Der Trägheitstensor J

Größe: px
Ab Seite anzeigen:

Download "Der Trägheitstensor J"

Transkript

1 Der Trägheitstensor J Stellen wir uns einen Kreisel vor, der um eine beliebige Achse dreht. Gilt die Beziehung L = J ω in jedem Bezugssystem? Dazu betrachten wir nochmals die Bewegung eines starren Körpers. Er lässt sich ausdrücken als Überlagerung einer Translationsbewegung mit einer Rotation, also v i = v S + ω r i für jeden gedachten Massenpunkt im Körper. Nun muss ja die kinetische Energie E kin = i 1 2 m v2 sein, also E kin = i 1 ( 2 m i v S v S ( ω r i ) + ( ω r i ) 2).

2 Nun sind v S nd ω für alle Punkte im Körper gleich. Also lassen sich v S und ω vor das Summenzeichen ziehen. Dazu nutzen wir die Eigenschaft des Spatproduktes aus ( a ( b c) = b ( c a) = c ( a a)), womit der zweite Term umgeformt wird in m i v S ( ω r i ) = i i m i r i ( ω v S ) = ( ω v S ) m i r i. i Weil aber nach Definition des Schwerpunkts i m i r i = 0, verschwindet dieses Glied. Damit bleibt nur noch E kin = ( i m i) v S m i ( ω r i ) 2. i

3 Nun verwenden wir die Vektoridentität ( ) ( ) A B A B = A 2 B 2 ( A B ) 2 um den zweiten Term umzuschreiben E kin = ( i m i) v S m i (ω 2 ri 2 ( ω r i ) 2). i Dies ist natürlich das bekannte Resultat, dass sich die kinetische Energie als Summe aus translatorischer und rotatorischer Energie schreiben lässt. Wir drücken dieses Resultat für die rotatorische Energie nun noch komplizierter aus, in sog. Tensorschreibweise, indem wir die Vektoren r und ω in Komponenten r j und ω j ausdrücken (dabei unterdrücken wir, um die entstehenden Ausdrücke

4 zu vereinfachen, den Index i von r i ) E rot = 1 ( m i ω 2 2 j r 2 ) l ω j r j ω k r k, i = 1 ( m i ωj ω k δ jk r 2 ) l ω j ω k r j r k, 2 i = 1 2 ω ( ) jω k m i r 2 l δ jk r j r k, i wo δ jk das sog. Kronecker-Delta ist und wir die sog. Einstein-Konvention vorausgesetzt haben, laut der über doppelt vorkommende Indizes summiert wird, also a b = a i b i. = a1 b 1 + a 2 b 2 + a 3 b 3.

5 Wir definieren nun als Trägheitstensor J jk den Ausdruck J jk. ( ) = m i r 2 l δ jk r j r k, i womit die kinetische Energie des starren Körpers in einem beliebigen Koordinatensystem lautet E kin = ( i m i) v S J jkω j ω k. Aus seiner Definition sieht man leicht, dass er symmetrisch ist J jk = J kj.

6 Der Trägheitstensor J Die früher hergeleitete Vektorgleichung L = J ω z. B. lautet nun in Komponentenschreibweise L x = J xx ω x + J xy ω y + J xz ω z, L y = J yx ω x + J yy ω y + J yz ω z, L z = J zx ω x + J zy ω y + J zz ω z. Die Komponenten J jk des Trägheitstensors sind gegeben durch: J xx = dm(r 2 x 2 ); J yy = dm(r 2 y 2 ); J zz = dm(r 2 z 2 );

7 J xy = J yx = dmxy; J yz = J zy = dmyz; J xz = J zx = dmxz. Damit lautet der Trägheitstensor ausgeschrieben dm(r 2 x 2 ) dmxy dmxz J jk = dmxy dm(r 2 y 2 ) dmyz dmxz dmyz dm(r 2 z 2 ). Die diagonalen Elemente ergeben sich aus der Überlegung, dass das Trägheitsmoment durch eine Rotation um die entsprechende Achse gegeben ist, J x x = dm(y 2 + z 2 ) = dm(r 2 x 2 ). Die hier gegebene Form ist abhängig vom gewählten Bezugssystem (wo ist z. B. die x-achse?), lässt sich aber in andere Bezugssysteme umrechnen.

8 Warum so kompliziert? Wir betrachten nun die Rotationsenergie eines um eine beliebige Achse drehenden Körpers. Für ein einzelnes infinitesimales Massenelement m i gilt: 1 2 m ivi 2 = 1 2 m i ( ω r i ) ( ω r i ) = 1 [ 2 m i ω 2 r i 2 ( ω r i ) 2], wo wir die Vektoridentität ( A B ) ( A B ) = A ( ) 2 2 B 2 A B

9 verwendet haben. Um die gesamte Rotationsenergie des Körpers zu finden integrieren wir nach dm. E rot = ω2 dmr 2 1 dm ( ω r) = ω2 x + ωy 2 + ωz 2 dm ( x 2 + y 2 + z 2) 2 1 dm (ω x x + ω y y + ω z y) 2 2 = 1 2 ( ω 2 x J xx + ω 2 yj yy + ω 2 zj zz ) +ω x ω y J xy + ω x ω z J xz + ω y ω z J yz. Dieser komplizierte Ausdruck kann einfacher in Matrixschreibweise geschrieben

10 werden: was folgendes bedeutet E rot = 1 2 (ω x, ω y, ω z ) E rot = 1 2 ωt J ω, J xx J xy J xz J yx J yy J yz J zx J zy J zz ω x ω y ω z. Alle Elemente des Trägheitstensors tragen also zur Rotationsenergie bei, wenn der Körper um eine beliebige Achse rotiert! Der Trägheitstensor ist symmetrisch und daher diagonalisierbar. Bildlich kann man sich dies so vorstellen: Wir berechnen für eine Rotation um eine beliebige Achse ω durch einen Punkt P das Trägheitsmoment J. Danach zeichnen wir auf der Achse einen Punkt im Abstand k/ J =. Nun variieren wir die Achse und

11 wiederholen das Verfahren für alle möglichen Achsen. Auf diese Weise bilden wir eine Fläche entlang der R 2 J = k 2 = const. Diese Fläche bildet ein Ellipsoid, das sog. Trägheitsellipsoid. Die längste Hauptachse zeigt entlang der Achse mit dem kleinsten Trägheitsmoment. Die Hauptachsen des Trägheitsellipsoids heißen Hauptträgheitsachsen und zeichnen genau das Koordinatensystem aus, in dem der Trägheitstensor diagonal wird. Nach Konvention werden sie der Größe nach sortiert, J a J b J c. Körper drehen sich stabil immer nur um die Achse mit dem größten oder dem kleinsten Trägheitsmoment.

