7.1 Kraftwirkung von Rotoren

Größe: px
Ab Seite anzeigen:

Download "7.1 Kraftwirkung von Rotoren"

Transkript

1 49 Beim Massenpunkt haben der Impuls p mv und die Geschwindigkeit v aufgrund der skalaren Masse stets die gleiche Richtung. Äußere Kräfte führen daher auf Impuls- und gleichzeitig Geschwindigkeitsänderungen in Kraftrichtung. Wegen des tensoriellen Charakters der Drehträgheit haben der Drall L O I O und der Winkelgeschwindigkeitsvektor nicht notwendig die gleiche Richtung. Ein Kreisel gibt daher einem äußeren Moment nicht unmittelbar nach, was zu unerwarteten Phänomenen führt. Zwingt man einen Rotor zu einer Drehung um eine vorgegebene Achse, die keine Hauptachse ist, versucht er rechtwinklig dazu auszuweichen und erzeugt ein Kreiselmoment, das über die Lager abgefangen werden muss. Die Richtung des Kreiselmoments hängt vom Verhältnis der Trägheitsmomente ab: Ein abgeplatteter Rotor versucht, sich zu zentrieren, während ein gestreckter Rotor eine vorhandene Schrägstellung weiter verstärkt. Der Drall eines momentenfreien Kreisels bleibt konstant, sein Drallvektor ist raumfest. Dreht der Kreisel dabei um eine seiner Hauptachsen, fallen Winkelgeschwindigkeits- und Drallrichtung zusammen, der Kreisel führt dann permanente Drehungen aus. Stößt man ihn leicht aus dieser Situation, entstehen bei Drehungen um Achsen seines kleinsten und größten Hauptträgheitsmoments stabile Schwingungen, die man als Nutation bezeichnet, während Drehungen um die Achse des mittleren Hauptträgheitsmoments instabil sind. Symmetrische Kreisel drehen um ihre Symmetrieachse stets stabil. Äußere Momente auf einen Kreisel bewirken eine Dralländerung. Wird das Moment mit dem Kreisel mitgeführt, entsteht eine Präzessionsbewegung, bei welcher der Kreisel stets senkrecht zum Moment ausweicht. Dieses Phänomen lässt sich z.b. beim schweren Kreisel, beim Bumerang oder bei fliegenden Diskus- und Frisbeescheiben beobachten.

2 Kraftwirkung von Rotoren Drallsatz I O. ~ I O M O im körperfesten Hauptachsensystem. x (B O ) y z M Ox B O. y ( ) z x M Oy. z ( B O ) x y M Oz dynamische Eulergleichungen Gelagerter Rotor const Freischneiden B O z y a

3 51 Kreiselmoment Ann.: 0 2 abgeplatteter Rotor gestreckter Rotor 0 z L O FL z y FL y L O elastische Welle elastische Welle Gleichsinniger Parallelismus: Das Kreiselmoment sucht stets, den Drallvektor L O zum Winkelgeschwindigkeitsvektor hin zu drehen.

4 Nutation Momentenfreier Kreisel momentenfrei: M O 0 O C Drallsatz: dl O dt 0 L O const Drehungen um Hauptachsen Drallsatz im körperfesten Hauptachsensystem (dynamische Eulergleichungen). x (B O ) y z 0 B O. y ( ) z x 0. z ( B O ) x y 0 z const stationäre Lösung: K 0 0 const. O y x Permanente Drehungen: Der momentenfreie Kreisel kann permanente Drehungen um seine Hauptachsen ausführen. Nachbarbewegungen Ansatz: K ~ x (t) ~ y (t) ~ z (t), ~ x, ~ y, ~ z eingesetzt: ~. x (B O )~ y 0 B O ~. y ( )~ x 0 ~. z 0

5 53 Entkopplung: ~.. x 2 ( )( B O ) B O ~ x 0 ~.. y 2 ( )( B O ) B O ~ y 0 Fall I: ( )( B O ) 0 Fall II: ( )( B O ) 0 Dgl.: ~.. 2 ~ 0 Dgl.: ~.. 2 ~ 0 Lsg.: ~ k 1 sinh t k 2 cosh t Lsg.: ~ k 1 sin t k 2 cos t cosh t et e t 2 1 sin t 1 t t sinh t et e t 2 cos t Anmerkung: Integrationskonstanten k 1, k 2 folgen aus den Anfangsbedingungen Stabilitätscharakter der permanenten Drehungen Trägheitsmomente Drehachse Fall Stabilität B O B O kleinstes Hauptträgheitsmoment II stabil B O B O mittleres Hauptträgheitsmoment I instabil B O B O größtes Hauptträgheitsmoment II stabil B O B O Symmetrieachse eines symmetrischen Kreisels II stabil

6 54 Nutation des symmetrischen Kreisels ( B O ) allg. Lösung: K ~ 0 ~ 0 cos(t ) sin(t ), mit ~ 0,, const, L OK I OK K ~ 0 cos(t ) ~ 0 sin(t ) K CO ez z N L O const. N F K 1 LOK CO ez e L 1 e z y N e L F e z Eigendrehung um Figurenachse mit F 1 x Nutation: Umlauf der Figurenachse auf raumfestem Kegel mit Nutationsfrequenz N

