2. Beschleunigte Bezugssysteme, starrer Körper und Himmelsmechanik

Größe: px
Ab Seite anzeigen:

Download "2. Beschleunigte Bezugssysteme, starrer Körper und Himmelsmechanik"

Transkript

1 2. Beschleunigte Bezugssysteme, starrer Körper und Himmelsmechanik 2.1. Trägheits- bzw. Scheinkräfte Die Bewegung in einem beschleunigen Bezugssystem lässt sich mit Hilfe von sogenannten Scheinkräften beschreiben. Dazu betrachten wir zuerst ein ruhendes System KS und ein beschleunigtes System KS, welcher linear mit a beschleunigt wird. In den Koordinaten von KS führt der eigentlich ruhende Nullpunkt von KS eine beschleunigte Bewegung durch. Für den Beobachter in KS scheint deshalb eine Kraft auf den Nullpunkt zu wirken. F = m a. Besonders wichtig sind die Trägheitskräfte von gleichförmigen Drehbewegungen: Auf m wirkt die Kraft F = m a mit a = v }{{} const. d dtêtang = vω( ê r )= Rω 2 ê r Für einen Beobachter im Massenpunkt scheint aber eine Kraft nach außen zu wirken. Allgemein: Zerlegung in Tangential- und Normalbeschleunigung: dabei ist ρ der lokale Krümmungsradius. Allgemeine Scheinkräfte (ohne Ableitung) a(t) =ê t dv dt + v2 ρ ên a = a ω ( ω r ) 2 ω v wobei gestrichene Vektoren in der Basis des rotierenden Systems und ungestrichene in denen des 13

2 2. Beschleunigte Bezugssysteme, starrer Körper und Himmelsmechanik Ruhesystem dargestellt sind. Man sieht folgende Beiträge: 1. a reale Kräfte 2. a F = ω ( ω r ) Zentrifugalbeschleunigung 3. a C = 2( ω v ) Coriolisbeschleunigung. Diese treten in KS als Kräfte in Erscheinung. Anschauliches Beispiel zur Zentrifugalbeschleunigung: Der ruhende Punkt bewegt sich in KS Anschauliches Beispiel zur Coriolisbeschleunigung Hier bewegt sich der Ball weiterhin mit v = ωr, der Erdboden aber nur mit v = ωr Der Ball scheint in Richtung der Drehung beschleunigt zu sein. 14

3 2.2. Rotierende Körper 2.2. Rotierende Körper Starrer Körper Bisher wurden nur Massenpunkte betrachtet. Bei diesen war nur die Translationsbewegung zu beachten. Bei ausgedehnten Körpern kann es auch eine rotierende Bewegung geben. Zur Behandlung von Rotationsbewegungen führen wir das Ideal eines starren Körpers ein; das ist ein ausgedehnter, nicht verformbarer Körper. (z.b. ein System von Massenpunkten mit konstanter relativer Lage zueinander) Außerdem führen wir den Drehimpuls ein: L = r p = m r v = m r ( ω r) = Θ ω L = mrv sin ϕ = mr 2 sin 2 ϕω = mr 2 ω =Θω Dabei ist Θ das Trägheitsmoment oder allgemeiner der Trägheitstensor. Wir betrachten zuerst ein paar Beispiele: Beispiel 1 Homogene Scheibe mit Kraft auf Mittelpunkt keine Rotation Beispiel 2 Inhomogene Scheibe Wirkt bei der inhomogenen Scheibe eine Kraft auf den geometrischen Mittelpunkt, kommt es zu einer kombinierten Translations- und Rotationsbewegung. (anschaulich kann man sich überlegen, dass die schwerere Hälfte aufgrund iher größeren Trägheit zurückbleiben muss.) Weitere Feststellung: Wenn der Angriffspunkt in Richtung der Kraft verschoben wird, entsteht die gleiche Bewegung. Dies wird als Linienflüchtigkeit bezeichnet. Zu einer reinen Drehbewegung muss die Kraft durch eine andere kompensiert werden. 15