12 Kreisel Kreiselart asymmetrisch symmetrisch Kugel- Hauptträgheitsmomente J a J b J c J a = J b J c oder J a J b = J c oder J a = J c J b J a = J b = J c

13 Kreiselbewegungen Im System der Hauptträgheitsachsen lautet der Ausdruck für die kinetische Energie und den Drehimpuls L 2 = L 2 a + L 2 b + L 2 c = const. E rot = 1 2 ( ω 2 a J a + ω 2 bj b + ω 2 cj c ) = L 2 a 2J a + L2 b 2J b + L2 c 2J c, eine Gleichung für eine Kugel mit Radius L 2 und ein Ellipsoid mit Hauptachsen 2Ja, 2J b und 2J b. Bei jeder Bewegung muss also der Drehimpulsvektor auf der Schnittmenge des Kreises mit dem Ellipsoid liegen.

14 Kreiselbewegungen II

15 Nutation Kräftefreier ( drehmomentfreier ) symmetrischer Kreisel (Bsp. Fahrradkreisel) M 0 = L = const. Allgemeinste Bewegung gegeben durch drei Achsen: raumfeste Drehimpulsachse L momentane Rotationsachse ω (ändert sich laufend!) Figurenachse

16 L ω L ω Figurenachse Figurenachse Gangpolkegel (körperfest) Rastpolkegel (raumfest) Gangpolkegel (körperfest) Rastpolkegel (raumfest) prolater Kreisel oblater Kreisel

17 Präzession Greift an einem Kreisel ein Drehmoment an, so ist er nicht mehr kräftefrei (drehmomentfrei) und der Drehimpuls ist nicht mehr eine erhaltene Größe: d L dt = M. Dieses Drehmoment führt zum Auftreten der Präzession. kräftefreier Kreisel angreifendes Drehmoment Nutation Präzession

18 z r M = r F = d L dt Das während einer kurzen Zeit angreifende L Drehmoment M bewirkt eine kleine Änderung des Drehimpulses dl M Mdt = d L F = m g L L = L + Mdt Die Präzession führt zu einer Drehung um die Achse z mit der Präzessionsgeschwindigkeit ω P = d L dt 1 L = M L L

19 Präzession II Versucht man den Radkreisel entlang seiner Präzessionsbewegung zu beschleunigen, so erfährt er ein Drehmoment, welches nach oben zeigt. Das Rad muss sich also aufrichten. Versucht man den Kreisel entlang der Präzessionsbewegung abzubremsen, so sinkt er. Dies erklärt, warum sich Spielkreisel aufrichten. ungestört nach hinten beschleunigt M = r F 2 L r F 2 L F = m g F = m g

20 Aufrichten eines Kinderkreisels Die Reibungskraft im Punkt B führt zu einer Beschleunigung in Richtung der Präzessionsbewegung. Der Kreisel richtet sich auf. L Ohne etwas Reibung kein Aufrichten, bei zu viel Reibung verlangsamt sich der Kreisel aber zu schnell. B

21 Der Kreiselkompass Der Kreiselkompass soll immer die Nordrichtung angeben. Dazu kann die Erdanziehung ausgenutzt werden, die immer zum Erdmittelpunkt zeigt. Patent: Anschütz Kiel. W Start A Reise A F G B O Die Erdanziehung F G zeigt immer zum Erdmittelpunkt. Dadurch erfährt der Kreisel ein Drehmoment, welches die Kreiselrichtung um genau den Winkel verdreht, der notwendig ist, um den Kompass wieder nach Norden zeigen zu lassen.

22 Der Kreiselkompass von Anschütz Auf Schiffen ist die Halterung/Lagerung ein Problem. Dieses wurde hier in Kiel durch Anschütz gelöst.

23 Der Kreiselkompass von Anschütz II Auch berühmte Leute waren mit von der Partie... A. Einstein war am Patent beteiligt und besuchte deswegen mehrmals Anschütz in Kiel.

24 Präzession der Erdachse Erdrotation Zentrifugalbeschleunigung a = ω 2 R cos φ 3.4 cos φ cm/s 2. R φ a r a F 1 F2 a t

25 Die Tangentialkomponente führt zur Ausbildung von Wülsten entlang des Äquators. Diese werden verschieden stark von der Sonne angezogen, was einem Drehmoment auf die Erde gleichkommt. Folge: der Drehimpuls der Erde bleibt nicht konstant. Die Erdachse präzessiert einmal in ca Jahren. Der Unterschied in der Anziehung verschwindet im Frühling und im Herbst und ist auch im Sommer und Winter nicht gleich stark. Diese Unterschiede führen, zusammen mit dem Einfluss des Mondes, zu kleineren Schwankungen des Drehimpulses, welche in der Astronomie Nutation genannt werden, auch wenn es sich streng genommen nicht um eine Nutation handelt.

26 Rotierende Bezugssysteme: Die Corioliskraft In der Nordhalbkugel wird nach rechts abgelenkt; in der Südhalbkugel wird nach links abgelenkt. Corioliskraft Ursprung von Zyklonen und Antizyklonen. Abnutzung von Bahngeleisen.

27 Corioliskraft II ωt B B v A Ein Massenpunkt bewegt sich auf einer rotierenden Scheibe von A aus mit der Geschwindigkeit v nach B hin. Infolge der Rotation erreicht er aber nach einer Zeit t den Punkt B. Für mitrotierende Beobachter scheint der Massenpunkt also einer Kraft ausgesetzt, die während der Zeit t gewirkt hat. AB = vt, ferner BAB = ωt BAB = BB /AB also BB = ωvt 2 Mit s = 1 2 a vt 2 ist also BB = ωvt 2 = 1 2 a vt 2, also a v = 2ωv.