7 Präzession Schwerer symmetrischer Kreisel Koordinatensystem: geneigtes, um die vertikale Achse mitpräzedierendes Koordinatensystem K mit der Winkelgeschwindigkeit z Präzession Pr Drallsatz: stationäre Lösung: K dl O dt Pr sin 0 Pr cos Ableitungsregel dl O L dt O M O Pr, const. Eigendrehung x C s O m, B O, M O y Präzessionsfrequenz für 90 o : Pr mgs Paradoxon der Kreisellehre: Ein Kreisel gibt einem äußeren Moment nicht nach, sondern weicht rechtwinklig dazu aus

8 56 Beispiele: Diskus, Frisbee, Bumerang, Bierfilz linkshändiger Wurf: Wegkippen nach rechts Pr v M L rechtshändiger Wurf: Wegkippen nach links Pr v M L

5. Zustandsgleichung des starren Körpers

5. Zustandsgleichung des starren Körpers 5. Zustandsgleichung des starren Körpers 5.1 Zustandsgleichung 5.2 Körper im Schwerefeld 5.3 Stabilität freier Rotationen 2.5-1 5.1 Zustandsgleichung Zustand: Der Zustand eines starren Körpers ist durch

Mehr

AUSWERTUNG: KREISEL. In diesem Versuch haben wir die Drehimpulserhaltung experimentell überprüft.

AUSWERTUNG: KREISEL. In diesem Versuch haben wir die Drehimpulserhaltung experimentell überprüft. AUSWERTUNG: KREISEL TOBIAS FREY, FREYA GNAM 1. DREHIMPULSERHALTUNG In diesem Versuch haben wir die Drehimpulserhaltung experimentell überprüft. 1.1. Drehschemel. Eine Versuchsperson setzte sich auf den

Mehr

25. Vorlesung Sommersemester

25. Vorlesung Sommersemester 25. Vorlesung Sommersemester 1 Die Euler-Winkel Die Euler-Winkel geben die relative Orientierung zweier gegeneinander gedrehter Koordinatensysteme an, indem definiert wird, in welcher Reihenfolge welche

Mehr

Versuch P2-71,74: Kreisel. Vorbereitung. Von Jan Oertlin und Ingo Medebach. 11. Mai Drehimpulserhaltung 2. 2 Freie Achse 2

Versuch P2-71,74: Kreisel. Vorbereitung. Von Jan Oertlin und Ingo Medebach. 11. Mai Drehimpulserhaltung 2. 2 Freie Achse 2 Versuch P - 71,74: Kreisel Vorbereitung Von Jan Oertlin und Ingo Medebach 11. Mai 010 Inhaltsverzeichnis 1 Drehimpulserhaltung Freie Achse 3 Kräftefreie Kreisel 3 4 Dämpfung des Kreisels 3 5 Kreisel unter

Mehr

LMU LUDWIG- p E kin 2 R. Girwidz Drehimpuls. 7.5 Drehimpuls. für Zentralkräfte: F dt. Geschwindigkeit. Masse. Translationsenergie. 1 mv.

LMU LUDWIG- p E kin 2 R. Girwidz Drehimpuls. 7.5 Drehimpuls. für Zentralkräfte: F dt. Geschwindigkeit. Masse. Translationsenergie. 1 mv. 7.5 Drehimpuls Translation Rotation Geschwindigkeit Masse v m Translationsenergie Kraft Impuls Ekin F 1 mv F ma p d p F dt p m v p E kin m R. Girwidz 1 7.5 Drehimpuls Drehscheml für Zentralkräfte: M 0

Mehr

Anstelle der Geschwindigkeit v tritt die Winkelgeschwindigkeit ω, wobei

Anstelle der Geschwindigkeit v tritt die Winkelgeschwindigkeit ω, wobei Inhalt 1 9 Dynamik der Drehbewegung 9.1 Rotation eines Massenpunktes um eine feste Achse 9. Arbeit und Leistung bei der Drehbewegung 9.3 Erhaltungssätze 9.4 Übergang vom Massenpunkt zum starren Körper

Mehr

1 Trägheitstensor (Fortsetzung)

1 Trägheitstensor (Fortsetzung) 1 Trägheitstensor (Fortsetzung) Wir verallgemeinern den in der letzten Stunde gefundenen Trägheitstensor auf den Fall einer kontinuierlichen Massenverteilung durch die Einführung der Integration über das

Mehr

115 - Kreiselgesetze

115 - Kreiselgesetze 115 - Kreiselgesetze 1. Aufgaben 1.1 Bestimmen Sie die Nutationsfrequenz des kräftefreien Kreisels in Abhängigkeit von der Kreiselfrequenz. 1.2 Bestimmen Sie die Präzessionsperiode des schweren Kreisels

Mehr

Faszination Kreisel. Vom Spielzeug zur technischen Anwendung. Thomas Wilhelm

Faszination Kreisel. Vom Spielzeug zur technischen Anwendung. Thomas Wilhelm Vom Spielzeug zur technischen Anwendung Thomas Wilhelm 1. Spielzeug Kreisel Symmetrische Kreisel (zwei Hauptträgheitsmomente gleich groß), meist Rotationskörper Einfacher Kreisel Einfacher Kreisel Unterschiedliche

Mehr

Starrer Körper: Drehimpuls und Drehmoment

Starrer Körper: Drehimpuls und Drehmoment Starrer Körper: Drehimpuls und Drehmoment Weitere Schreibweise für Rotationsenergie: wobei "Dyade" "Dyadisches Produkt" Def.: "Dyadisches Produkt", liefert bei Skalarmultiplikation mit einem Vektor : und

Mehr

Kreisel. Was ist ein symmetrischer-, was ein kräftefreier-, was ein schwerer Kreisel?