4 2. Beschleunigte Bezugssysteme, starrer Körper und Himmelsmechanik Wir erhalten F = F Allgemein muss (für jede Komponente des Vektors) gelten F i = Drehmoment Zur quantitativen Betrachtung definieren wir das Drehmoment i M = r F Dies ist sinnvoll, da die Bewegung offensichtlich von der Kraft und ihrem Ansatzpunkt abhängt. Aus der Linienflüchtigkeit schließen wir, dass die Kraft nur von r abhängt, das erreichen wir durch das Kreuzprodukt. Wie ändert sich nun der Drehimpuls? Wir bilden die Ableitung d L dt = r d p dt + d r (m r) } dt {{} 0 = r F = M = }{{} Θ ω konstant Die Änderung des Drehimpulses ist das Drehmoment. Ist F oder r gleich Null, so ist die Ableitung von L gleich Null und L konstant, dies bezeichnet man als Drehimpulserhaltung Rotationsenergie und Trägheitsmoment Werfen wir noch einen Blick auf die Energie. Da die Rotation eine Beweung der einzelnen Elemente ist, können wir rechnen: E rot = i 1 2 m iv 2 i = i 1 2 m i(r i ω) 2 = ω2 2 Θ { }}{ m i ri 2 = 1 2 Θω2 i Ist die Dichte als Funktion ρ( r ) gegeben, so erhält man Θ durch Integration: Θ= ρ( r )r dx 2 dy dz K Da häufig runde Körper behandelt werden, ist es manchmal besser, in anderen Koordinaten zu rechnen Zylinderkoordinaten Θ= ρ(r, ϕ, z)r 2 rdrdϕdz 16

5 2.2. Rotierende Körper Kugelkoordinaten Θ= ρ(r, θ, ϕ)r 2 r2 sin θdrdθdϕ Dabei ist r der Abstand von r zur Drehachse. Ein weiteres Hilfsmittel zur Berechnung von Trägheitsmomenten ist der Satz von Steiner Es gilt für das Trägheitsmoment: Dabei ist M die Gesamtmasse. Für die Leistung gilt: P = dw dt = d dt Θ A =Θ Sp + Md 2 ( ) 1 2 Θω2 =Θω ω = ω L = ωm Achtung: Der Drehimpuls ist nicht absolut festlegbar! Im Allgemeinen ist auch L nicht parallel zu ω 17

6 2. Beschleunigte Bezugssysteme, starrer Körper und Himmelsmechanik Man beachte, dass bei inhomogenen Körpern gilt L = Θ ω Eine weitere Eigenschaft des Drehimpulses ist, dass er sich in 2 Komponenten zerlegen lässt: Eigendrehimpuls Bahndrehimpuls Bemerkung: Massenpunkte haben keinen Eigendrehimpuls Hebelgesetz 18

7 2.2. Rotierende Körper Keine Bewegung, wenn M 1 + M 2 = 0 r 1 m 1 g + r 2 m 2 g = 0. Das heißt: r 1 = r 2 m 2 m Translationsbewegung starrer Körper Frage: wie ändert sich die Bewegung des Schwerpunktes, wenn auf denen bestimmten Ort eine Kraft wirkt? Es gilt wie bisher F = m ges a sp obwohl zusätzlich eine Drehbewegung entsteht! Rollbedingung Für einen rollenden Körper gilt ωr = v M, wobei v M die Schwerpunktsgeschwindigkeit ist. Falls v konstant ist, erhalten wir die Beziehung v M = x t Bedingung für das Rollen: v M = Rω Herleitung: Die Zeit für eine vollen Umlauf ist gegeben durch 2πR v M = s t 2πR v M = T (I) Wegen s Boden = S Kugel Winkelgeschwindigkeit Daraus erhalten wir T (I) = 2πR v M ω = 2π T (II) = 2π ω (II) ωr = v M 19

