1 Trägheitstensor (Fortsetzung)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "1 Trägheitstensor (Fortsetzung)"

Transkript

1 1 Trägheitstensor (Fortsetzung) Wir verallgemeinern den in der letzten Stunde gefundenen Trägheitstensor auf den Fall einer kontinuierlichen Massenverteilung durch die Einführung der Integration über das Körpervolumen: ~ I = Z (~r) 0 mit den Komponenten y 2 + z 2 xy xz yx x 2 + z 2 yz zx zy x 2 + y 2 1 C A dv ~ Ixx = ~ Ixy = Z y 2 + z 2 (~r) dv; Z xz (~r) dv; etc. Wie gesehen, stellt diese Matrix einen linearen Zusammenhang zwischen Drehimpuls und Winkelgeschwindigkeit her: ~L = ~ I ~!: Diese Beziehung gilt in beliebigen Koordinatensystemen, allerdings verändern sich die Komponenten von ~ I und von

2 ~! dabei in genau de nierter Weise. Matrizen, die solche physikalischen Zusammenhänge wiedergeben, nennt man "Tensoren" (genauer Tensoren 2.Stufe, Vektoren und Skalare sind entsprechend Tensoren 1. und 0. Stufe). Für die Rotationsenergie kann man durch komponentenweises schreiben ebenfalls einen entsprechenden Term nden. Er lässt sich aber auch durch den Vergleich mit der entsprechenden Beziehung bei der linearen Bewegung motivieren, denn es gilt E kin = 1 2 m2 = 1 2 m~ ~ = 1 ~ ~p 2 und man überträgt dies zu E rot = 1 2 ~! ~ L = 1 2 ~! ~ I ~!: Im Allgemeinen sind alle Komponenten von ~ I von Null verschieden, d.h. insbesondere auch, dass ~! und ~ L in der Regel nicht parallel sind. Gibt es ein Koordinatensystem in dem ~ I eine besonders einfache Form hat? Tatsächlich

3 teilt uns die lineare Algebra mit, dass man jeden symmetrischen Tensor, d.h. die Komponenten von ~I erfüllen die Forderung ~I jk = ~I kj, durch geschickte Drehung des Koordinatensystems auf Diagonalform bringen kann, d.h. ~I 0 = 0 I a I b I c 1 C A : Die Koordinatenachsen dieses Systems werden als Hauptträgheitsachsen bezeichnet, die Komponenten I a ; I b ; und I c heissen Hautträgheitsmomente. Man sortiert sie nach aufsteigender Reihenfolge I a I b I c : Sind alle Hauptträgheitsmomente verschieden, handelt es sich bei dem Körper um einen asymmetrischen Kreisel (z.b. Quader mit drei ungleich langen Seiten), sind zwei von ihnen gleich, spricht man von einem symmetrischen Kreisel (z.b. Zylinder) und wenn alle drei den gleichen Wert besitzen, ist es ein sphärischer Kreisel (Kugel, Würfel, Tetraeder, Oktaeder). Der Trägheitstensor eines sphä-

4 rischen Kreisels besitzt die besonders einfache Form ~I 0 = I und reduziert sich damit quasi zu einem Skalar. Jeder rotationssymmetrsiche Körper ist ein symmetrischer Kreisel, aber nicht jeder symmetrische Kreisel ist rotationssymmetrisch (z.b. eine quadratische Säule). 1 C A In folgenden Spezialfällen sind ~! und ~ L parallel: Rotation eines sphärischen Kreisels um eine beliebige Achse durch den Schwerpunkt Rotation des symmetrischen Kreisels um seine Symmetrieachse (Figurenachse) oder eine beliebige Achse senkrecht dazu (durch den Schwerpunkt) Rotation um eine Hautptträgheitsachse.

5 Wenn ~! und ~ L nicht parallel sind, wird die Bewegung des Körpers bei der Rotation sehr viel komplizierter. 1. freie Rotation ohne äußere Kräfte (Drehmomente) In diesem Fall ist die Drehimpulsachse ~ L fest im Raum die momentane Drehachse ~! rotiert um die raumfeste Achse von ~ L im Falle eines symmetrischen Kreisels rotiert die Figurenachse ebenfalls um ~ L. Diese Bewegung der Figurenachse wird als Nutation bezeichnet.

6 Wenn der Körper nicht frei rotiert sondern die Drehachse durch äußere Zwangsbedingungen, z.b. in einem Lager, stabilisiert wird, bedeutet dies, dass nun der Drehimpuls um ~! rotieren muss. Diese Änderung von L ~ muss gemäß d ~L = M ~ dt durch äußere Drehmomente ~ M, welche von den Lagern aufzubringen sind, bewirkt werden. Solche "Unwuchten" müssen bei allen rotierenden Maschinenteilen vermieden werden, um einen schnellen Verschleiss der Lager zu unterbinden. Dazu werden die rotierenden Teile "ausgewuchtet" (z.b. Autoräder). Man unterscheidet zwischen der statischen Unwucht und der dynamischen Unwucht (Deviationsmoment) Eine statische Unwucht wird dadurch verursacht, dass die Drehachse nicht durch den Schwerpunkt verläuft.