Kreisel. Was ist ein symmetrischer-, was ein kräftefreier-, was ein schwerer Kreisel? Rotation starrer Körper, Drehimpuls, Drehmoment, Trägheitsmoment, Hauptträgheitsachsen, kräftefreier-, schwerer, Nutation, Präzession. Schriftliche VORbereitung: Beantworten Sie bitte die folgenden Fragen:

Mehr

Physikalisches Praktikum M 7 Kreisel

Physikalisches Praktikum M 7 Kreisel 1 Physikalisches Praktikum M 7 Kreisel Versuchsziel Quantitative Untersuchung des Zusammenhangs von Präzessionsfrequenz, Rotationsfrequenz und dem auf die Kreiselachse ausgeübten Kippmoment Literatur /1/

Mehr

Eigenschaften des Kreisels

Eigenschaften des Kreisels Version 1. Dezember 011 1. Trägheitstensor und Eulersche Kreisel-Gleichungen Auf Grund der formalen Ähnlichkeit von Impuls- und Drehimpulssatz, also von d p = F und d L = τ, könnte man vermuten, dass der

Mehr

Repetitorium D: Starrer Körper

Repetitorium D: Starrer Körper Fakultät für Physik T: Klassische Mechanik, SoSe 206 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_6/t_theor_mechanik/

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Kreisel, Trägheitstensor, Präzession Statisches Gleichgewicht Harmonische Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html

Mehr

Rotation starrer Körper, Drehimpuls, Drehmoment, Trägheitsmoment, Hauptträgheitsachsen, kräftefreier -, schwerer Kreisel, Nutation, Präzession.

Rotation starrer Körper, Drehimpuls, Drehmoment, Trägheitsmoment, Hauptträgheitsachsen, kräftefreier -, schwerer Kreisel, Nutation, Präzession. Kreisel 1. LITERATUR emtröder; Tipler, Hering/Martin/Stohrer; Gerthsen 2. STICHPUNKTE Rotation starrer Körper, rehimpuls, rehmoment, Trägheitsmoment, Hauptträgheitsachsen, kräftefreier -, schwerer Kreisel,

Mehr

Physikalisches Grundpraktikum Abteilung Mechanik

Physikalisches Grundpraktikum Abteilung Mechanik M10 Physikalisches Grundpraktikum Abteilung Mechanik Kreisel 1 Vorbereitung Erhaltungssätze der Mechanik Analogien zwischen Rotation und Translation Trägheitsmomente und deren Berechnung Satz von Steiner

Mehr

Versuch 4: Kreiselpräzession

Versuch 4: Kreiselpräzession Versuch 4: Kreiselpräzession Inhaltsverzeichnis 1 Einführung 3 2 Theorie 3 2.1 Allgemeines zur Rotation von Körpern.................... 3 2.2 Die Eulersche Kreiselgleichung......................... 3 2.3

Mehr

M10 PhysikalischesGrundpraktikum

M10 PhysikalischesGrundpraktikum M10 PhysikalischesGrundpraktikum Abteilung Mechanik Kreisel 1 Vorbereitung Erhaltungssätze der Mechanik Analogien zwischen Rotation und Translation Trägheitsmomente und deren Berechnung Satz von Steiner

Mehr

Kräftefreier symmetrischer Kreisel

Kräftefreier symmetrischer Kreisel Kräftefreier symmetrischer Kreisel Grannahmen: Symmetrieachse = "" Winkelgeschwindigkeit im körperfesten System: Euler-Gleichungen: [per Konvention wählen wir Richtung von so, dass mit für harm. Osz. Lösung:

Mehr

Rotierender Starrer Körper/Kreisel

Rotierender Starrer Körper/Kreisel Rotierender Starrer Körper/Kreisel Ralf Metzler, Uni Potsdam, 2017-07-05 Typeset by FoilTEX 1 Kinetische Energie des Starren Körpers Translationsenergie: T trans = 1 2 v2 0 m α = m 2 v2 0, wobei m = α

Mehr

Aufgabe 1: Doppelpendel a) [2 Pkte.] Zwangsbedingungen: Massenpunkte auf Kreisen, also A 1 : x y 2 1 l 2 = 0,

Aufgabe 1: Doppelpendel a) [2 Pkte.] Zwangsbedingungen: Massenpunkte auf Kreisen, also A 1 : x y 2 1 l 2 = 0, Universität Karlsruhe Klassissche Theoretische Physik II (Theorie B) Sommersemester 2009 : PD. Dr. M. Eschrig Ü: Dr. habil. W. Lang Lösungen der Nachklausur vom 28. Oktober 2009 Aufgabe : Doppelpendel

Mehr

1 Theoretischer Teil. 1.1 Das Trägheitsellipsoid. cos, cos, cos. Drehachse. l dm. Versuche P2-71, 74: Hilfe zum Versuch Kreisel Raum F1-11

