,

Mehr

Von englischen und deutschen Postämtern

Von englischen und deutschen Postämtern Von englischen und deutschen Postämtern Teilnehmer: Ricky Burzla Robert Butz Jan Putzig Antoni Schilling Jakob Steinbrück Patrick Zielonka Wilhelm-Ostwald-Gymnasium, Leipzig Herder-Oberschule, Berlin Heinrich-Hertz-Oberschule,

Mehr

2.2 Ereignisse und deren Wahrscheinlichkeit

2.2 Ereignisse und deren Wahrscheinlichkeit 2.2 Ereignisse und deren Wahrscheinlichkeit Literatur: [Papula Bd., Kap. II.2 und II.], [Benning, Kap. ], [Bronstein et al., Kap. 1.2.1] Def 1 [Benning] Ein Zufallsexperiment ist ein beliebig oft wiederholbarer,

Mehr

Für die Wahrscheinlichkeit P A (B) des Eintretens von B unter der Bedingung, dass das Ereignis A eingetreten ist, ist dann gegeben durch P(A B) P(A)

Für die Wahrscheinlichkeit P A (B) des Eintretens von B unter der Bedingung, dass das Ereignis A eingetreten ist, ist dann gegeben durch P(A B) P(A) 3. Bedingte Wahrscheinlichkeit ================================================================== 3.1 Vierfeldertafel und Baumdiagramm Sind A und B zwei Ereignisse, dann nennt man das Schema B B A A P

Mehr

Allgemeine diskrete Wahrscheinlichkeitsräume II. Beispiel II. Beispiel I. Definition 6.3 (Diskreter Wahrscheinlichkeitsraum)

Allgemeine diskrete Wahrscheinlichkeitsräume II. Beispiel II. Beispiel I. Definition 6.3 (Diskreter Wahrscheinlichkeitsraum) Allgemeine diskrete Wahrscheinlichkeitsräume I Allgemeine diskrete Wahrscheinlichkeitsräume II Verallgemeinerung von Laplaceschen Wahrscheinlichkeitsräumen: Diskrete Wahrscheinlichkeitsräume Ω endlich

Mehr

Grundwissen Stochastik Grundkurs 23. Januar 2008

Grundwissen Stochastik Grundkurs 23. Januar 2008 GYMNSIUM MIT SCHÜLERHEIM PEGNITZ math.-technolog. u. sprachl. Gymnasium WILHELM-VON-HUMBOLDT-STRSSE 7 91257 PEGNITZ FERNRUF 09241/48333 FX 09241/2564 Grundwissen Stochastik Grundkurs 23. Januar 2008 1.

Mehr

Probabilistische Primzahltests

Probabilistische Primzahltests 23.01.2006 Motivation und Überblick Grundsätzliches Vorgehen Motivation und Überblick Als Primzahltest bezeichnet man ein mathematisches Verfahren, mit dem ermittelt wird, ob eine gegebene Zahl eine Primzahl

Mehr

Kapitel 4: Irreduzible und aperiodische Markov Ketten 1

Kapitel 4: Irreduzible und aperiodische Markov Ketten 1 Matrielnummer: 1152750 Projetseminar zur Stochasti Kapitel 4: Irreduzible und aperiodische Marov Ketten 1 Für einige besonders interessante Ergebnisse der Marov Theorie, werden zunächst bestimmte Annnahme

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Statistik I für Betriebswirte Vorlesung 2

Statistik I für Betriebswirte Vorlesung 2 Statistik I für Betriebswirte Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 11. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

alte Maturaufgaben zu Stochastik

alte Maturaufgaben zu Stochastik Stochastik 01.02.13 alte Maturaufgaben 1 alte Maturaufgaben zu Stochastik 1 07/08 1. (8 P.) In einer Urne liegen 5 rote, 8 gelbe und 7 blaue Kugeln. Es werden nacheinander drei Kugeln gezogen, wobei die

Mehr

Gründe für die Behandlung von stochastischen Problemen (nach KÜTTING)

Gründe für die Behandlung von stochastischen Problemen (nach KÜTTING) Vorlesung 03.01.09 Stochastik Gründe für die Behandlung von stochastischen Problemen (nach KÜTTING) Der Mathematikunterricht der Schule hat die Aufgabe, eine Grundbildung zu vermitteln, die auf ein mathematisches

Mehr

15 Wahrscheinlichkeitsrechnung und Statistik

15 Wahrscheinlichkeitsrechnung und Statistik 5 Wahrscheinlichkeitsrechnung und Statistik Alles, was lediglich wahrscheinlich ist, ist wahrscheinlich falsch. ( Descartes ) Trau keiner Statistik, die du nicht selbst gefälscht hast. ( Churchill zugeschrieben