8 2. Beschleunigte Bezugssysteme, starrer Körper und Himmelsmechanik Rotation um feste Achsen Bisher: Betrachtung der Rotation eines freien Körpers Jetzt: Verhalten, wenn der Körper an einem Punkt oder einer Achse fixiert wird (ohne Behinderung einer Rotation um diesen Punkt). Rotation um die feste Achse, damit müssen auch alle Größen auf diese Achse bezogen werden! Trägheitsmoment durch Satz von Steiner L = r F 0 Garnrolle Als Drehachse muss hier der Auflagepunkt betrachtet werden. Die Rolle bewegt also bei F 1 und F 2 in unterschiedliche Richtungen. Bemerkung: Die Bewegung ändert sich, wenn die Kraft größer als die Reibung wird. Übersicht: Translation und Rotation Translation r Ort v = r Geschwindigkeit a = v Beschleunigung F Kraft p = m v Impuls m Masse E kin = 1 2 mv2 kinetische Energie P = Fv Leistung Rotation ϕ Winkel ω = ϕ Winkelgeschwindigkeit ω = ϕ Winkelbeschleunigung M Drehmoment L = r p Drehimpuls Θ Trägheitsmoment E rot = 1 2 Θω2 Rotationsenergie P = Mω Leistung 20

9 2.2. Rotierende Körper Bewegungsgleichungen des starren Körpers Ein freier Körper hat 6 Freiheitsgrade. Um die Bewegung vollständig zu beschreiben braucht man also 6 Gleichungen. Diese werden von den Vektorgleichungen F = m a = p und M =Θ ω = L geliefert. Ein weiteres Hilfsmittel stellt die Energie dar. Die Rotations- und Translationsbewegung beeinflussen sich ohne weitere Bedingungen (z.b. Rollen) nicht untereinander. Nutation und Präzession Abschneiden des Fadens m a s = F G?? Nein. Denn auch L = M (für jede Komponente!) muss für das Gesamtsystem gelten. Dies lässt sich auch aus Newtonschen Gleichungen herleiten. Sei P der Nullpunkt des Systems, dann gilt M = r F Dreifingerregel für das Kreuzprodukt DaM L ist L = const. Der Richtung von M entspräche eine Kippbewegung nach unten. Die Änderung des Drehimpulses ruft jetzt nach M = d L ein neues Drehmoment hervor, das dt zu einer Drehung um die Aufhängung führt. Außerdem ändert sich mit der Richtung von L auch die Richtung von M. 21

10 2. Beschleunigte Bezugssysteme, starrer Körper und Himmelsmechanik Die Rotation um die Aufhängung erfolgt mit: ω p dϕ dt = M L = M Θω F = rmg Θω F Die Bewegung bezeichnet man als Präzession. Nutation Bei einer Trennung von ω und L (z.b. durch einen Schlag) läuft die Drehachse von ω um die konstante Drehimpulsachse ( L = 0) Himmelsmechanik Gravitationsgesetz Messung durch die Gravitationsdrehwaage. F G = G m 1m 2 r 12 = F r12 2 r 21 g = G M E 12 RE 2 Da die Erde keine genaue Kugel, sondern am Äquator breiter ist, entsteht ein Drehmoment auf die Erde, das zu einer Präzession führt T = 2π ω p 25800a. Für kleine Abstände ist E = mgh = h mgdz, mit mg als vom Abstand unabhängige Kraft. 0 Für große Abstände ist F 1 also r 2 E pot = F d r = G M [ ] Em 1 dr = GM p p r 2 E m =0 G M Em r p p Fluchtgeschwindigkeit (für ein nicht angetriebenes Objekt) E pot ( ) + E }{{} kin ( ) }{{} 0 0 = E } kin,0 {{} 1 2 mv2 F + E pot,0 }{{} G M E m R E 2GME v F = = 2gR E 11, m R E s Für einen Satelliten auf einer Kreisbahn gilt F zentrifugal = F G. Bei R E gilt: a zentrifugal = g = v2 R E v = gr E 8 km s 22

11 2.3. Himmelsmechanik Die Keplerschen Gesetze 1. Planetenbahnen sind Ellipsen mit der Sonne in einem Brennpunkt a, b Halbachsen ε = 1 a a2 b 2 Exzentrizität ε für Planeten ist sehr klein fast Kreisbahnen Für unterschiedliche Werte für ε erhalten wir folgende Fälle: ε<1ellipsen (z.b. wiederkehrende Kometen) ε =1Parabel ε>1hyperbel 2. Der Fahrstrahl eines Planeten überstreicht in gleichen Zeiten gleiche Flächen da dt = 1 L 2M = const pl Dies folgt aus der Drehimpulserhaltung 3. Die Quadrate der Umlaufzeiten verhalten sich wie die dritte Potenz der großen Halbachsen a, d.h. T 2 a 3 = const Für kreisförmige Bahnen erhalten wir mit F G = F Zentrifugal : Gm pl M sonne R 2 = m pl 4π 2 T 2 R (= m plω 2 R) T 2 R 3 = 4π2 GM Sonne = const 23