28 Bewegungen in rotierenden Bezugssystemen Betrachte zwei Bezugssysteme K und K, deren Ursprung zusammenfällt, K aber gegen K rotiert, also kein Inertialsystem sei. Wie wir bereits gesehen haben, lässt sich jede Bewegung eines starren Körpers, also insbesondere eines als starr vorausgesetzten Bezugssystems, als Überlagerung einer Translation und einer Rotation darstellen. Also lautet der Zusammenhang zwischen zwei Geschwindigkeiten v und v gemessen in K bzw. K v = v + ( ω r), (1) wobei v die Geschwindigkeit ist, die in K gemessen wird, wenn man die Rotation nicht berücksichtigt. Die Beschleunigung a erhalten wir durch Ableitung nach der

29 Zeit a = d v dt = d v dt + ( ω d r ), dt weil ja ω = const. Wir bestimmen nun d v /dt im Koordinatensystem K, aber in Koordinaten von K ausgedrückt. Dabei muss berücksichtigt werden, dass sich nicht nur die Geschwindigkeit ändert, sondern auch die das Bezugssystem aufspannenden Einheitsvektoren ê x, ê y, ê z. Also d v dt = ( ê x dv x dt + ê dv y y dt + ê z dv z ) dt + d ê x dt v x + d êy dt v y + d ê z dt v z = a +(ω v ). Einsetzen liefert a = d v dt = a + ( ω v ) + ( ω v).

30 Nun setzen wir den allgemeinen Ausdruck für die Geschwindigkeit v ein, Glg. 1, a = a + 2 ( ω v ) + ω ( ω r). Diesen Ausdruck können wir nun endlich auflösen nach der Beschleunigung a, welche im rotierenden Bezugssystem K gemessen wird a = a + 2 ( v ω) + ω ( r ω) = a + a C + a Z Coriolisbeschleunigung Zentrifugalbeschleunigung a C = 2 ( v ω) a Z = ω ( r ω) Im beschleunigten Bezugssystem wirken zwei Scheinkräfte, die Corioliskraft und die Zentrifugalkraft!

31 Nachweis der Erdrotation - Das Foucault sche Pendel R φ ω ω P ω Die Rotation der Erde macht sich in einem Punkt P bemerkbar als eine Überlagerung einer Rotation der Ebene um ω und eine weitere Rotation um ω. ω Der Erdboden im Punkt P rotiert mit ω = ω sin φ um eine Achse senkrecht zum Erdboden und mit ω = ω cos φ um eine Achse parallel zu ω. In Kiel (φ 54 ) dreht sich die Erde mit ca. 12 unter einem Foucault schen Pendel weg.

32 Beispiele Eisenbahn: Auf der Nordhalbkugel nutzen sich die rechte Schiene und die rechten Räder schneller ab. Zyklone und Antizyklone auf den beiden Hemisphären drehen sich im gegenläufigen Sinne Passatwinde Flussläufe auf der Nordhalbkugel sollen rechts höhere Ufer aufweisen als links. Umgekehrt auf der Südhalbkugel.

33 Der Wirbel in der Badewanne wird allerdings durch andere Effekte wesentlich stärker beeinflusst, weshalb hier die Voraussage nicht erfüllt wird.

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 4. Dez. Kreisel + Reibung Alle Informationen zur orlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html Statisches und dynamisches Ungleichgewicht Feste Drehachse

Mehr

Bewegung in Systemen mit mehreren Massenpunkten

Bewegung in Systemen mit mehreren Massenpunkten Bewegung in Systemen mit mehreren Massenpunkten Wir betrachten ein System mit mehreren Massenpunkten. Für jeden Massenpunkt i einzeln gilt nach Newton 2: F i = d p i dt. Für n Massenpunkte muss also ein

Mehr

Vorlesung 18: Roter Faden:

Vorlesung 18: Roter Faden: Vorlesung 18: Roter Faden: Heute: Kreisel Präzession Nutation Versuche: Kreisel, Gyroscoop 11 Dezember 2003 Physik I, WS 03/04, Prof. W. de Boer 1 Kreisel Bisher Rotation um feste Achsen, d.h. ω. Kreisel:

Mehr

Übung Looping. Im obersten Punkt (bei Höhe h = 2r) muss die Zentripetalkraft gerade die Erdanziehung kompensieren. Also (betragsmäßig) a Z = v2 0

Übung Looping. Im obersten Punkt (bei Höhe h = 2r) muss die Zentripetalkraft gerade die Erdanziehung kompensieren. Also (betragsmäßig) a Z = v2 0 Übung Looping h r 2r Ein Ball rollt reibungsfrei die Schiene herunter in einen Looping. Wie hoch muss seine Ausgangshöhe h sein, wenn er in Ruhe startet und sehr klein ist? Hinweis: Sie können den Ball

Mehr

1 Trägheitstensor (Fortsetzung)

1 Trägheitstensor (Fortsetzung) 1 Trägheitstensor (Fortsetzung) Wir verallgemeinern den in der letzten Stunde gefundenen Trägheitstensor auf den Fall einer kontinuierlichen Massenverteilung durch die Einführung der Integration über das

Mehr

Physik I Mechanik und Thermodynamik

Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - Theorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften

Mehr

F = + L. Bahndrehimpuls des Massenmittelpunktes abhängig von Bezugssystem. Drehimpuls in Bezug auf Massenmittelpunkt, Spin. ω 2. +ω 1.

F = + L. Bahndrehimpuls des Massenmittelpunktes abhängig von Bezugssystem. Drehimpuls in Bezug auf Massenmittelpunkt, Spin. ω 2. +ω 1. Zusammenfassung: Drehimpuls: L = 0, wenn L = r x p p = 0, r = 0 oder r p für Zentralkräfte ist der Drehimpuls konstant: F G r L = const. Drehimpulssatz: Gesamtdrehimpuls: d L dt = r x F = T L = L M + L

Mehr

Klassische und Relativistische Mechanik

Klassische und Relativistische Mechanik Klassische und Relativistische Mechanik Othmar Marti 16. 01. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik

Mehr

Allgemeine Mechanik. Via Hamilton-Gl.: Die Hamiltonfunktion ist (in Kugelkoordinaten mit Ursprung auf der Kegelspitze) p r. p r =

Allgemeine Mechanik. Via Hamilton-Gl.: Die Hamiltonfunktion ist (in Kugelkoordinaten mit Ursprung auf der Kegelspitze) p r. p r = Allgemeine Mechanik Musterl osung 11. Ubung 1. HS 13 Prof. R. Renner Hamilton Jacobi Gleichungen Betrachte die gleiche Aufstellung wie in 8.1 : eine Punktmasse m bewegt sich aufgrund der Schwerkraft auf

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Kreisel, Trägheitstensor, Präzession Statisches Gleichgewicht Harmonische Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html

Mehr

Physikalisches Praktikum M 7 Kreisel

Physikalisches Praktikum M 7 Kreisel 1 Physikalisches Praktikum M 7 Kreisel Versuchsziel Quantitative Untersuchung des Zusammenhangs von Präzessionsfrequenz, Rotationsfrequenz und dem auf die Kreiselachse ausgeübten Kippmoment Literatur /1/