7 In diesem Fall tritt eine Zwangskraft auf, die die Fliehkraft F z = m! 2 R A aufgrund der Rotation des Schwerpunktes kompensieren muss. Die dynamischen Unwucht tritt durch eine ungleiche Massenverteilung auf, auch wenn der Schwerpunkt auf der Drehachse liegt: (a) Zylindrische Welle mit Deviationsmoment bezüglich der Zylinderachse durch zwei diametrale Nocken (b) Annulierung des Deviationsmomentes durch zwei entgegengesetzte Nocken (E.W. Otten, Repititorium der Experimentalphysik)

8 Die Kräfte F t führen zu einem rotierenden Drehmoment, welches an der Welle angreift und unangenehme Kräfte auf die Lager ausübt die mit dem Quadrat der Drehzahl anwachsen. Solche Drehmomente werden als Deviationsmomente bezeichnet und können ebenfalls durch Zusatzgewichte kompensiert werden. 2. Bewegung eines Kreisels beim Einwirken eines äußeren Drehmomentes Die Drehimpulsachse L ~ weicht einer äußeren Kraft senkrecht zu dieser aus (Grund: Das verursachte Drehmoment ist M ~ = ~r F ~ und damit senkrecht zu F ~ ). Dies führt dazu, dass ein schief stehender Kreisel, der nicht im Schwerpunkt unterstützt ist, im Gravitationsfeld präzediert, d.h. seine Figurenachse (Drehimpulsachse) beschreibt eine kreisförmige Bewegung (Präzession) um die Senkrechte (

9 Beispiele: Die Erdachse führt durch die Gezeitenkräfte der Sonne eine Präzessionsbewegung mit einer Periode von rund 26,000 Jahren aus. Die Präzessionsfrequenz des magnetischen Dipolmomentes eines Atomkerns um die Richtung eines angelegten Magnetfeldes wird bei der kernmagnetischen Resonanzspektroskopie gemessen. Da die exakte Frequenz von der chemischen Umgebung des Atoms abhängt, dient diese Methode zur Strukturaufklärung komplizierter organischer Moleküle.

10 Satz von Steiner Das Trägheitsmoment eines Körpers um eine beliebige Achse im Abstand R A vom Schwerpunkt ist gleich dem Trägheitsmoment um eine parallele Achse durch den Schwerpunkt I s plus dem Produkt aus Masse m des Körpers und R 2 A I(R A ) = I s + m R 2 A : Aufgaben: 1. Ein senkrecht stehender starrer Stab der Länge `, dessen Dicke gegen seine Länge zu vernachlässigen sei, wird durch eine leichte Berührung zum Umfallen gebracht. Berechnen Sie die Geschwindigkeit und Beschleunigung des oberen Endes beim Aufschlag (Hinweis: bei Drehung der Stange um den Schwerpunkt gilt für das Trägheitsmoment I = 1 12 m`2).

11 2. Berechnen Sie die Beschleunigung der Masse m 2, wenn der Radius des Rades R und dessen Masse m ist. Die Rotation des Rades ist durch die Reibung des Seils bedingt. Die Reibung vom m 1 auf der Unterlage werde vernachlässigt. (Zahlenbeispiel: m 1 = 40 kg, m 2 = 200 kg, m = 20 kg, R = 10 cm)

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Der Trägheitstensor J

Der Trägheitstensor J Der Trägheitstensor J Stellen wir uns einen Kreisel vor, der um eine beliebige Achse dreht. Gilt die Beziehung L = J ω in jedem Bezugssystem? Dazu betrachten wir nochmals die Bewegung eines starren Körpers.

Mehr

Eigenschaften des Kreisels

Eigenschaften des Kreisels Version 1. Dezember 011 1. Trägheitstensor und Eulersche Kreisel-Gleichungen Auf Grund der formalen Ähnlichkeit von Impuls- und Drehimpulssatz, also von d p = F und d L = τ, könnte man vermuten, dass der

Mehr

3.3 Klassifikation quadratischer Formen auf R n

3.3 Klassifikation quadratischer Formen auf R n 3.3. Klassifikation quadratischer Formen auf R n 61 3.3 Klassifikation quadratischer Formen auf R n Wir können den Hauptsatz über symmetrische Matrizen verwenden, um uns einen Überblick über die Lösungsmengen

Mehr

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 8. Drehbewegungen 8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 85 8.5 Kinetische Energie der Rotation ti 8.6 Berechnung

Mehr

Faszination Kreisel. Vom Spielzeug zur technischen Anwendung. Thomas Wilhelm

Faszination Kreisel. Vom Spielzeug zur technischen Anwendung. Thomas Wilhelm Vom Spielzeug zur technischen Anwendung Thomas Wilhelm 1. Spielzeug Kreisel Symmetrische Kreisel (zwei Hauptträgheitsmomente gleich groß), meist Rotationskörper Einfacher Kreisel Einfacher Kreisel Unterschiedliche

Mehr

Physik I Übung 10 - Lösungshinweise

Physik I Übung 10 - Lösungshinweise Physik I Übung - Lösungshinweise Stefan Reutter WS / Moritz Kütt Stand: 7. Februar Franz Fujara Aufgabe War die Weihnachtspause vielleicht doch zu lang? Bei der Translation eines Massenpunktes und der

Mehr

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum Fachrichtung Physik Physikalisches Grundpraktikum Versuch: RO Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010 Rotation Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Allgemeine Grundlagen 2 2.1

Mehr

Drehbewegungen. Lerninhalte

Drehbewegungen. Lerninhalte Physik Lerninhalte man informiere sich über: Winkelgeschwindigkeit, Winkelbeschleunigung Drehmoment, Drehimpuls, Drehimpulserhaltung Trägheitsmoment, Steiner scher Satz gleichmäßig beschleunigte Drehbewegung

Mehr

Lösungsblatt Rolle und Gewichte (2P) Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt) (WS07/08)

Lösungsblatt Rolle und Gewichte (2P) Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt) (WS07/08) sblatt Mechanik Physik, Wirtschaftsphysik, Physik Lehramt WS07/08 Wolfgang v. Soden wolfgang.soden@uni-ulm.de. 0. 008 74 Rolle und Gewichte P Zwei Gewichte mit Massen m = kg bzw. m = 3kg sind durch einen

Mehr

1. Rotation um eine feste Achse

1. Rotation um eine feste Achse 1. Rotation um eine feste Achse Betrachtet wird ein starrer Körper, der sich um eine raumfeste Achse dreht. z ω Das Koordinatensystem wird so gewählt, dass die Drehachse mit der z-achse zusammenfällt.