Massenträgheitsmomente homogener Körper

Massenträgheitsmomente homogener Körper http://www.youtube.com/watch?v=naocmb7jsxe&feature=playlist&p=d30d6966531d5daf&playnext=1&playnext_from=pl&index=8 Massenträgheitsmomente homogener Körper 1 Ma 1 Lubov Vassilevskaya Drehbewegung um c eine

Mehr

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 8. Drehbewegungen 8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 85 8.5 Kinetische Energie der Rotation ti 8.6 Berechnung

Mehr

Spezialfall m 1 = m 2 und v 2 = 0

Spezialfall m 1 = m 2 und v 2 = 0 Spezialfall m 1 = m 2 und v 2 = 0 Impulserhaltung: Quadrieren ergibt Energieerhaltung: Deshalb muss gelten m v 1 = m ( u 1 + u 2 ) m 2 v 1 2 = m 2 ( u 2 1 + 2 u 1 u 2 + u 2 ) 2 m 2 v2 1 = m 2 ( u 2 1 +

Mehr

Vektorrechnung in der Physik und Drehbewegungen

Vektorrechnung in der Physik und Drehbewegungen Vektorrechnung in der Physik und Drehbewegungen 26. November 2008 Vektoren Vektoren sind bestimmt durch a) Betrag und b) Richtung Beispiel Darstellung in 3 Dimensionen: x k = y z Vektor in kartesischen

Mehr

Spezialfall m 1 = m 2 und v 2 = 0

Spezialfall m 1 = m 2 und v 2 = 0 Spezialfall m 1 = m 2 und v 2 = 0 Impulserhaltung: Quadrieren ergibt Energieerhaltung: Deshalb muss gelten m v 1 = m( u 1 + u 2 ) m 2 v 1 2 = m 2 ( u 2 1 + 2 u 1 u 2 + u 2 ) 2 m 2 v2 1 = m 2 ( u 2 1 +

Mehr

I.10.6 Drehbewegung mit senkrecht zu, Kreiseltheorie

I.10.6 Drehbewegung mit senkrecht zu, Kreiseltheorie I.10.6 Drehbewegung mit senkrecht zu, Kreiseltheorie Versuch: Kreisel mit äußerer Kraft L T zur Dieser Vorgang heißt Präzession, Bewegung in der horizontalen Ebene (Kreisel weicht senkrecht zur Kraft aus).

Mehr

4.9 Der starre Körper

4.9 Der starre Körper 4.9 Der starre Körper Unter einem starren Körper versteht man ein physikalische Modell von einem Körper der nicht verformbar ist. Es erfolgt eine Idealisierung durch die Annahme, das zwei beliebig Punkte

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

2.7 Gravitation, Keplersche Gesetze

2.7 Gravitation, Keplersche Gesetze 2.7 Gravitation, Keplersche Gesetze Insgesamt gibt es nur vier fundamentale Wechselwirkungen: 1. Gravitation: Massenanziehung 2. elektromagnetische Wechselwirkung: Kräfte zwischen Ladungen 3. starke Wechselwirkung:

Mehr

Physikalisches Praktikum M 7 Kreisel

Physikalisches Praktikum M 7 Kreisel 1 Physikalisches Praktikum M 7 Kreisel Versuchsziel Quantitative Untersuchung des Zusammenhangs von Präzessionsfrequenz, Rotationsfrequenz und dem auf die Kreiselachse ausgeübten Kippmoment Literatur /1/

Mehr

Einführung in die Physik für Maschinenbauer

Einführung in die Physik für Maschinenbauer Einführung in die Physik für Maschinenbauer WS 011/01 Teil 5 7.10/3.11.011 Universität Rostock Heinrich Stolz heinrich.stolz@uni-rostock.de 6. Dynamik von Massenpunktsystemen Bis jetzt: Dynamik eines einzelnen