Mehr

Vorbereitung. Kreisel. Versuchsdatum: Drehimpulserhaltung 2. 2 Freie Achsen 2. 3 Kräftefreier Kreisel 3. 4 Dämpfung des Kreisels 4

Vorbereitung. Kreisel. Versuchsdatum: Drehimpulserhaltung 2. 2 Freie Achsen 2. 3 Kräftefreier Kreisel 3. 4 Dämpfung des Kreisels 4 Vorbereitung Kreisel Carsten Röttele Stefan Schierle Versuchsdatum: 26.06.2012 Inhaltsverzeichnis 1 Drehimpulserhaltung 2 2 Freie Achsen 2 3 Kräftefreier Kreisel 3 4 Dämpfung des Kreisels 4 5 Einfluss

Mehr

Klassische Experimentalphysik I (Mechanik) (WS 16/17)

Klassische Experimentalphysik I (Mechanik) (WS 16/17) Klassische Experimentalphysik I (Mechanik) (WS 16/17) http://ekpwww.physik.uni-karlsruhe.de/~rwolf/teaching/ws16-17-mechanik.html Übungsblatt 8 Name des Übungsgruppenleiters und Gruppenbuchstabe: Namen

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Eigenschaften des Kreisels

Eigenschaften des Kreisels Version 1. Dezember 011 1. Trägheitstensor und Eulersche Kreisel-Gleichungen Auf Grund der formalen Ähnlichkeit von Impuls- und Drehimpulssatz, also von d p = F und d L = τ, könnte man vermuten, dass der

Mehr

Spezialfall m 1 = m 2 und v 2 = 0

Spezialfall m 1 = m 2 und v 2 = 0 Spezialfall m 1 = m 2 und v 2 = 0 Impulserhaltung: Quadrieren ergibt Energieerhaltung: Deshalb muss gelten m v 1 = m ( u 1 + u 2 ) m 2 v 1 2 = m 2 ( u 2 1 + 2 u 1 u 2 + u 2 ) 2 m 2 v2 1 = m 2 ( u 2 1 +

Mehr

2. Beschleunigte Bezugssysteme, starrer Körper und Himmelsmechanik

2. Beschleunigte Bezugssysteme, starrer Körper und Himmelsmechanik 2. Beschleunigte Bezugssysteme, starrer Körper und Himmelsmechanik 2.1. Trägheits- bzw. Scheinkräfte Die Bewegung in einem beschleunigen Bezugssystem lässt sich mit Hilfe von sogenannten Scheinkräften

Mehr

Grundgesetze der Rotation

Grundgesetze der Rotation M10 Grundgesetze der Rotation Neben dem zweiten Newtonschen Axiom werden die Grundgesetze der Rotation untersucht: Abhängigkeit des Trägheitsmomentes von der Masse, Abhängigkeit des Trägheitsmomentes von

Mehr

20. und 21. Vorlesung Sommersemester

20. und 21. Vorlesung Sommersemester 2. und 21. Vorlesung Sommersemester 1 Der Spezialfall fester Drehachse Aus dem Trägheitstensor sollte der früher behandelte Spezialfall fester Drehachse wieder hervorgehen. Wenn man ω = ω n mit einem Einheitsvektor

Mehr

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 8. Drehbewegungen 8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 85 8.5 Kinetische Energie der Rotation ti 8.6 Berechnung

Mehr

Kinetik des starren Körpers

Kinetik des starren Körpers Technische Mechanik II Kinetik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes 2.

Mehr

2. Translation und Rotation

2. Translation und Rotation 2. Translation und Rotation 2.1 Rotation eines Vektors 2.2 Rotierendes ezugssystem 2.3 Kinetik Prof. Dr. Wandinger 2. Relativbewegungen Dynamik 2 2.2-1 2.1 Rotation eines Vektors Gesucht wird die zeitliche

Mehr

25. Vorlesung Sommersemester

25. Vorlesung Sommersemester 25. Vorlesung Sommersemester 1 Die Euler-Winkel Die Euler-Winkel geben die relative Orientierung zweier gegeneinander gedrehter Koordinatensysteme an, indem definiert wird, in welcher Reihenfolge welche

Mehr

Starrer Körper: Drehimpuls und Drehmoment

Starrer Körper: Drehimpuls und Drehmoment Starrer Körper: Drehimpuls und Drehmoment Weitere Schreibweise für Rotationsenergie: wobei "Dyade" "Dyadisches Produkt" Def.: "Dyadisches Produkt", liefert bei Skalarmultiplikation mit einem Vektor : und

Mehr

Rotierende Bezugssysteme

Rotierende Bezugssysteme Rotierende Bezugssysteme David Graß 13.1.1 1 Problematik Fährt ein Auto in eine Kurve, so werden die Innsassen nach außen gedrückt, denn scheinbar wirkt eine Kraft auf die Personen im Innern des Fahrzeuges.

Mehr

Das Trägheitsmoment und der Satz von Steiner

Das Trägheitsmoment und der Satz von Steiner Übungen zu Theoretische Physik I - echanik im Sommersemester 3 Batt 9 vom 4.6.3 Abgabe:.7. Aufgabe 38 Punkte Das Trägheitsmoment und der Satz von Steiner Berechnen Sie das Trägheitsmoment eines Zyinders

Mehr

Ferienkurs Theoretische Mechanik. Mechanik des starren Körpers

Ferienkurs Theoretische Mechanik. Mechanik des starren Körpers Ferienkurs Theoretische Mechanik Mechanik des starren Körpers Sebastian Wild Freitag, 16.09.011 Inhaltsverzeichnis 1 Einführung und Definitionen Kinetische Energie und Trägheitstensor 4.1 Definition des

Mehr

Spezialfall m 1 = m 2 und v 2 = 0

Spezialfall m 1 = m 2 und v 2 = 0 Spezialfall m 1 = m 2 und v 2 = 0 Impulserhaltung: Quadrieren ergibt Energieerhaltung: Deshalb muss gelten m v 1 = m( u 1 + u 2 ) m 2 v 1 2 = m 2 ( u 2 1 + 2 u 1 u 2 + u 2 ) 2 m 2 v2 1 = m 2 ( u 2 1 +

Mehr

LMU LUDWIG- p E kin 2 R. Girwidz Drehimpuls. 7.5 Drehimpuls. für Zentralkräfte: F dt. Geschwindigkeit. Masse. Translationsenergie. 1 mv.