Mehr

Aufgabe 11.1 (Fragen zu Kreisbewegungen und Drehungen)

Aufgabe 11.1 (Fragen zu Kreisbewegungen und Drehungen) Physik VNT Aufgabenblätter und 2 7. Übung 4. KW) Aufgabe. Fragen zu Kreisbewegungen und Drehungen) a) Beurteilen Sie, welche der folgenden Aussagen jeweils wahr oder falsch ist: Wenn sich ein Körper gleichförmig

Mehr

Rotationsmechanik öffentliche Sonntagsvorlesung, 13. Januar Lesender: PD Dr. Frank Stallmach

Rotationsmechanik öffentliche Sonntagsvorlesung, 13. Januar Lesender: PD Dr. Frank Stallmach Fakultät für Phsik und Geowissenschaften Rotationsmechanik 130. öffentliche Sonntagsvorlesung, 13. Januar 2013 Lesender: PD Dr. Frank Stallmach Assistenz: Ael Märcker WOG Landesseminar zur Vorbereitung

Mehr

Physik I, RWTH, WS 2001/2002, T.Hebbeker

Physik I, RWTH, WS 2001/2002, T.Hebbeker 3. P1 TH 01/02 Newtonsche Mechanik II 1 Physik I, RWTH, WS 2001/2002, T.Hebbeker 06-Dec-2005 WWW: Kreiselsimulation: http://www.physik.fh-mannheim.de/icls/animationen ph/phys ani 3.htm Wackelsteine: http://www.wundersamessammelsurium.de/mechanisches/keltischerwackelstein/keltischerwackelstein.html

Mehr

Ergänzungen zur Physik I

Ergänzungen zur Physik I Ergänzungen zu Physik I Inhaltsverzeichnis Ergänzungen zur Physik I U. Straumann, 22. Oktober 2013 Physik - Institut Universität Zürich Inhaltsverzeichnis 1 Relativbewegungen 2 1.1 Relativitätsprinzip

Mehr

Einführung in die Tensorrechnung

Einführung in die Tensorrechnung 1. Definition eines Tensors Tensoren sind Grössen, mit deren Hilfe man Skalare, Vektoren und weitere Grössen analoger Struktur in ein einheitliches Schema zur Beschreibung mathematischer und physikalischer

Mehr

Vordiplomsklausur Physik

Vordiplomsklausur Physik Institut für Physik und Physikalische Technologien der TU-Clausthal; Prof. Dr. W. Schade Vordiplomsklausur Physik 14.Februar 2006, 9:00-11:00 Uhr für den Studiengang: Maschinenbau intensiv (bitte deutlich

Mehr

Übungen zu Experimentalphysik 4 - Lösungsvorschläge Prof. S. Paul Sommersemester 005 Dr. Jan Friedrich Nr. 5 16.05.005 Email Jan.Friedrich@ph.tum.de Telefon 089/89-1586 Physik Department E18, Raum 3564

Mehr

1. Kinematik. Untersucht wird die Bewegung eines Punktes P in Bezug auf zwei Bezugssysteme: Bezugssystem Oxyz ist ruhend:

1. Kinematik. Untersucht wird die Bewegung eines Punktes P in Bezug auf zwei Bezugssysteme: Bezugssystem Oxyz ist ruhend: Untersucht wird die ewegung eines Punktes P in ezug auf zwei ezugssysteme: ezugssystem Oxyz ist ruhend: Ursprung O Einheitsvektoren e x, e y, e z Koordinaten x, y, z ezugssystem ξηζ bewegt sich: Ursprung

Mehr

4.3 Das Trägheitsmoment eines starren Körpers

4.3 Das Trägheitsmoment eines starren Körpers 4.3-1 4.3 Das Trägheitsmoment eines starren Körpers 4.3.1 Der Trägheitstensor Man kann einen starren Körper als eine Gesamtheit von Teilchen ansehen, deren Abstände unveränderlich sind. Dieses spezielle

Mehr

1 Vorlesungen: und Vektor Rechnung: 1.Teil

1 Vorlesungen: und Vektor Rechnung: 1.Teil 1 Vorlesungen: 4.10.005 und 31.10.005 Vektor Rechnung: 1.Teil Einige in der Physik auftretende Messgrößen sind durch eine einzige Zahl bestimmt: Temperatur T K Dichte kg/m 3 Leistung P Watt = J/s = kg

Mehr

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay ufgabenstellung: Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: Gesucht ist der Punkt П, dessen momentane Geschwindigkeit null ist. Lösung: v Px =x ( y P y ), v Py =y +

Mehr

5 Kreisbewegung und Rotation (rotación, la)

5 Kreisbewegung und Rotation (rotación, la) 5 Kreisbewegung und Rotation Hofer 1 5 Kreisbewegung und Rotation (rotación, la) A1: Nenne Beispiele für kreisförmige Bewegungen und Drehungen aus dem Alltag! A2: Nenne die grundlegenden Bewegungsformen

Mehr

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t.