Mehr

+m 2. r 2. v 2. = p 1

+m 2. r 2. v 2. = p 1 Allgemein am besten im System mit assenmittelpunkt (centre of mass frame) oder Schwerpunktsystem (=m 1 +m ) r = r 1 - r =m 1 +m Position vom Schwerpunkt: r r 1 +m r v =m 1 v 1 +m v = p 1 + p ist die Geschwindigkeit

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

9 Teilchensysteme. 9.1 Schwerpunkt

9 Teilchensysteme. 9.1 Schwerpunkt der Impuls unter ganz allgemeinen Bedingungen erhalten bleibt. Obwohl der Impulserhaltungssatz, wie wir gesehen haben, aus dem zweiten Newton schen Axiom folgt, ist er tatsächlich allgemeiner als die Newton

Mehr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr Dynamik der ebenen Kreisbewegung Eine Kreis- oder Rotationsbewegung entsteht, wenn ein Drehmoment:: M = Fr um den Aufhängungspunkt des Kraftarms r (von der Drehachse) wirkt; die Einheit des Drehmoments

Mehr

Drehbewegungen (Rotation)

Drehbewegungen (Rotation) Drehbewegungen (Rotation) Drehungen (Rotation) Die allgemeine Bewegung eines Systems von Massepunkten lässt sich immer zerlegen in: und Translation Rotation Drehungen - Rotation Die kinematischen Variablen

Mehr

Hochschule Düsseldorf University of Applied Sciences. 24. November 2016 HSD. Physik. Rotation

Hochschule Düsseldorf University of Applied Sciences. 24. November 2016 HSD. Physik. Rotation Physik Rotation Schwerpunkt Schwerpunkt Bewegungen, Beschleunigungen und Kräfte können so berechnet werden, als würden Sie an einem einzigen Punkt des Objektes angreifen. Bei einem Körper mit homogener

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Newtonsche Axiome, Kräfte, Arbeit, Skalarprodukt, potentielle und kinetische Energie Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html

Mehr

Physik 1 für Chemiker und Biologen 7. Vorlesung

Physik 1 für Chemiker und Biologen 7. Vorlesung Physik 1 für Chemiker und Biologen 7. Vorlesung 04.12.2017 https://xkcd.com/1438/ Prof. Dr. Jan Lipfert Jan.Lipfert@lmu.de Heute: - Wiederholung: Impuls, Stöße - Raketengleichung - Drehbewegungen Wiederholungs-/Einstiegsfrage:

Mehr

Ludwig Maximilians Universität München Fakultät für Physik. Lösungsblatt 8. Übungen E1 Mechanik WS 2017/2018

Ludwig Maximilians Universität München Fakultät für Physik. Lösungsblatt 8. Übungen E1 Mechanik WS 2017/2018 Ludwig Maximilians Universität München Fakultät für Physik Lösungsblatt 8 Übungen E Mechanik WS 27/28 Dozent: Prof. Dr. Hermann Gaub Übungsleitung: Dr. Martin Benoit und Dr. Res Jöhr Verständnisfragen

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 9. Nov. Keplergleichungen, Gravitation u. Scheinkräfte Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html Planetenbahnen http://www.astro.uni-bonn.de/~deboer/pdm/planet/sonnenap2/

Mehr

Experimentalphysik 1. Vorlesung 2

Experimentalphysik 1. Vorlesung 2 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 2016/17 orlesung 2 Ronja Berg (ronja.berg@ph.tum.de) Katharina Scheidt (katharina.scheidt@tum.de) Inhaltsverzeichnis

Mehr

Bewegung in Systemen mit mehreren Massenpunkten

Bewegung in Systemen mit mehreren Massenpunkten Bewegung in Systemen mit mehreren Massenpunkten Wir betrachten ein System mit mehreren Massenpunkten. Für jeden Massenpunkt i einzeln gilt nach Newton 2: F i = d p i dt. Für n Massenpunkte muss also ein

Mehr

2.3.5 Dynamik der Drehbewegung

2.3.5 Dynamik der Drehbewegung 2.3.5 Dynamik der Drehbewegung 2.3.5.1 Drehimpuls Drehimpuls Betrachte einen Massepunkt m mit Geschwindigkeit v auf irgendeiner Bahn (es muss keine Kreisbahn sein); dabei ist r der Ort der Massepunkts,