1 Theoretischer Teil. 1.1 Das Trägheitsellipsoid. cos, cos, cos. Drehachse. l dm. Versuche P2-71, 74: Hilfe zum Versuch Kreisel Raum F1-11 Versuche P2-71, 74: Hilfe zum Versuch Kreisel Raum F1-11 Definition: Ein Kreisel ist ein starrer Körper, dessen Bewegung durch einen Fixpunkt festgelegt ist. Im Folgenden wird die Theorie des rotierenden

Mehr

Einführung in die Physik für Maschinenbauer

Einführung in die Physik für Maschinenbauer Einführung in die Physik für Maschinenbauer WS 011/01 Teil 5 7.10/3.11.011 Universität Rostock Heinrich Stolz heinrich.stolz@uni-rostock.de 6. Dynamik von Massenpunktsystemen Bis jetzt: Dynamik eines einzelnen

Mehr

Grundbegriffe: Drehimpulserhaltungssatz, Kreisel, Figuren-, Drehimpuls- und momentane Drehachse, Präzession und Nutation

Grundbegriffe: Drehimpulserhaltungssatz, Kreisel, Figuren-, Drehimpuls- und momentane Drehachse, Präzession und Nutation M10 GYROSKOP PHYSIKALISCHE GRUNDLAGEN Grundbegriffe: Drehimpulserhaltungssatz, Kreisel, Figuren-, Drehimpuls- und momentane Drehachse, Präzession und Nutation 1. Begriff des Kreisels: Ein Kreisel ist ein

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

8 Kinetik der allgemeinen Starrkörperbewegung

8 Kinetik der allgemeinen Starrkörperbewegung 57 Die allgemeine Starrkörperbewegung ist eine Überlagerung von Translation und Rotation mit je 3 Freiheitsgraden. Dem entsprechen 6 Gleichungen, die aus Impuls- und Drallsat resultieren. Der Impuls eines

Mehr

2. Trägheitstensor. Prof. Dr. Wandinger 3. Kinetik des starren Körpers Dynamik

2. Trägheitstensor. Prof. Dr. Wandinger 3. Kinetik des starren Körpers Dynamik 2. Trägheitstensor Der Drall hängt ab von der Verteilung der Masse und der Geschwindigkeit über den örper. Die Geschwindigkeitsverteilung ergibt sich aus der Überlagerung einer Translation und einer Rotation.

Mehr

Versuch M11 für Nebenfächler Kreisel

Versuch M11 für Nebenfächler Kreisel Versuch M11 für Nebenfächler Kreisel I. Physikalisches Institut, Raum 105 Stand: 17. Juli 2012 generelle Bemerkungen bitte Versuchsaufbau (rechts, mitte, links) angeben bitte Versuchspartner angeben bitte

Mehr

Versuch 4 Kreiselpräzession

Versuch 4 Kreiselpräzession Physikalisches A-Praktikum Versuch 4 Kreiselpräzession Protokollant: Niklas Bölter Mitpraktikant: Julius Strake Gruppe: 17 Betreuer: Hendrik Schmidt Durchgeführt: 17. 07. 2012 Unterschrift: Inhaltsverzeichnis

Mehr

Kinetik des starren Körpers

Kinetik des starren Körpers Technische Mechanik II Kinetik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes 2.

Mehr

Kapitel 5. Der starre Körper. 5.1 Die Kinematik des starren Körpers

Kapitel 5. Der starre Körper. 5.1 Die Kinematik des starren Körpers Kapitel 5 Der starre Körper Definition 5.1 Ein starrer Körper ist ein Sytem von N Massenpunkten m ν, deren Abstände r µν = r ν r µ = konst 0 (5.1) sind. Gleichung (5.1) ist dabei als skleronome Zwangsbedingung

Mehr

3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1

3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1 3. Impuls und Drall Die Integration der Bewegungsgleichung entlang der Bahn führte auf die Begriffe Arbeit und Energie. Die Integration der Bewegungsgleichung bezüglich der Zeit führt auf die Begriffe

Mehr

M19. Kreisel. Ein Kreisel, bei dem die Summe aller Drehmomente M i bezüglich des Schwerpunktes verschwindet (1) heißt kräftefrei.

M19. Kreisel. Ein Kreisel, bei dem die Summe aller Drehmomente M i bezüglich des Schwerpunktes verschwindet (1) heißt kräftefrei. M19 Kreisel Bei symmetrischen Kreiseln sollen die räzession und die Nutation untersucht und damit die dynamischen Eigenschaften eines Kreisels veranschaulicht werden. 1. Theoretische Grundlagen 1.1 Begriffsbestimmungen

Mehr

Rotationsbewegung. 23. Januar 2013

Rotationsbewegung. 23. Januar 2013 Rotationsbewegung 23. Januar 2013 Einführende Bemerkung: Diese Notizen enthalten nicht das ganze Material der entsprechenden Vorlesungen. Ihr Zweck ist es, die Notation zu standardisieren. Der Anlass dafür

Mehr

Hier wurde die Jacobi-Determinante der ZylinderKoordinaten verwendet (det J = ρ). Wir führen zunächst die ρ-integration durch: (R 2 H sin 2 φ )