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t. Formelsammlung Physik Mechanik. Kinematik und Kräfte Kinematik Erstes Newtonsches Axiom (Axio/Reaxio) F axio = F reaxio Zweites Newtonsches Axiom Translationsbewegungen Konstante Beschleunigung F = m a

Mehr

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( )

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( ) Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 005/06 Julian Merkert (1999) Versuch: P1-0 Pendel - Vorbereitung - Vorbemerkung Das einfachste Modell, um einen Pendelversuch zu beschreiben,

Mehr

Klausur Experimentalphysik (1. Termin)

Klausur Experimentalphysik (1. Termin) Helmut-Schmidt-Universität Universität der Bundeswehr Hamburg Fachbereich Elektrotechnik Univ.-Prof. Dr. D. Kip Experimentalphysik und Materialwissenschaften Telefon: 6541 2457 Klausur Experimentalphysik

Mehr

Zentrifugalkraft beim Karussell

Zentrifugalkraft beim Karussell Seil, Länge L m Also: Zentrifugalkraft beim Karussell tan( α) y = α r F Z r G ω r = x r r ' KS : mitrotierendes Koordinatensystem m G r α 2 m ω g r ' F r Z F r gesamt 2 ω sin( α) L = g Fragestellung: Um

Mehr

1.4 Gradient, Divergenz und Rotation

1.4 Gradient, Divergenz und Rotation .4 Gradient, Divergenz und Rotation 5.4 Gradient, Divergenz und Rotation Die Begriffe Gradient, Divergenz und Rotation erfordern die partiellen Ableitung aus Abschnitt.. sowie das Konzept des Differentialoperators.

Mehr

Grundlagen der Biomechanik

Grundlagen der Biomechanik Grundlagen der Biomechanik Was ist Biomechanik 1 Unter Biomechanik versteht man die Mechanik des menschlichen Körpers beim Sporttreiben. 3 Was ist Biomechanik 2 Bewegungen entstehen durch das Einwirken

Mehr

Kapitel D : Flächen- und Volumenberechnungen

Kapitel D : Flächen- und Volumenberechnungen Kapitel D : Flächen- und Volumenberechnungen Berechnung einfacher Flächen Bei Flächenberechnungen werden die Masse folgendermassen bezeichnet: = Fläche in m 2, dm 2, cm 2, mm 2, etc a, b, c, d = Bezeichnung

Mehr

Die Entwicklung des Erde-Mond-Systems

Die Entwicklung des Erde-Mond-Systems THEORETISCHE AUFGABE Nr. 1 Die Entwicklung des Erde-Mond-Systems Wissenschaftler können den Abstand Erde-Mond mit großer Genauigkeit bestimmen. Sie erreichen dies, indem sie einen Laserstrahl an einem

Mehr

Themengebiet: Mechanik. Tabelle 1: Gegenüberstellung der sich entsprechenden Größen bei Translation und Rotation

Themengebiet: Mechanik. Tabelle 1: Gegenüberstellung der sich entsprechenden Größen bei Translation und Rotation Seite 1 1 Literatur Themengebiet: Mechanik W. Kranzer, So interessant ist Physik, Köln, 1982, S. 63-65, 331-335 R. L. Page, The Physics of Human Movement, Exeter, 1978, S. 45-56 2 Grundlagen 2.1, Drehmoment,

Mehr

Spannungszustand

Spannungszustand 1. Spannungszustand 1.1 Spannungsvektor und Spannungstensor 1.2 Hauptspannungen 1.3 Mohrsche Spannungskreise 1.4 Fließbedingung 1.5 Gleichgewichtsbedingungen 1.1-1 1.1 Spannungsvektor und Spannungstensor

Mehr

Vektoren: Grundbegriffe. 6-E Ma 1 Lubov Vassilevskaya

Vektoren: Grundbegriffe. 6-E Ma 1 Lubov Vassilevskaya Vektoren: Grundbegriffe 6-E Ma 1 Lubov Vassilevskaya Parallele Vektoren Abb. 6-1: Vektoren a, b, c und d liegen auf drei zueinander parallelen Linien l, l' und l'' und haben gleiche Richtung Linien l,

Mehr

Theoretische Mechanik

Theoretische Mechanik Theoretische Mechanik Übungen R. Kirschner, ITP, Univ. Leipzig 1-1 1. Betrachten Sie ein System aus 4 Massenpunkten, ( r i,m i ),i = 1,2,3,4, das sich in trivialer geradlinig-gleichförmiger Bewegung befindet.

Mehr

PN 1 Klausur Physik für Chemiker

PN 1 Klausur Physik für Chemiker PN 1 Klausur Physik für Chemiker Prof. T. Liedl Ihr Name in leserlichen Druckbuchstaben München 2011 Martrikelnr.: Semester: Klausur zur Vorlesung PN I Einführung in die Physik für Chemiker Prof. Dr. T.

Mehr

Inhaltsverzeichnis Einleitung Die Kinematik des Punktes Kinetik des Massenpunktes

Inhaltsverzeichnis Einleitung Die Kinematik des Punktes Kinetik des Massenpunktes Inhaltsverzeichnis 1 Einleitung... 1 1.1 Aufgabenstellungen der Dynamik.... 1 1.2 Einige Meilensteine in der Geschichte der Dynamik... 3 1.3 EinteilungundInhaltedesBuches... 5 1.4 ZieledesBuches... 6 2

Mehr

Energieerhaltung für rollende Kugel. W ges = W pot + W kin + W rot. Kapitel 3: Klassische Mechanik Energieerhaltung.