Mehr

6 Mechanik des Starren Körpers

6 Mechanik des Starren Körpers 6 Mechanik des Starren Körpers Ein Starrer Körper läßt sich als System von N Massenpunkten m (mit = 1,...,N) auffassen, die durch starre, masselose Stangen miteinander verbunden sind. Dabei ist N M :=

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 18. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 18. November 2016 1 / 27 Stoß auf Luftkissenschiene

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Keplersche Gesetze Gravitationsgesetz Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 15. Nov. 2016 Der Drehimpuls m v v r v ω ω v r

Mehr

5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 203. Abbildung 5.12: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text)

5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 203. Abbildung 5.12: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text) 5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 03 ρ α r α R Abbildung 5.1: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text) 5.4 Kinetische Energie eines Starren Körpers In diesem

Mehr

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe: Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das

Mehr

Kinetik des starren Körpers

Kinetik des starren Körpers Technische Mechanik II Kinetik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes 2.

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 18. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 18. November 2016 1 / 27 Stoß auf Luftkissenschiene

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Punkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf einem

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 24. November 2017 Daniel Bick Physik für Biologen und Zahnmediziner 24. November 2017 1 / 28 Versuch: Newton Pendel

Mehr

Kinematik des Massenpunktes

Kinematik des Massenpunktes Technische Mechanik II Kinematik des Massenpunktes Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes Eindimensionale

Mehr

Grundlagen der Physik 1 Lösung zu Übungsblatt 6

Grundlagen der Physik 1 Lösung zu Übungsblatt 6 Grundlagen der Physik 1 Lösung zu Übungsblatt 6 Daniel Weiss 20. November 2009 Inhaltsverzeichnis Aufgabe 1 - Massen auf schiefer Ebene 1 Aufgabe 2 - Gleiten und Rollen 2 a) Gleitender Block..................................

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

LMU LUDWIG- p E kin 2 R. Girwidz Drehimpuls. 7.5 Drehimpuls. für Zentralkräfte: F dt. Geschwindigkeit. Masse. Translationsenergie. 1 mv.

LMU LUDWIG- p E kin 2 R. Girwidz Drehimpuls. 7.5 Drehimpuls. für Zentralkräfte: F dt. Geschwindigkeit. Masse. Translationsenergie. 1 mv. 7.5 Drehimpuls Translation Rotation Geschwindigkeit Masse v m Translationsenergie Kraft Impuls Ekin F 1 mv F ma p d p F dt p m v p E kin m R. Girwidz 1 7.5 Drehimpuls Drehscheml für Zentralkräfte: M 0

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Massenpunkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf

Mehr

Beispiel 1:Der Runge-Lenz Vektor [2 Punkte]

Beispiel 1:Der Runge-Lenz Vektor [2 Punkte] Übungen Theoretische Physik I (Mechanik) Blatt 9 (Austeilung am: 1.9.11, Abgabe am 8.9.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

Allgemeine Bewegungsgleichung

Allgemeine Bewegungsgleichung Freier Fall Allgemeine Bewegungsgleichung (gleichmäßig beschleunigte Bewegung) s 0, v 0 Ableitung nach t 15 Freier Fall Sprung vom 5-Meter Turm s 0 = 0; v 0 = 0 (Aufprallgeschwindigkeit: v = -10m/s) Weg-Zeit

Mehr

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor Kapitel 2 Kinematik des Massenpunktes 2.1 Einleitung In diesem Kapitel behandeln wir die Bewegung von einem oder mehreren Körpern im Raum. Wir unterscheiden dabei zwischen Kinematik und Dynamik. Die Kinematik

Mehr

Anstelle der Geschwindigkeit v tritt die Winkelgeschwindigkeit ω, wobei

Anstelle der Geschwindigkeit v tritt die Winkelgeschwindigkeit ω, wobei Inhalt 1 9 Dynamik der Drehbewegung 9.1 Rotation eines Massenpunktes um eine feste Achse 9. Arbeit und Leistung bei der Drehbewegung 9.3 Erhaltungssätze 9.4 Übergang vom Massenpunkt zum starren Körper

Mehr

Was gibt es in Vorlesung 4 zu lernen?