Hier wurde die Jacobi-Determinante der ZylinderKoordinaten verwendet (det J = ρ). Wir führen zunächst die ρ-integration durch: (R 2 H sin 2 φ ) b) Für einen Zylinder bieten sich Zylinderkoordinaten an. Legt man den Ursprung in den Schwerpunkt und die z- bzw. x 3 - Achse entlang der Zylinderachse, verschwinden alle Deviationsmomente. Dies liegt

Mehr

1. Impuls- und Drallsatz

1. Impuls- und Drallsatz 1. Impuls- und Drallsatz Impulssatz Bewegung des Schwerpunkts des örpers aufgrund vorgegebener räfte Drallsatz Drehung des örpers aufgrund vorgegebener Momente Prof. Dr. Wandinger 3. inetik des starren

Mehr

I Messaufbau. Kompressor. 2 Gewichte (r a =0,725 cm, r i =0,325 cm, h=1,1 cm, m=9,85 g) Stroboskop. Stoppuhr. II Literatur

I Messaufbau. Kompressor. 2 Gewichte (r a =0,725 cm, r i =0,325 cm, h=1,1 cm, m=9,85 g) Stroboskop. Stoppuhr. II Literatur Versuch 213 Kreisel I Messaufbau Stahlkugel mit Aluminiumstab (m = 4, 164 kg incl. Stab, Kugelradius r=5,08 cm) als Kreisel gelagert in einer uftkissenpfanne Kompressor 2 Gewichte (r a =0,725 cm, r i =0,325

Mehr

M6 Der Kreisel. Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den

M6 Der Kreisel. Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den M6 Der Kreisel Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch Münster, den 23.10.2000 INHALTSVERZEICHNIS 1. Einleitung 2. Theoretische Grundlagen 2.1 Die Präzession eines schweren symmetrischen

Mehr

Der Trägheitstensor J

Der Trägheitstensor J Der Trägheitstensor J Stellen wir uns einen Kreisel vor, der um eine beliebige Achse dreht. Gilt die Beziehung L = J ω in jedem Bezugssystem? Dazu betrachten wir nochmals die Bewegung eines starren Körpers.

Mehr

D. Bestle Technische Mechanik II Dynamik

D. Bestle Technische Mechanik II Dynamik D. Bestle Technische Mechanik II Dynamik Arbeitsunterlagen zur Vorlesung April 2010 Lehrstuhl Technische Mechanik und Fahrzeugdynamik Prof. Dr. Ing. habil. D. Bestle Kinematik Geschwindigkeit v dr dt ṙ,

Mehr

(c) Bestimmen Sie die raumfesten Komponenten der Winkelgeschwindigkeit ω.

(c) Bestimmen Sie die raumfesten Komponenten der Winkelgeschwindigkeit ω. PDDr.S.Mertens Theoretische Physik I Mechanik J. Unterhinninghofen, M. Hummel Blatt 9 WS 8/9 16.1.8 1. Transformation Körperachsen auf Raumachsen. In der Vorlesung wurde diskutiert, das (4Pkt. die Nutationsbewegung

Mehr

Trägheitstensor einer kontinuierlichen Massenverteilung

Trägheitstensor einer kontinuierlichen Massenverteilung Trägheitstensor einer kontinuierlichen Massenverteilung Satz: Es gilt wieder: (vergleiche 10.2) Geschw. eines Volumenelements bei bezüglich Ursprung v. IS. Analog zu (3.1), (3.3): (3) in (2): Wähle Ursprung

Mehr

Drehbewegungen (Rotation)

Drehbewegungen (Rotation) Drehbewegungen (Rotation) Drehungen (Rotation) Die allgemeine Bewegung eines Systems von Massepunkten lässt sich immer zerlegen in: und Translation Rotation Drehungen - Rotation Die kinematischen Variablen

Mehr

5. Starre Körper. V({r ij }) = Fi = 0. x i. r ij = const, i, j = 1,..., N

5. Starre Körper. V({r ij }) = Fi = 0. x i. r ij = const, i, j = 1,..., N 5. Starre Körper 5.1 Der starre Körper als Vielteilchensystem Starre Körper können als Systeme von Vielteilchensystemen modelliert werden, die durch ihre Wechselwirkungskräfte starr an ihren Plätzen festgehalten

Mehr

Kreisel mit drei Achsen

Kreisel mit drei Achsen M42 Name: Kreisel mit drei Achsen Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem Teilnehmer eigenständig (keine Gruppenlösung!)

Mehr

FAKULTÄT FÜR PHYSIK Praktikum Klassische Physik. Prak.: P1 Semester: WS15/16. Fehlerrech.: Nein. Versuch: Kreisel (P1-71,74)

FAKULTÄT FÜR PHYSIK Praktikum Klassische Physik. Prak.: P1 Semester: WS15/16. Fehlerrech.: Nein. Versuch: Kreisel (P1-71,74) FAKULTÄT FÜR PHYSIK Praktikum Klassische Physik Prak.: P1 Semester: WS15/16 Versuch: Kreisel (P1-71,74) Fehlerrech.: Nein Durchgeführt am: 01.12.201 Wird vom Betreuer ausgefüllt. 1. Abgabe am: Rückgabe

Mehr

5.2 Drehimpuls, Drehmoment und Trägheitstensor

5.2 Drehimpuls, Drehmoment und Trägheitstensor 186 KAPITEL 5. STARRE KÖRPER 5. Drehimpuls, Drehmoment und Trägheitstensor Wie wir im vorhergehenden Abschnitt gesehen haben, besitzt ein starrer Körper 3 Freiheitsgrade zur Beschreibung seiner Position