Mehr

Randomisierte Algorithmen 2. Erste Beispiele

Randomisierte Algorithmen 2. Erste Beispiele Randomisierte Algorithmen Randomisierte Algorithmen 2. Erste Beispiele Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2016/2017 1 / 35 Randomisierter Identitätstest

Mehr

Stochastik Lehr-und Aufgabenbuch. Skriptum zum Vorbereitungskurs

Stochastik Lehr-und Aufgabenbuch. Skriptum zum Vorbereitungskurs Stochastik Lehr-und Aufgabenbuch Skriptum zum Vorbereitungskurs 1 WICHTIGER HINWEIS: Ich bitte den Eigentümer dieses Skriptes, weder das gesamte Skript noch Teilauszüge daraus zu kopieren, einzuscannen

Mehr

45 Eigenwerte und Eigenvektoren

45 Eigenwerte und Eigenvektoren 45 Eigenwerte und Eigenvektoren 45.1 Motivation Eigenvektor- bzw. Eigenwertprobleme sind wichtig in vielen Gebieten wie Physik, Elektrotechnik, Maschinenbau, Statik, Biologie, Informatik, Wirtschaftswissenschaften.

Mehr

Bachelor BEE Statistik Übung: Blatt 1 Ostfalia - Hochschule für angewandte Wissenschaften Fakultät Versorgungstechnik Aufgabe (1.1): Gegeben sei die folgende Messreihe: Nr. ph-werte 1-10 6.4 6.3 6.7 6.5

Mehr

Wahrscheinlichkeitsrechnung und Quantentheorie

Wahrscheinlichkeitsrechnung und Quantentheorie Physikalische Chemie II: Atombau und chemische Bindung Winter 2013/14 Wahrscheinlichkeitsrechnung und Quantentheorie Messergebnisse können in der Quantenmechanik ganz prinzipiell nur noch mit einer bestimmten

Mehr

STOCHASTISCHE MODELLE. Vorlesungsskript

STOCHASTISCHE MODELLE. Vorlesungsskript STOCHASTISCHE MODELLE Michael Scheutzow Vorlesungsskript Technische Universität Berlin Wintersemester 2010/11 vorläufige Version Februar 2011 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Einleitung........................................

Mehr

Kapitel 2 Mathematische Grundlagen

Kapitel 2 Mathematische Grundlagen Kapitel 2 Mathematische Grundlagen Ziel: Einführung/Auffrischung einiger mathematischer Grundlagen 2.1 Mengen, Relationen, Ordnungen Definition: Eine Menge ist eine Zusammenfassung von wohlbestimmten und

Mehr

Vom klassischen Spielerruinproblem zu Spiele- Strategien

Vom klassischen Spielerruinproblem zu Spiele- Strategien Vom klassischen Spielerruinproblem zu Spiele- Strategien Univ. Doz. Dr. Stefan Wegenkittl Fachhochschule Salzburg, Studiengang Telekommunikationstechnik und systeme Stefan.Wegenkittl@fh-sbg.ac.at Idee:

Mehr

Mathematik Sekundarstufe II - Themenübersicht

Mathematik Sekundarstufe II - Themenübersicht Mathematik Sekundarstufe II - Themenübersicht Unterrichtsvorhaben EF-I: Einführungsphase Unterrichtsvorhaben EF-II: Grundlegende Eigenschaften von Potenzfunktionen, ganzrationalen Funktionen und Sinusfunktionen

Mehr

Ergebnis Ergebnisraum Ω. Ereignis. Elementarereignis

Ergebnis Ergebnisraum Ω. Ereignis. Elementarereignis Stochastik Die Stochastik besteht aus zwei Teilgebieten, der Statistik und der Wahrscheinlichkeitsrechnung. Die Statistik beschreibt die Vergangenheit und verwendet Informationen, die (in realen Versuchen)

Mehr

Stochastische Prozesse. Woche 5

Stochastische Prozesse. Woche 5 FS 2016 Stochastische Prozesse Woche 5 Aufgabe 1 PageRank-Algorithmus von Google Das Herz der Google-Suchmaschine ist ein Algorithmus, der alle Dokumente des WWW nach ihrer Wichtigkeit anordnet. Die Auflistung

Mehr

Berechnen eines Bildpunktes bei Parallelprojektion: die Kavalierproduktion

Berechnen eines Bildpunktes bei Parallelprojektion: die Kavalierproduktion Matrizen Projektionen: Bei einer Projektion werden Geraden (Projektionsstrahlen) durch die abzubildenden Raumpunkte gezogen und mit der Zeichenebene geschnitten. Die resultierenden Schnittpunkte sind die

Mehr