Energieerhaltung für rollende Kugel. W ges = W pot + W kin + W rot. Kapitel 3: Klassische Mechanik Energieerhaltung. Energieerhaltung Energieerhaltung für rollende Kugel W ges = W pot + W kin + W rot h Trägheitsmoment: θ = r 2 dd θ Ist abhängig von Form des Körpers 75 Kräfte Gesamtkraft F : Vektorsumme der Einzelkräfte

Mehr

Übungsblatt 09. Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik

Übungsblatt 09. Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik Übungsblatt 9 Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik 9.6.8 Aufgaben. Durch eine Spule mit n Windungen, die einen Querschnitt A 7, 5cm hat, fliesst

Mehr

VI. Dynamik des starren Körpers

VI. Dynamik des starren Körpers VI. Dynamik des starren Körpers Wenn man von der Ausdehnung eines Körpers absehen kann, d.h. ihn als Massenpunkt betrachtet, wie wir das bisher getan haben, läßt sich seine Lage durch einen einzigen Ortsvektor

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physik.uni-muenchen.de 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren Kapitel 3 Vektoren 31 Skalare, Vektoren, Tensoren Viele physikalische Größen lassen sich bei bekannter Maßeinheit durch Angabe ihres Betrages als reelle Zahl vollständig angeben Solche Größen nennt man

Mehr

9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 2009

9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 2009 9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 009 Aufgabe 9.1: Doppelfeder Eine Kugel wird im Schwerefeld der Erde zwischen zwei Federn mit

Mehr

4 Dynamik der Rotation

4 Dynamik der Rotation 4 Dynamik der Rotation Fragen und Probleme: Was versteht man unter einem, wovon hängt es ab? Was bewirkt ein auf einen Körper einwirkendes? Welche Bedeutung hat das Massenträgheitsmoment eines Körpers?

Mehr

Aufgaben zur Wechselspannung

Aufgaben zur Wechselspannung Aufgaben zur Wechselspannung Aufgabe 1) Ein 30 cm langer Stab rotiert um eine horizontale, senkrecht zum Stab verlaufende Achse, wobei er in 10 s 2,5 Umdrehungen ausführt. Von der Seite scheint paralleles

Mehr

Übungen zur Physik I PHY 111, HS 2016

Übungen zur Physik I PHY 111, HS 2016 Übungen zur Physik I PHY, HS 6 Serie 6 Abgabe: Dienstag, 8. November Translationsenergie translational energy Trägheitsmoment moment of inertia Massenmittelpunkt center of gravity (COG) Rotationsenergie

Mehr

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m 2010-11-24 Klausur 2 Kurs 11Ph1e Physik Lösung 1 α-teilchen (=2-fach geladene Heliumkerne) werden mit der Spannung U B beschleunigt und durchfliegen dann einen mit der Ladung geladenen Kondensator (siehe

Mehr

Wie fällt ein Körper, wenn die Wirkung der Corioliskraft berücksichtigt wird?

Wie fällt ein Körper, wenn die Wirkung der Corioliskraft berücksichtigt wird? Wie fällt ein Körper, wenn die Wirkung der Corioliskraft berücksichtigt wird? Beim freien Fall eines Körpers auf die Erde, muss man bedenken, dass unsere Erde ein rotierendes System ist. Um die Kräfte,

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS Aufgabe 1: Ampère-Gesetz (2+2+2=6 Punkte)

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS Aufgabe 1: Ampère-Gesetz (2+2+2=6 Punkte) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III (Theorie Elektrodynamik) WS 1-13 Prof. Dr. Alexander Mirlin Musterlösung:

Mehr

Was ist Trägheit und Gravitation wirklich! Thermal-Time-Theorie

Was ist Trägheit und Gravitation wirklich! Thermal-Time-Theorie Was ist Trägheit und Gravitation wirklich! Thermal-Time-Theorie Hypothese Nach der Thermal-Time-Theorie (ttt) ist die Gravitation keine Kraft zwischen zwei Massen, sondern eine Beschleunigung bzw. Kraft,

Mehr

Energie und Energieerhaltung

Energie und Energieerhaltung Arbeit und Energie Energie und Energieerhaltung Es gibt keine Evidenz irgendwelcher Art dafür, dass Energieerhaltung in irgendeinem System nicht erfüllt ist. Energie im Austausch In mechanischen und biologischen

Mehr

PS III - Rechentest

PS III - Rechentest Grundlagen der Elektrotechnik PS III - Rechentest 01.03.2011 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 Summe Punkte 3 15 10 12 11 9 60 erreicht Hinweise: Schreiben Sie auf das Deckblatt Ihren Namen und

Mehr

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64 1/64 VEKTORRECHNUNG Prof. Dr. Dan Eugen Ulmet Hochschule Esslingen März 2011 2/64 Overview Vektoralgebra 1 Vektoralgebra 2 Was sind Vektoren? 3/64 Vektoren werden geometrisch definiert als Pfeilklassen:

Mehr

6. Welche der folgenden Anordnungen von vier gleich großen ohmschen Widerständen besitzt den kleinsten Gesamtwiderstand?

6. Welche der folgenden Anordnungen von vier gleich großen ohmschen Widerständen besitzt den kleinsten Gesamtwiderstand? 1 1. Welche der folgenden Formulierungen entspricht dem ersten Newton schen Axiom (Trägheitsprinzip)? Ein Körper verharrt in Ruhe oder bewegt sich mit konstanter gleichförmiger Geschwindigkeit, wenn die