Mehr

Ferienkurs Theoretische Mechanik 2009 Starre Körper und Rotation - Lösungen

Ferienkurs Theoretische Mechanik 2009 Starre Körper und Rotation - Lösungen Physik Department Technische Universität München Matthias Eibl Blatt 4 Ferienkurs Theoretische Mechanik 9 Starre Körper und Rotation - en Aufgaben für Donnerstag 1 Kinetische Energie eines rollenden Zylinders

Mehr

Beispiel 1:Der Runge-Lenz Vektor [2 Punkte]

Beispiel 1:Der Runge-Lenz Vektor [2 Punkte] Übungen Theoretische Physik I (Mechanik) Blatt 9 (Austeilung am: 1.9.11, Abgabe am 8.9.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

Kreisel mit drei Achsen

Kreisel mit drei Achsen Fakultät für hysik und Geowissenschaften hysikalisches Grundraktikum M6 Kreisel mit drei Achsen Aufgaben 1. Bestimmen Sie das Trägheitsmoment der Kreiselscheibe aus der Winkelbeschleunigung bei bekanntem

Mehr

3. Trägheitstensor. Starrkörperdynamik Prof. Dr. Wandinger. 2. Der starre Körper

3. Trägheitstensor. Starrkörperdynamik Prof. Dr. Wandinger. 2. Der starre Körper 3. Trägheitstensor Im Beispiel der rollenden Scheibe hängt der Drall linear von der Winkelgeschwindigkeit ab. Bei der Berechnung des Dralls treten Integrale über die Geometrie des starren örpers auf. Es

Mehr

Versuch M11 für Physiker Kreisel

Versuch M11 für Physiker Kreisel Versuch M11 für Physiker Kreisel I. Physikalisches Institut, Raum 105 Stand: 17. Juli 2012 generelle Bemerkungen bitte Versuchsaufbau (rechts, mitte, links) angeben bitte Versuchspartner angeben bitte

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 18. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 18. November 2016 1 / 27 Stoß auf Luftkissenschiene

Mehr

Nutationen schwerer symmetrischer Kreisel

Nutationen schwerer symmetrischer Kreisel Nutationen schwerer symmetrischer Kreisel R. Hohmann hohmann@isg.cs.uni-magdeburg.de Otto-von-Guericke-Universität Magdeburg ISG 396 Magdeburg SF 4 Kurfassung Ein schwerer symmetrischer Kreisel wird abweichend

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 18. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 18. November 2016 1 / 27 Stoß auf Luftkissenschiene

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 24. November 2017 Daniel Bick Physik für Biologen und Zahnmediziner 24. November 2017 1 / 28 Versuch: Newton Pendel

Mehr

2.3.5 Dynamik der Drehbewegung

2.3.5 Dynamik der Drehbewegung 2.3.5 Dynamik der Drehbewegung 2.3.5.1 Drehimpuls Drehimpuls Betrachte einen Massepunkt m mit Geschwindigkeit v auf irgendeiner Bahn (es muss keine Kreisbahn sein); dabei ist r der Ort der Massepunkts,

Mehr

Ludwig Maximilians Universität München Fakultät für Physik. Lösungsblatt 8. Übungen E1 Mechanik WS 2017/2018

Ludwig Maximilians Universität München Fakultät für Physik. Lösungsblatt 8. Übungen E1 Mechanik WS 2017/2018 Ludwig Maximilians Universität München Fakultät für Physik Lösungsblatt 8 Übungen E Mechanik WS 27/28 Dozent: Prof. Dr. Hermann Gaub Übungsleitung: Dr. Martin Benoit und Dr. Res Jöhr Verständnisfragen

Mehr

M6a Kreisel mit drei Achsen

M6a Kreisel mit drei Achsen Fakultät für hysik und Geowissenschaften hysikalisches Grundraktikum M6a Kreisel mit drei Achsen Aufgaben 1. Bestimmen Sie das Trägheitsmoment der Kreiselscheibe aus der Winkelbeschleunigung bei bekanntem

Mehr

Kreiselversuche. Abb. 1: Vorführkreisel mit verstellbarem Aufpunkt.

Kreiselversuche. Abb. 1: Vorführkreisel mit verstellbarem Aufpunkt. Kreiselversuche Abb. 1: Vorführkreisel mit verstellbarem Aufpunkt. Geräteliste: Fahrradreifen mit Handgriffen, Fahrradreifen mit Verstellbarem Aufpunkt, Drehstuhl, kräftefreier Kreisel, Umkehrkreisel,

Mehr

Kreiselphysik. dl dt. Kreisel nach Magnus (mit kardanischer Aufhängung): freie Bewegung in 3D und drehmomentfrei!