LMU LUDWIG- p E kin 2 R. Girwidz Drehimpuls. 7.5 Drehimpuls. für Zentralkräfte: F dt. Geschwindigkeit. Masse. Translationsenergie. 1 mv. 7.5 Drehimpuls Translation Rotation Geschwindigkeit Masse v m Translationsenergie Kraft Impuls Ekin F 1 mv F ma p d p F dt p m v p E kin m R. Girwidz 1 7.5 Drehimpuls Drehscheml für Zentralkräfte: M 0

Mehr

Vorbereitung: Kreisel. Christine Dörflinger und Frederik Mayer, Gruppe Do Mai 2012

Vorbereitung: Kreisel. Christine Dörflinger und Frederik Mayer, Gruppe Do Mai 2012 Vorbereitung: Kreisel Christine Dörflinger und Frederik Mayer, Gruppe Do-9 10. Mai 2012 1 Inhaltsverzeichnis 1 Drehimpulserhaltung 3 2 Freie Achsen 3 3 Kräftefreier Kreisel 4 4 Dämpfung des Kreisels 4

Mehr

Fallender Stein auf rotierender Erde

Fallender Stein auf rotierender Erde Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen

Mehr

AUSWERTUNG: KREISEL. In diesem Versuch haben wir die Drehimpulserhaltung experimentell überprüft.

AUSWERTUNG: KREISEL. In diesem Versuch haben wir die Drehimpulserhaltung experimentell überprüft. AUSWERTUNG: KREISEL TOBIAS FREY, FREYA GNAM 1. DREHIMPULSERHALTUNG In diesem Versuch haben wir die Drehimpulserhaltung experimentell überprüft. 1.1. Drehschemel. Eine Versuchsperson setzte sich auf den

Mehr

Klassische und Relativistische Mechanik

Klassische und Relativistische Mechanik Klassische und Relativistische Mechanik Othmar Marti 09. 01. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik

Mehr

Anstelle der Geschwindigkeit v tritt die Winkelgeschwindigkeit ω, wobei

Anstelle der Geschwindigkeit v tritt die Winkelgeschwindigkeit ω, wobei Inhalt 1 9 Dynamik der Drehbewegung 9.1 Rotation eines Massenpunktes um eine feste Achse 9. Arbeit und Leistung bei der Drehbewegung 9.3 Erhaltungssätze 9.4 Übergang vom Massenpunkt zum starren Körper

Mehr

9 Teilchensysteme. 9.1 Schwerpunkt

9 Teilchensysteme. 9.1 Schwerpunkt der Impuls unter ganz allgemeinen Bedingungen erhalten bleibt. Obwohl der Impulserhaltungssatz, wie wir gesehen haben, aus dem zweiten Newton schen Axiom folgt, ist er tatsächlich allgemeiner als die Newton

Mehr

3.1 Trägheitskräfte bei linearer Bewegung. 3.2 Trägheitskräfte in rotierenden Bezugssystemen. 3.5 Die Erde als rotierendes System

3.1 Trägheitskräfte bei linearer Bewegung. 3.2 Trägheitskräfte in rotierenden Bezugssystemen. 3.5 Die Erde als rotierendes System 3 Beschleunigte Bezugssysteme und Trägheitskräfte 3.1 Trägheitskräfte bei linearer Bewegung 3. Trägheitskräfte in rotierenden Bezugssystemen 3.3 Corioliskraft 3.4 Trägheitskräfte R. Girwidz 1 3.1 Trägheitskräfte

Mehr

Kräftefreier symmetrischer Kreisel

Kräftefreier symmetrischer Kreisel Kräftefreier symmetrischer Kreisel Grannahmen: Symmetrieachse = "" Winkelgeschwindigkeit im körperfesten System: Euler-Gleichungen: [per Konvention wählen wir Richtung von so, dass mit für harm. Osz. Lösung:

Mehr

Naturwissenschaftliches Praktikum. Rotation. Versuch 1.1

Naturwissenschaftliches Praktikum. Rotation. Versuch 1.1 Naturwissenschaftliches Praktikum Rotation Versuch 1.1 Inhaltsverzeichnis 1 Versuchsziel 3 2 Grundlagen 3 2.1 Messprinzip............................. 3 2.2 Energiesatz............................. 3 2.3

Mehr

1.7 Bezugssysteme und Trägheitskräfte Physikalische Größen sind Angaben über Messgrößen

1.7 Bezugssysteme und Trägheitskräfte Physikalische Größen sind Angaben über Messgrößen 1.7 Bezugssysteme und Trägheitskräfte Physikalische Größen sind Angaben über Messgrößen z.b.: Ort: Festlegung der Nullpunkte Klassische Mechanik a) Zeitnullpunkt und Maßstab unabhängig von Ort und sonstigen

Mehr

Repetitorium D: Starrer Körper

Repetitorium D: Starrer Körper Fakultät für Physik T: Klassische Mechanik, SoSe 206 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_6/t_theor_mechanik/

Mehr

Grundbegriffe: Drehimpulserhaltungssatz, Kreisel, Figuren-, Drehimpuls- und momentane Drehachse, Präzession und Nutation

Grundbegriffe: Drehimpulserhaltungssatz, Kreisel, Figuren-, Drehimpuls- und momentane Drehachse, Präzession und Nutation M10 GYROSKOP PHYSIKALISCHE GRUNDLAGEN Grundbegriffe: Drehimpulserhaltungssatz, Kreisel, Figuren-, Drehimpuls- und momentane Drehachse, Präzession und Nutation 1. Begriff des Kreisels: Ein Kreisel ist ein

Mehr

Ergänzungen zur Physik I

Ergänzungen zur Physik I Ergänzungen zu Physik I Inhaltsverzeichnis Ergänzungen zur Physik I U. Straumann, 15. November 2016 Physik - Institut Universität Zürich Inhaltsverzeichnis 1 Relativbewegungen 2 1.1 Relativitätsprinzip

Mehr

Zusammenfassung. 1. Starre Körper: Zwei Koordinatensysteme (L und K). Die Bewegung im K-system ist eine Rotation.