Mehr

Statische Unwucht. Ebene 1. Rotierender Körper. Seite A. Drehachse. Seite B. Übergewicht. Schwingung

Statische Unwucht. Ebene 1. Rotierender Körper. Seite A. Drehachse. Seite B. Übergewicht. Schwingung CNCINFO März 2012 Wuchtgüte Ursachen, Auswirkungen von Unwucht und richtig Auswuchten Von Thomas Oertli Moderne Bearbeitungsverfahren stellen spezielle Anforderungen an die Wuchtgüte und Rundlaufgenauigkeit

Mehr

Rechenübungen zur Physik 1 im WS 2011/2012

Rechenübungen zur Physik 1 im WS 2011/2012 Rechenübungen zur Physik 1 im WS 011/01. Klausur Fr. März 01 9.00-1.00 Uhr N/N6 Name, Vorname: Geburtstag: Ihre Identifizierungs-Nr. ID= 99 Hinweise: Studentenausweis: Hilfsmittel: Lösungen: Zusatzblätter:

Mehr

Grundwissen 5. Klasse

Grundwissen 5. Klasse Grundwissen 5. Klasse 1/5 1. Zahlenmengen Grundwissen 5. Klasse Natürliche Zahlen ohne Null: N 1;2;3;4;5;... mit der Null: N 0 0;1;2;3;4;... Ganze Zahlen: Z... 3; 2; 1;0;1;2;3;.... 2. Die Rechenarten a)

Mehr

Minimalziele Mathematik

Minimalziele Mathematik Jahrgang 5 o Kopfrechnen, Kleines Einmaleins o Runden und Überschlagrechnen o Schriftliche Grundrechenarten in den Natürlichen Zahlen (ganzzahliger Divisor, ganzzahliger Faktor) o Umwandeln von Größen

Mehr

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj Aufgabe 4 Zylinder nach oben offen Der dargestellte Zylinder A und der zugehörige bis zum Ventil reichende Leitungsabschnitt enthalten Stickstoff. Dieser nimmt im Ausgangszustand ein Volumen V 5,0 dm 3

Mehr

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW)

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW) Physik 1 VNT Aufgabenblatt 8 5. Übung (5. KW) 5. Übung (5. KW) Aufgabe 1 (Achterbahn) Start v h 1 25 m h 2 2 m Ziel v 2? v 1 Welche Geschwindigkeit erreicht die Achterbahn in der Abbildung, wenn deren

Mehr

GLEICHUNGEN MIT PARAMETERN

GLEICHUNGEN MIT PARAMETERN Mathematik-Olympiaden in Rheinland-Pfalz GLEICHUNGEN MIT PARAMETERN Fortgeschrittene Die Aufgaben auf diesem Arbeitsblatt haben alle eine elegante Lösungsidee. Bei vielen Gleichungen ist nach Anwenden

Mehr

Untersuchungen von Funktionen 1

Untersuchungen von Funktionen 1 Untersuchungen von Funktionen 1 Führen Sie für die Funktionen diese Untersuchungen durch : Untersuchen Sie den Graphen auf Symmetrie. Untersuchen Sie das Verhalten der Funktionswerte im Unendlichen. Bestimmen

Mehr

D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.

D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten. V. Körper, Flächen und Punkte ================================================================= 5.1 Körper H G E F D C A B Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.

Mehr

Symmetrie und Anwendungen

Symmetrie und Anwendungen PC II Kinetik und Struktur Kapitel 6 Symmetrie und Anwendungen Symmetrie von Schwingungen und Orbitalen, Klassifizierung von Molekülschwingungen Auswahlregeln: erlaubte verbotene Übergänge IR-, Raman-,

Mehr

Klausur Physik 1 (GPH1) am

Klausur Physik 1 (GPH1) am Name, Matrikelnummer: Klausur Physik 1 (GPH1) am 18.9.09 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel: Beiblätter zur Vorlesung Physik 1 ab

Mehr

2.6 Mechanik in bewegten Bezugsystemen

2.6 Mechanik in bewegten Bezugsystemen - 66-2.6 Mechanik in bewegten Bezugsystemen 2.6.1 Galilei'sche Relativität Die Beschreibung einer Bewegung hängt ab vom verwendeten Bezugssystem: Wenn jemand in einem Eisenbahnwagen einen Ball aufwirft

Mehr

Einführung in die theoretische Physik 1

Einführung in die theoretische Physik 1 Einführung in die theoretische Physik 1 Prof. Dr. L. Mathey Dienstag 15:45 16:45 und Donnerstag 10:45 12:00 Beginn: 23.10.12 Jungius 9, Hörs 2 1 Organisatorisches Vorlesung am 1.11.: wird dankenswerterweise

Mehr

& sind die Vektorkomponenten von und sind die Vektorkoordinaten von. A x. a) Der Betrag eines Vektors

& sind die Vektorkomponenten von und sind die Vektorkoordinaten von. A x. a) Der Betrag eines Vektors Einführu hnung Was ist ein Vektor? In Bereichen der Naturwissenschaften treten Größen auf, die nicht nur durch eine Zahlenangabe dargestellt werden können, wie Kraft oder Geschwindigkeit. Zur vollständigen