Kreiselphysik. dl dt. Kreisel nach Magnus (mit kardanischer Aufhängung): freie Bewegung in 3D und drehmomentfrei! Kreiselphysik Kreisel sind starre Körper mit hoher Symmetrie, die bei Rotation um diese Symmetrieahsen sehr stabil laufen können. Lagert man den Kreisel so, dass keine Drehmomente M auf ihn wirken, so

Mehr

+m 2. r 2. v 2. = p 1

+m 2. r 2. v 2. = p 1 Allgemein am besten im System mit assenmittelpunkt (centre of mass frame) oder Schwerpunktsystem (=m 1 +m ) r = r 1 - r =m 1 +m Position vom Schwerpunkt: r r 1 +m r v =m 1 v 1 +m v = p 1 + p ist die Geschwindigkeit

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK Physik A/B1 A WS SS 17 13/14 Inhalt der Vorlesung A1 1. Einführung Methode der Physik Physikalische Größen Übersicht über die vorgesehenen Themenbereiche. Teilchen A. Einzelne Teilchen Beschreibung

Mehr

5. Kritische Drehzahl

5. Kritische Drehzahl Aufgabenstellung: 5. Kritische Drehzahl y y Ω c/4 c/4 m c/4 e z O O S c/4 x Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.5-1 Der starre Körper mit der Masse m dreht sich mit der konstanten Winkelgeschwindigkeit

Mehr

Ergänzungen zur Physik I

Ergänzungen zur Physik I Ergänzungen zu Physik I Inhaltsverzeichnis Ergänzungen zur Physik I U. Straumann, 15. November 2016 Physik - Institut Universität Zürich Inhaltsverzeichnis 1 Relativbewegungen 2 1.1 Relativitätsprinzip

Mehr

Versuch 4 Kreiselpräzession

Versuch 4 Kreiselpräzession Physikalisches A-Praktikum Versuch 4 Kreiselpräzession Protokollant: Julius Strake Mitpraktikant Niklas Bölter Gruppe: 17 Betreuer: Hendrik Schmidt Durchgeführt: 17.07.2012 Unterschrift: Inhaltsverzeichnis

Mehr

Versuch 4 - Trägheitsmoment und Drehimpuls

Versuch 4 - Trägheitsmoment und Drehimpuls UNIVERSITÄT REGENSBURG Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum A1 Versuch 4 - Trägheitsmoment und Drehimpuls 23. überarbeitete Auflage 2009 Dr. Stephan Giglberger Prof.

Mehr

Physik I Mechanik und Thermodynamik

Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - Theorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum Versuch 03: Kreiselpräzession UNIVERSITÄT DER BUNDESWEHR MÜNCHEN Fakultät für Elektrotechnik und Informationstechnik Institut für Physik Oktober 2015 2 Versuch 03 Kreiselpräzession

Mehr

Kinematik des starren Körpers

Kinematik des starren Körpers Technische Mechanik II Kinematik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes

Mehr

Technische Mechanik III Übung WS 2002 / Klausur Teil 1. Linz, 29. November Name: Vorname: Matrikelnummer: Studienkennzahl: Unterschrift:

Technische Mechanik III Übung WS 2002 / Klausur Teil 1. Linz, 29. November Name: Vorname: Matrikelnummer: Studienkennzahl: Unterschrift: echnische Mechanik III Übung WS 2002 / 2003 Klausur eil 1 Abteilung für obotik o. Univ.-Prof. Dr.-Ing. Hartmut Bremer el.: +43/732/2468-9786 Fax: +43/732/2468-9792 bremer@mechatronik.uni-linz.ac.at Sekretariat:

Mehr

Übungen zum Ferienkurs Theoretische Mechanik

Übungen zum Ferienkurs Theoretische Mechanik Übungen zum Ferienkurs Theoretische Mechanik Starre Körper Übungen, die mit einem Stern markiert sind, werden als besonders wichtig erachtet. 3.1 Trägheitstensor eines homogenen Quaders Bestimmen Sie den

Mehr

Technische Mechanik 3

Technische Mechanik 3 Technische Mechanik 3 2. Kinematik eines Massenpunktes 2.1. Grundbegriffe, kartesische Koordinaten 2.2. Geradlinige Bewegung 2.3. Ebene Bewegung, Polarkoordinaten 2.4. räumliche Bewegung, natürliche Koordinaten

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 5: Drehmoment, Gleichgewicht und Rotation Dr. Daniel Bick 16. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 16. November 2016 1 / 39 Impuls

Mehr

Zusammenfassung. Theoretische Physik I

Zusammenfassung. Theoretische Physik I Seite /6 Zusammenfassung Theoretische Physik I nach dem Buch Mechanik, Lehrbuch zur Theoretischen Physik I von Torsten Fließbach, 3. Auflage, Spektrum Verlag Angelehnt an die Vorlesung von Prof. Peter

Mehr

5 Kinematik der Starrkörperbewegung

5 Kinematik der Starrkörperbewegung 35 Ein starrer Körper ist eine Idealisierung eines Maschinenteils, bei der man Verformungen vernachlässigt. Verbindet man mit dem Körper in einem beliebigen Beugspunkt ein körperfestes Koordinatensstem,

Mehr

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) =

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) = Karlsruher Institut für Technologie Institut für theoretische Festkörperphsik www.tfp.kit.edu Lösung Klassische Theoretische Phsik I WS / Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler Besprechung...

Mehr

Technische Mechanik Kinematik und Kinetik

Technische Mechanik Kinematik und Kinetik Günther Holzmann Heinz Meyer Georg Schumpich Technische Mechanik Kinematik und Kinetik 10., überarbeitete Auflage Mit 315 Abbildungen, 138 Beispielen und 172 Aufgaben Von Prof. Dr.-Ing. Heinz Meyer unter

Mehr

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2 Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 212 P 2 BachelorPrüfung in Technischer Mechanik II/III Nachname, Vorname Matr.Nummer Fachrichtung 28.