Zusammenfassung. 1. Starre Körper: Zwei Koordinatensysteme (L und K). Die Bewegung im K-system ist eine Rotation. Zusammenfassung 1. Starre Körper: Zwei Koordinatensysteme (L und K). Die Bewegung im K-system ist eine Rotation. Z P r x 3 K-System x 2 R O R c x 1 L-System Y 2. Die kinetische Energie des Körpers und

Mehr

Massenträgheitsmomente homogener Körper

Massenträgheitsmomente homogener Körper http://www.youtube.com/watch?v=naocmb7jsxe&feature=playlist&p=d30d6966531d5daf&playnext=1&playnext_from=pl&index=8 Massenträgheitsmomente homogener Körper 1 Ma 1 Lubov Vassilevskaya Drehbewegung um c eine

Mehr

Übungen zu Theoretischer Mechanik (T1)

Übungen zu Theoretischer Mechanik (T1) Arnold Sommerfeld Center Ludwig Maximilians Universität München Prof. Dr. Viatcheslav Mukhanov Sommersemester 8 Übungen zu Theoretischer Mechanik (T) Übungsblatt, Besprechung ab.7.8 Aufgabe. Trägheitstensor

Mehr

Rotierender Starrer Körper/Kreisel

Rotierender Starrer Körper/Kreisel Rotierender Starrer Körper/Kreisel Ralf Metzler, Uni Potsdam, 2017-07-05 Typeset by FoilTEX 1 Kinetische Energie des Starren Körpers Translationsenergie: T trans = 1 2 v2 0 m α = m 2 v2 0, wobei m = α

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 13. Nov. Scheinkräfte Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html Die Newtonschen Grundgesetze 1. Newtonsche Axiom (Trägheitsprinzip)

Mehr

+m 2. r 2. v 2. = p 1

+m 2. r 2. v 2. = p 1 Allgemein am besten im System mit assenmittelpunkt (centre of mass frame) oder Schwerpunktsystem (=m 1 +m ) r = r 1 - r =m 1 +m Position vom Schwerpunkt: r r 1 +m r v =m 1 v 1 +m v = p 1 + p ist die Geschwindigkeit

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 9

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 9 Prof. C. Greiner, Dr. H. van Hees Sommersemester 214 Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 9 Aufgabe 34: Steinerscher Satz für den Trägheitstensor Der Schwerpunkt liege im Ursprung des Koordinatensystems.

Mehr

5.2 Drehimpuls, Drehmoment und Trägheitstensor

5.2 Drehimpuls, Drehmoment und Trägheitstensor 186 KAPITEL 5. STARRE KÖRPER 5. Drehimpuls, Drehmoment und Trägheitstensor Wie wir im vorhergehenden Abschnitt gesehen haben, besitzt ein starrer Körper 3 Freiheitsgrade zur Beschreibung seiner Position

Mehr

Trägheitsmomente aus Drehschwingungen

Trägheitsmomente aus Drehschwingungen M0 Name: Trägheitsmomente aus Drehschwingungen Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem Teilnehmer eigenständig

Mehr

Physikalisches Grundpraktikum Abteilung Mechanik

Physikalisches Grundpraktikum Abteilung Mechanik M10 Physikalisches Grundpraktikum Abteilung Mechanik Kreisel 1 Vorbereitung Erhaltungssätze der Mechanik Analogien zwischen Rotation und Translation Trägheitsmomente und deren Berechnung Satz von Steiner

Mehr

Versuch P2-71,74: Kreisel. Vorbereitung. Von Jan Oertlin und Ingo Medebach. 11. Mai Drehimpulserhaltung 2. 2 Freie Achse 2

Versuch P2-71,74: Kreisel. Vorbereitung. Von Jan Oertlin und Ingo Medebach. 11. Mai Drehimpulserhaltung 2. 2 Freie Achse 2 Versuch P - 71,74: Kreisel Vorbereitung Von Jan Oertlin und Ingo Medebach 11. Mai 010 Inhaltsverzeichnis 1 Drehimpulserhaltung Freie Achse 3 Kräftefreie Kreisel 3 4 Dämpfung des Kreisels 3 5 Kreisel unter

Mehr

1d) Die z Komponente L z des Drehimpulses. 1e) f(x)g (x)δ(x z) = f(z)g (z) nach Definition der Delta-Distribution. heißt

1d) Die z Komponente L z des Drehimpulses. 1e) f(x)g (x)δ(x z) = f(z)g (z) nach Definition der Delta-Distribution. heißt Aufgabe 1 (10 Punkte) Fragen 1a) Jede Drehung im dreidimensionalen Raum lässt sich als Hintereinanderausführung dreier Drehungen um die ursprüngliche z-achse, die x-achse im Koordinatensystem nach der

Mehr

Kreisel mit drei Achsen

Kreisel mit drei Achsen M42 Name: Kreisel mit drei Achsen Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem Teilnehmer eigenständig (keine Gruppenlösung!)

Mehr

Kapitel 5. Der starre Körper. 5.1 Die Kinematik des starren Körpers

Kapitel 5. Der starre Körper. 5.1 Die Kinematik des starren Körpers Kapitel 5 Der starre Körper Definition 5.1 Ein starrer Körper ist ein Sytem von N Massenpunkten m ν, deren Abstände r µν = r ν r µ = konst 0 (5.1) sind. Gleichung (5.1) ist dabei als skleronome Zwangsbedingung

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

2.3.5 Dynamik der Drehbewegung

2.3.5 Dynamik der Drehbewegung 2.3.5 Dynamik der Drehbewegung 2.3.5.1 Drehimpuls Drehimpuls Betrachte einen Massepunkt m mit Geschwindigkeit v auf irgendeiner Bahn (es muss keine Kreisbahn sein); dabei ist r der Ort der Massepunkts,

Mehr

Probeklausur zur T1 (Klassische Mechanik)

Probeklausur zur T1 (Klassische Mechanik) Probeklausur zur T1 (Klassische Mechanik) WS 006/07 Bearbeitungsdauer: 10 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

115 - Kreiselgesetze

115 - Kreiselgesetze 115 - Kreiselgesetze 1. Aufgaben 1.1 Bestimmen Sie die Nutationsfrequenz des kräftefreien Kreisels in Abhängigkeit von der Kreiselfrequenz. 1.2 Bestimmen Sie die Präzessionsperiode des schweren Kreisels

Mehr

11. Vorlesung Wintersemester

11. Vorlesung Wintersemester 11. Vorlesung Wintersemester 1 Ableitungen vektorieller Felder Mit Resultat Skalar: die Divergenz diva = A = A + A y y + A z z (1) Mit Resultat Vektor: die Rotation (engl. curl): ( rota = A Az = y A y

Mehr

6 Mechanik des Starren Körpers

6 Mechanik des Starren Körpers 6 Mechanik des Starren Körpers Ein Starrer Körper läßt sich als System von N Massenpunkten m (mit = 1,...,N) auffassen, die durch starre, masselose Stangen miteinander verbunden sind. Dabei ist N M :=

Mehr

Kreisel. Was ist ein symmetrischer-, was ein kräftefreier-, was ein schwerer Kreisel?