Mehr

Klausur Physik 1 (GPH1) am 8.7.02

Klausur Physik 1 (GPH1) am 8.7.02 Name, Matrikelnummer: Klausur Physik 1 (GPH1) am 8.7.02 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel: Beiblätter zur Vorlesung Physik 1 im

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

Mechanik. Dipl. Ing. (FH) Michael Schmidt. März 2016. nach Vorlesungsunterlagen von Prof. Dr.-Ing. Barbara Hippauf

Mechanik. Dipl. Ing. (FH) Michael Schmidt. März 2016. nach Vorlesungsunterlagen von Prof. Dr.-Ing. Barbara Hippauf Mechanik Dipl. Ing. (FH) Michael Schmidt März 2016 nach Vorlesungsunterlagen von Prof. Dr.-Ing. Barbara Hippauf Inhaltsverzeichnis Inhaltsverzeichnis 1. Einleitung 7 2. Kinematik 9 2.1. Einführung..............................

Mehr

Füllstand eines Behälters

Füllstand eines Behälters Füllstand eines Behälters Der Behälter ist eines der häufigsten Apparate in der chemischen Industrie zur Aufbewahrung von Flüssigkeiten. Dabei ist die Kenntnis das Gesamtvolumens als auch des Füllvolumens

Mehr

2 Skalarprodukt, Vektorprodukt

2 Skalarprodukt, Vektorprodukt 37 2 Skalarprodukt, Vektorprodukt Es gibt zwei verschiedene Verknüpfungsregeln für das Produkt von Vektoren. Die mechanische Arbeit ist definiert als Produkt aus Kraft und Weg. 1 Vorausgesetzt wird dabei,

Mehr

SIS Vortragsreihe. Astronomische Koordinatensysteme

SIS Vortragsreihe. Astronomische Koordinatensysteme SIS Vortragsreihe Astronomische Koordinatensysteme Das Himmelsgewölbe Zur Vereinfachung stellen wir uns das Himmelsgewölbe als hohle Kugel vor. Die Fix-Sterne sind an dieser Kugel befestigt oder einfach

Mehr

Elektromagnetische Felder und Wellen

Elektromagnetische Felder und Wellen Elektromagnetische Felder und Wellen Name : Matrikelnummer : Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Gesamtpunktzahl:

Mehr

3.4 Magnetfelder. µ im Magnetfeld Æ B ein Drehmoment. M = Æ µ Æ B.

3.4 Magnetfelder. µ im Magnetfeld Æ B ein Drehmoment. M = Æ µ Æ B. - 151-3.4 Magnetfelder 3.4.1 Grundlagen Während die Wechselwirkungen zwischen statischen elektrischen Ladungen sich durch das Coulomb'sche Gesetz, resp. ein elektrisches Feld beschreiben lassen, treten

Mehr

Aufgabe zur Corioliskraft 1. Hier ist es dringend angeraten als erstes eine aussagekräftige Skizze zu machen:

Aufgabe zur Corioliskraft 1. Hier ist es dringend angeraten als erstes eine aussagekräftige Skizze zu machen: Aufgabe zur Corioliskraft 1 Aufgabe: Ein Luftgewehr sei mit dem Lot exakt senkrecht nach oben ausgerichtet. Nach dem Abschuss verlässt die Kugel den Lauf mit 60 ms 1 Wo landet das Geschoss, wenn der Abschuss

Mehr

fwg Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: Zahlenstrahl

fwg Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl 0 1 2 3 4 5 6 7 8 Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt,

Mehr

Versuch M7 für Nebenfächler Rotations- und Translationsbewegung

Versuch M7 für Nebenfächler Rotations- und Translationsbewegung Versuch M7 für Nebenfächler Rotations- und Translationsbewegung I. Physikalisches Institut, Raum HS126 Stand: 21. Oktober 2015 generelle Bemerkungen bitte Versuchsaufbau (Nummer) angeben bitte Versuchspartner

Mehr

Kapitel 3. Koordinatensysteme

Kapitel 3. Koordinatensysteme Kapitel 3 Koordinatensysteme Bisher haben wir uns bei der Beschreibung von Vektoren auf das kartesische Koordinatensystem konzentriert. Für viele physikalische Anwendungen sind aber kartesische Koordinaten

Mehr

Wie funktioniert Kernspintomographie?

Wie funktioniert Kernspintomographie? Wie funktioniert Kernspintomographie? Vom Radfahren zum Gedankenlesen Hans-Henning Klauss Til Dellmann, Walter Keller, Hannes Kühne, Hemke Maeter, Frank Radtke, Denise Reichel, Göran Tronicke, Institut

Mehr

Lineare Gleichungssysteme (Teschl/Teschl 11.1)

Lineare Gleichungssysteme (Teschl/Teschl 11.1) Lineare Gleichungssysteme (Teschl/Teschl.) Ein Lineares Gleichungssystem (LGS) besteht aus m Gleichungen mit n Unbekannten x,...,x n und hat die Form a x + a 2 x 2 +... + a n x n b a 2 x + a 22 x 2 +...