Mehr

Objekt Translation Rotation gesamt starrer Körper Kreisel physisches Pendel 0 1 1

Objekt Translation Rotation gesamt starrer Körper Kreisel physisches Pendel 0 1 1 Kapitel 5 Starrer Körper und Kreiseltheorie Der starre Körper ist eine wichtige Anwendung des d Alembertschen Prinzips zur Beschreibung der Dynamik eines Massenpunktsystems mit (sehr vielen) Nebenbedingungen

Mehr

Kreisbewegung Ein Bild sagt mehr als tausend Worte.

Kreisbewegung Ein Bild sagt mehr als tausend Worte. Kreisbewegung Ex. 20.4 (3. Gebot) Du sollst Dir keine Bilder machen von Dingen, die im Himmel, auf der Erde, im Wasser oder unter der Erde sind. Ein Bild sagt mehr als tausend Worte. 1 Einführung Die Erde

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Foralisus und kleinen Schwingungen Jonas Probst.9.9 Teilchen auf der Stange Aufgabe: Ein Teilchen der Masse wird durch eine Zwangskraft auf einer asselosen Stange gehalten, auf der

Mehr

Hochschule Düsseldorf University of Applied Sciences. 24. November 2016 HSD. Physik. Rotation

Hochschule Düsseldorf University of Applied Sciences. 24. November 2016 HSD. Physik. Rotation Physik Rotation Schwerpunkt Schwerpunkt Bewegungen, Beschleunigungen und Kräfte können so berechnet werden, als würden Sie an einem einzigen Punkt des Objektes angreifen. Bei einem Körper mit homogener

Mehr

4.9 Der starre Körper

4.9 Der starre Körper 4.9 Der starre Körper Unter einem starren Körper versteht man ein physikalische Modell von einem Körper der nicht verformbar ist. Es erfolgt eine Idealisierung durch die Annahme, das zwei beliebig Punkte

Mehr

Klassische und Relativistische Mechanik

Klassische und Relativistische Mechanik Klassische und Relativistische Mechanik Othmar Marti 16. 01. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik

Mehr

Massenträgheitsmomente homogener Körper

Massenträgheitsmomente homogener Körper http://www.youtube.com/watch?v=naocmb7jsxe&feature=playlist&p=d30d6966531d5daf&playnext=1&playnext_from=pl&index=8 Massenträgheitsmomente homogener Körper 1 Ma 1 Lubov Vassilevskaya Drehbewegung um c eine

Mehr

8. Starre Körper. Die φ-integration liefert einen Faktor 2π. Somit lautet das Ergebnis

8. Starre Körper. Die φ-integration liefert einen Faktor 2π. Somit lautet das Ergebnis Übungen zur T1: Theoretische Mechanik, SoSe213 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 425 8. Starre Körper Dr. James Gray James.Gray@physik.uni-muenchen.de Übung 8.1: Berechnung von Trägheitstensoren

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

1 Mechanik starrer Körper

1 Mechanik starrer Körper 1 Mechanik starrer Körper 1.1 Einführung Bisher war die Mechanik auf Massepunkte beschränkt. Nun gehen wir den Schritt zu starren Körpern. Ein starrer Körper ist ein System aus Massepunkten, welche nicht

Mehr

Pohlsches Pendel / Kreisel

Pohlsches Pendel / Kreisel Pohlsches Pendel / Kreisel Mit Hilfe des Pohlschen Pendels, eines schwingenden Systems mit einem Freiheitsgrad, sollen freie und erzwungene Schwingungen mit und ohne Dämpfung untersucht werden. Insbesondere

Mehr

Ferienkurs Experimentalphysik Übung 2 - Lösungsvorschlag

Ferienkurs Experimentalphysik Übung 2 - Lösungsvorschlag Ferienkurs Experimentalphysik 1 2011 Übung 2 - Lösungsvorschlag 1. Elastischer Stoß a) Ein Teilchen der Masse m 1 stößt zentral und elastisch mit einem im Laborsystem ruhenden Teilchen der Masse m 2. Wie

Mehr

Pohlsches Pendel / Kreisel

Pohlsches Pendel / Kreisel Pohlsches Pendel / Kreisel Mit Hilfe des Pohlschen Pendels, eines schwingenden Systems mit einem Freiheitsgrad, sollen freie und erzwungene Schwingungen mit und ohne Dämpfung untersucht werden. Insbesondere

Mehr

9 Teilchensysteme. 9.1 Schwerpunkt

9 Teilchensysteme. 9.1 Schwerpunkt der Impuls unter ganz allgemeinen Bedingungen erhalten bleibt. Obwohl der Impulserhaltungssatz, wie wir gesehen haben, aus dem zweiten Newton schen Axiom folgt, ist er tatsächlich allgemeiner als die Newton

Mehr

2. Physikalisches Pendel

2. Physikalisches Pendel 2. Physikalisches Pendel Ein physikalisches Pendel besteht aus einem starren Körper, der um eine Achse drehbar gelagert ist. A L S φ S z G Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.2-1 2.1 Bewegungsgleichung

Mehr