Kreisel. Was ist ein symmetrischer-, was ein kräftefreier-, was ein schwerer Kreisel? Rotation starrer Körper, Drehimpuls, Drehmoment, Trägheitsmoment, Hauptträgheitsachsen, kräftefreier-, schwerer, Nutation, Präzession. Schriftliche VORbereitung: Beantworten Sie bitte die folgenden Fragen:

Mehr

Trägheitsmomente aus Drehschwingungen

Trägheitsmomente aus Drehschwingungen M0 Name: Trägheitsmomente aus Drehschwingungen Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem Teilnehmer eigenständig

Mehr

Anwendung v. symmetrischen Matrizen: Hauptachsentransformation

Anwendung v. symmetrischen Matrizen: Hauptachsentransformation Anwendung v. symmetrischen Matrizen: Hauptachsentransformation Einleitende Bemerkungen: Gl. für Kreis: Gl. für Elllipse: (gestauchter Kreis) Gl. für Kugel: Gl. für Elllipsoid: (gestauchter Kugel) Diese

Mehr

1 Mechanik starrer Körper

1 Mechanik starrer Körper 1 Mechanik starrer Körper 1.1 Einführung Bisher war die Mechanik auf Massepunkte beschränkt. Nun gehen wir den Schritt zu starren Körpern. Ein starrer Körper ist ein System aus Massepunkten, welche nicht

Mehr

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie (Physik) (aus Wikipedia, der freien Enzyklopädie) Symmetrie ist ein grundlegendes Konzept der

Mehr

Hier wurde die Jacobi-Determinante der ZylinderKoordinaten verwendet (det J = ρ). Wir führen zunächst die ρ-integration durch: (R 2 H sin 2 φ )

Hier wurde die Jacobi-Determinante der ZylinderKoordinaten verwendet (det J = ρ). Wir führen zunächst die ρ-integration durch: (R 2 H sin 2 φ ) b) Für einen Zylinder bieten sich Zylinderkoordinaten an. Legt man den Ursprung in den Schwerpunkt und die z- bzw. x 3 - Achse entlang der Zylinderachse, verschwinden alle Deviationsmomente. Dies liegt

Mehr

Ludwig Maximilians Universität München Fakultät für Physik. Lösungsblatt 8. Übungen E1 Mechanik WS 2017/2018

Ludwig Maximilians Universität München Fakultät für Physik. Lösungsblatt 8. Übungen E1 Mechanik WS 2017/2018 Ludwig Maximilians Universität München Fakultät für Physik Lösungsblatt 8 Übungen E Mechanik WS 27/28 Dozent: Prof. Dr. Hermann Gaub Übungsleitung: Dr. Martin Benoit und Dr. Res Jöhr Verständnisfragen

Mehr

5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 203. Abbildung 5.12: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text)

5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 203. Abbildung 5.12: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text) 5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 03 ρ α r α R Abbildung 5.1: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text) 5.4 Kinetische Energie eines Starren Körpers In diesem

Mehr

Ergänzungen zur Physik I

Ergänzungen zur Physik I Ergänzungen zu Physik I Inhaltsverzeichnis Ergänzungen zur Physik I U. Straumann, 22. Oktober 2013 Physik - Institut Universität Zürich Inhaltsverzeichnis 1 Relativbewegungen 2 1.1 Relativitätsprinzip

Mehr

4.9 Der starre Körper

4.9 Der starre Körper 4.9 Der starre Körper Unter einem starren Körper versteht man ein physikalische Modell von einem Körper der nicht verformbar ist. Es erfolgt eine Idealisierung durch die Annahme, das zwei beliebig Punkte

Mehr

Übungsaufgaben zur E1 / E1p Mechanik, WS 2016/17

Übungsaufgaben zur E1 / E1p Mechanik, WS 2016/17 Übungsaufgaben zur E1 / E1p Mechanik, WS 2016/17 Prof. J. O. Rädler, PD. B. Nickel Fakultät für Physik, Ludwig-Maximilians-Universität, München Blatt 6: Scheinkräfte in beschleunigten Bezugssystemen Ausgabe:

Mehr

Drehbewegungen (Rotation)

Drehbewegungen (Rotation) Drehbewegungen (Rotation) Drehungen (Rotation) Die allgemeine Bewegung eines Systems von Massepunkten lässt sich immer zerlegen in: und Translation Rotation Drehungen - Rotation Die kinematischen Variablen

Mehr

Dynamik der Atmosphäre. Einige Phänomene

Dynamik der Atmosphäre. Einige Phänomene Dynamik der Atmosphäre Einige Phänomene Extratropische Zyklone L L L = 1000 km U = 10 m/sec Tropische Zyklon, Hurrikan, Taifun L L = 500 km U = 50 m/sec Cumulonimbuswolke L L = 10-50 km U = 10-20 m/sec

Mehr

5.3 Drehimpuls und Drehmoment im Experiment

5.3 Drehimpuls und Drehmoment im Experiment 5.3. DREHIMPULS UND DREHMOMENT IM EXPERIMENT 197 5.3 Drehimpuls und Drehmoment im Experiment Wir besprechen nun einige Experimente zum Thema Drehimpuls und Drehmoment. Wir betrachten ein System von N Massenpunkten,

Mehr

Klassische Theoretische Physik: Mechanik

Klassische Theoretische Physik: Mechanik Klassische Theoretische Physik: Mechanik Patrick Simon Argelander-Institut für Astronomie Auf dem Hügel 71 psimon@astro.uni-bonn.de 21. November 2013 1 Beschleunigte Bezugssysteme Die Forminvarianz der

Mehr

3.3 Klassifikation quadratischer Formen auf R n

3.3 Klassifikation quadratischer Formen auf R n 3.3. Klassifikation quadratischer Formen auf R n 61 3.3 Klassifikation quadratischer Formen auf R n Wir können den Hauptsatz über symmetrische Matrizen verwenden, um uns einen Überblick über die Lösungsmengen

Mehr

Einführung in die Physik für Maschinenbauer

Einführung in die Physik für Maschinenbauer Einführung in die Physik für Maschinenbauer WS 011/01 Teil 5 7.10/3.11.011 Universität Rostock Heinrich Stolz heinrich.stolz@uni-rostock.de 6. Dynamik von Massenpunktsystemen Bis jetzt: Dynamik eines einzelnen

Mehr

Übungen zum Ferienkurs Theoretische Mechanik

Übungen zum Ferienkurs Theoretische Mechanik Übungen zum Ferienkurs Theoretische Mechanik Starre Körper Übungen, die mit einem Stern markiert sind, werden als besonders wichtig erachtet. 3.1 Trägheitstensor eines homogenen Quaders Bestimmen Sie den