Mehr

Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans

Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans josef.coenen@web.de Abitour Analytische Geometrie Leistungskurs Aufgaben 1. Welche Lagebeziehungen zwischen

Mehr

Abiturprüfung Mathematik 8 Baden-Württemberg (ohne CAS) Wahlteil Aufgaben Analytische Geometrie II, Aufgabe II. Die Punkte A(//), B(//), C(//), F(//), G(//) und H(//) sind die Ecken eines dreiseitigen

Mehr

Kinematik des starren Körpers

Kinematik des starren Körpers Technische Mechanik II Kinematik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes

Mehr

Geometrie Modul 4b WS 2015/16 Mi HS 1

Geometrie Modul 4b WS 2015/16 Mi HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Physik III Übung 1 - Lösungshinweise

Physik III Übung 1 - Lösungshinweise Physik III Übung 1 - Lösungshinweise Stefan Reutter WiSe 212 Moritz Kütt Stand: 16.11.212 Franz Fujara Aufgabe 1 [P] ermanentmagnete (Diskussion) Benötigt man, um ein Magnetfeld zu erhalten, immer einen

Mehr

Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 08/09 K 2. Aufgabe 1 (5 Punkte)

Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 08/09 K 2. Aufgabe 1 (5 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 8/9 K 6. Februar 9 Klausur in Technische Mechanik III Nachname Vorname Aufgabe (5 Punkte) Der

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimentalphysik 1 1 Fakultät für Physik Technische Universität München Bernd Kohler & Daniel Singh Blatt 2 WS 2014/2015 24.03.2015 Ferienkurs Experimentalphysik 1 ( ) - leicht ( ) - mittel

Mehr

Zylinder, Kegel, Kugel, weitere Körper

Zylinder, Kegel, Kugel, weitere Körper Zylinder, Kegel, Kugel, weitere Körper Aufgabe 1 Ein Messzylinder aus Glas hat einen Innendurchmesser von 4,0 cm. a) In den Messzylinder wird Wasser eingefüllt. Welchen Abstand haben zwei Markierungen

Mehr

Versuch M1: Feder- und Torsionsschwingungen

Versuch M1: Feder- und Torsionsschwingungen Versuch M1: Feder- und Torsionsschwingungen Aufgaben: Federschwingungen: 1 Bestimmen Sie durch Messung der Dehnung in Abhängigkeit von der Belastung die Richtgröße D (Federkonstante k) von zwei Schraubenfedern

Mehr

10. Der Spin des Elektrons

10. Der Spin des Elektrons 10. Elektronspin Page 1 10. Der Spin des Elektrons Beobachtung: Aufspaltung von Spektrallinien in nahe beieinander liegende Doppellinien z.b. die erste Linie der Balmer-Serie (n=3 -> n=2) des Wasserstoff-Atoms

Mehr

MECHANIK II. Arbeit, Energie, Leistung Impuls Rotationen

MECHANIK II. Arbeit, Energie, Leistung Impuls Rotationen MECHANIK II Arbeit, Energie, Leistung Impuls Rotationen Mechanik ikii Flaschenzug Mechanik ikii Flaschenzug: beobachte: F 1 kleiner als F (Gewichtskraft), aber: r größer alsr aber: r 1 größer als r genauer:

Mehr

Schulversuchspraktikum. 2. Protokoll. Rotation. (4. Klasse Unterstufe) Dana Eva Ernst

Schulversuchspraktikum. 2. Protokoll. Rotation. (4. Klasse Unterstufe) Dana Eva Ernst Schulversuchspraktikum 2. Protokoll Rotation (4. Klasse Unterstufe) Dana Eva Ernst 9955579 Linz, am 3.11.2002 Inhaltsverzeichnis Kapitel I - Thema und Ziele 2 Kapitel II - Die Versuche 2.1. Experimente

Mehr

1. Allgemeine Grundlagen Quantenmechanik

1. Allgemeine Grundlagen Quantenmechanik 1. Allgemeine Grundlagen 1.3. Quantenmechanik Klassische Mechanik vs Quantenmechanik Klassische (Newton sche) Mechanik klassischer harmonischer Oszillator Quantenmechanik quantenmechanischer harmonischer

Mehr

Physik für Elektroingenieure - Formeln und Konstanten

Physik für Elektroingenieure - Formeln und Konstanten Physik für Elektroingenieure - Formeln und Konstanten Martin Zellner 18. Juli 2011 Einleitende Worte Diese Formelsammlung enthält alle Formeln und Konstanten die im Verlaufe des Semesters in den Übungsblättern

Mehr

Experimentalphysik für Naturwissenschaftler 1 Universität Erlangen Nürnberg WS 2009/10 Klausur ( )

Experimentalphysik für Naturwissenschaftler 1 Universität Erlangen Nürnberg WS 2009/10 Klausur ( ) Nur vom Korrektor auszufüllen 1 2 3 4 5 6 7 8 9 10 Note Experimentalphysik für Naturwissenschaftler 1 Universität Erlangen Nürnberg WS 2009/10 Klausur (12.2.2010) Name: Studiengang: In die Wertung der

Mehr

Formelsammlung. Lagrange-Gleichungen: q k. Zur Koordinate q k konjugierter Impuls: p k = L. Hamilton-Funktion: p k. Hamiltonsche Gleichungen: q k = H

Formelsammlung. Lagrange-Gleichungen: q k. Zur Koordinate q k konjugierter Impuls: p k = L. Hamilton-Funktion: p k. Hamiltonsche Gleichungen: q k = H Formelsammlung Lagrange-Gleichungen: ( ) d L dt q k L q k = 0 mit k = 1,..., n. (1) Zur Koordinate q k konjugierter Impuls: p k = L q k. (2) Hamilton-Funktion: n H(q 1,..., q n, p 1,..., p n, t) = p k

Mehr

Abiturprüfung Physik, Grundkurs. Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen

Abiturprüfung Physik, Grundkurs. Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen Seite 1 von 6 Abiturprüfung 2012 Physik, Grundkurs Aufgabenstellung: Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen Ein homogenes Magnetfeld in einem

Mehr