Mehr

Vektorrechnung in der Physik und Drehbewegungen

Vektorrechnung in der Physik und Drehbewegungen Vektorrechnung in der Physik und Drehbewegungen 26. November 2008 Vektoren Vektoren sind bestimmt durch a) Betrag und b) Richtung Beispiel Darstellung in 3 Dimensionen: x k = y z Vektor in kartesischen

Mehr

1. Kinematik. Untersucht wird die Bewegung eines Punktes P in Bezug auf zwei Bezugssysteme: Bezugssystem Oxyz ist ruhend:

1. Kinematik. Untersucht wird die Bewegung eines Punktes P in Bezug auf zwei Bezugssysteme: Bezugssystem Oxyz ist ruhend: Untersucht wird die ewegung eines Punktes P in ezug auf zwei ezugssysteme: ezugssystem Oxyz ist ruhend: Ursprung O Einheitsvektoren e x, e y, e z Koordinaten x, y, z ezugssystem ξηζ bewegt sich: Ursprung

Mehr

4 Die Rotation starrer Körper

4 Die Rotation starrer Körper 4 Die Rotation starrer Körper Die Bewegung eines realen Körpers ist erst dann vollständig beschrieben, wenn nicht nur seine als Translation bezeichnete geradlinige Bewegung, sondern auch seine als Rotation

Mehr

1. Grundlagen der ebenen Kinematik

1. Grundlagen der ebenen Kinematik Lage: Die Lage eines starren Körpers in der Ebene ist durch die Angabe von zwei Punkten A und P eindeutig festgelegt. Die Lage eines beliebigen Punktes P wird durch Polarkoordinaten bezüglich des Bezugspunktes

Mehr

4. System von Massenpunkten

4. System von Massenpunkten 4. System von Massenpunkten äußeren Kräfte ausgeübte "innere" Kraft Def: Schwerpunkt (SP) vertausche Reihenfolge der Summe gesamte äußere Kraft SP verhält sich so wie ein Punkteilchen mit Masse M, Ortsvektor

Mehr

Trägheitsmomente starrer Körper / Kreisel

Trägheitsmomente starrer Körper / Kreisel Trägheitsmomente starrer Körper / Kreisel Mit Hilfe von Drehschwingungen sollen im ersten Teil des Versuchs für einen Würfel und einen Quader die Trägheitsmomente für verschiedene Drehachsen durch den

Mehr

Grundlagen der Physik 1 Mechanik und spezielle Relativität

Grundlagen der Physik 1 Mechanik und spezielle Relativität Grundlagen der Physik 1 Mechanik und spezielle Relativität 09. 12. 2005 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. 1/30 Weihnachtsvorlesung (c) Ulm

Mehr

M10 PhysikalischesGrundpraktikum

M10 PhysikalischesGrundpraktikum M10 PhysikalischesGrundpraktikum Abteilung Mechanik Kreisel 1 Vorbereitung Erhaltungssätze der Mechanik Analogien zwischen Rotation und Translation Trägheitsmomente und deren Berechnung Satz von Steiner

Mehr

1 Krummlinige Koordinatensysteme

1 Krummlinige Koordinatensysteme 1 Krummlinige Koordinatensysteme 1.1 Ebene Polarkoordinaten Ebene Polarkoordinaten sind für zweidimensionale rotationssymmetrische Probleme geeignet. Die Länge der gedachten Verbindungslinie eines Punktes

Mehr

Blatt 03.1: Scheinkräfte

Blatt 03.1: Scheinkräfte Fakultät für Physik T1: Klassische Mechanik, SoSe 2016 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik/

Mehr

Vorlesung Theoretische Mechanik

Vorlesung Theoretische Mechanik Julius-Maximilians-Universität Würzburg Vorlesung Theoretische Mechanik Wintersemester 17/18 Prof. Dr. Johanna Erdmenger Vorläufiges Skript 1 (Zweite Vorlesung, aufgeschrieben von Manuel Kunkel, 23. 10.

Mehr

Physikalisches Anfängerpraktikum an der Universität Konstanz: Kreisel

Physikalisches Anfängerpraktikum an der Universität Konstanz: Kreisel Physikalisches Anfängerpraktikum an der Universität Konstanz: Kreisel Experiment durchgeführt am 09.05.2005 Jan Korger, Studiengang Physik-Diplom Matthias Schork, Studiengang Physik, Mathematik (Lehramt)

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 216 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 9. PD

Mehr

2. Trägheitstensor. Prof. Dr. Wandinger 3. Kinetik des starren Körpers Dynamik

2. Trägheitstensor. Prof. Dr. Wandinger 3. Kinetik des starren Körpers Dynamik 2. Trägheitstensor Der Drall hängt ab von der Verteilung der Masse und der Geschwindigkeit über den örper. Die Geschwindigkeitsverteilung ergibt sich aus der Überlagerung einer Translation und einer Rotation.

Mehr

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor Kapitel 2 Kinematik des Massenpunktes 2.1 Einleitung In diesem Kapitel behandeln wir die Bewegung von einem oder mehreren Körpern im Raum. Wir unterscheiden dabei zwischen Kinematik und Dynamik. Die Kinematik

Mehr

Versuch 04. Kreiselpräzession. Sommersemester Hauke Rohmeyer

Versuch 04. Kreiselpräzession. Sommersemester Hauke Rohmeyer Physikalisches Praktikum für das Hauptfach Physik Versuch 04 Kreiselpräzession Sommersemester 2005 Name: Hauke Rohmeyer Mitarbeiter: Daniel Scholz EMail: HaukeTR@gmx.de Gruppe: 13 Assistent: Sarah Köster

Mehr

Grundlagen der Physik 1 Mechanik und spezielle Relativität

Grundlagen der Physik 1 Mechanik und spezielle Relativität Grundlagen der Physik 1 Mechanik und spezielle Relativität 01. 02. 2006 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. 1/31 Eigenschaften der Trägheitsmomente

Mehr

Faszination Kreisel. Vom Spielzeug zur technischen Anwendung. Thomas Wilhelm

Faszination Kreisel. Vom Spielzeug zur technischen Anwendung. Thomas Wilhelm Vom Spielzeug zur technischen Anwendung Thomas Wilhelm 1. Spielzeug Kreisel Symmetrische Kreisel (zwei Hauptträgheitsmomente gleich groß), meist Rotationskörper Einfacher Kreisel Einfacher Kreisel Unterschiedliche

Mehr