Was gibt es in Vorlesung 4 zu lernen? Was gibt es in Vorlesung 4 zu lernen? inelastischer Stoß - keine Energieerhaltung (fast alle Energie kann in Wärme umgewandelt werden) - Geschwindigkeit Gewehrkugel - Rakete Rotationsbewegung - Umlaufgeschwindigkeit

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1

3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1 3. Impuls und Drall Die Integration der Bewegungsgleichung entlang der Bahn führte auf die Begriffe Arbeit und Energie. Die Integration der Bewegungsgleichung bezüglich der Zeit führt auf die Begriffe

Mehr

B.2. Lösungsskizzen der Übungsaufgaben zum Kapitel 2

B.2. Lösungsskizzen der Übungsaufgaben zum Kapitel 2 B. sskizzen B.. sskizzen der Übungsaufgaben zum Kapitel Aufgabe 13 (Karusell) Ein Mann steht neben einem Karussell. Beschreiben sie seine Bewegung in einem im Karussell verankerten Bezugssystem, das sich

Mehr

Experiment: Inelastischer Stoß

Experiment: Inelastischer Stoß Experiment: Inelastischer Stoß Langer Gleiter auf der Luftkissenbahn stößt inelastisch auf einen ruhenden von gleicher Masse. Gleiter kleben nach dem Stoß zusammen (Klebwachs). Messung der Geschwindigkeiten

Mehr

Kreisbewegung Ein Bild sagt mehr als tausend Worte.

Kreisbewegung Ein Bild sagt mehr als tausend Worte. Kreisbewegung Ex. 20.4 (3. Gebot) Du sollst Dir keine Bilder machen von Dingen, die im Himmel, auf der Erde, im Wasser oder unter der Erde sind. Ein Bild sagt mehr als tausend Worte. 1 Einführung Die Erde

Mehr

Andreas Brenneis; Rebecca Saive; Felicitas Thorne. Mechanik 28./

Andreas Brenneis; Rebecca Saive; Felicitas Thorne. Mechanik 28./ TU München Experimentalphysik 1 DVP Vorbereitungskurs Andreas Brenneis; Rebecca Saive; Felicitas Thorne Mechanik 28./29.07.2008 Inhaltsverzeichnis 1 Kinematik 2 1.1 Ort, Geschwindigkeit, Beschleunigung....................

Mehr

Hochschule Düsseldorf University of Applied Sciences. 01. Dezember 2016 HSD. Physik. Impuls

Hochschule Düsseldorf University of Applied Sciences. 01. Dezember 2016 HSD. Physik. Impuls Physik Impuls Impuls Träge Masse in Bewegung Nach dem 1. Newton schen Gesetz fliegt ein kräftefreier Körper immer weiter gradeaus. Je größer die träge Masse desto größer setzt sie einer Beschleunigung

Mehr

Hier wurde die Jacobi-Determinante der ZylinderKoordinaten verwendet (det J = ρ). Wir führen zunächst die ρ-integration durch: (R 2 H sin 2 φ )

Hier wurde die Jacobi-Determinante der ZylinderKoordinaten verwendet (det J = ρ). Wir führen zunächst die ρ-integration durch: (R 2 H sin 2 φ ) b) Für einen Zylinder bieten sich Zylinderkoordinaten an. Legt man den Ursprung in den Schwerpunkt und die z- bzw. x 3 - Achse entlang der Zylinderachse, verschwinden alle Deviationsmomente. Dies liegt

Mehr

2.5 Dynamik der Drehbewegung

2.5 Dynamik der Drehbewegung - 58-2.5 Dynamik der Drehbewegung 2.5.1 Drehimpuls Genau so wie ein Körper sich ohne die Einwirkung äußerer Kräfte geradlinig mit konstanter Geschwindigkeit bewegt, so behält er seine Orientierung gegenüber

Mehr

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert M04 Energieumwandlung am Maxwellrad (Pr_PhI_M04_Maxwellrad_6, 14.7.014)

Mehr

Grundlagen Arbeit & Energie Translation & Rotation Erhaltungssätze Gravitation Reibung Hydrodynamik. Physik: Mechanik. Daniel Kraft. 2.

Grundlagen Arbeit & Energie Translation & Rotation Erhaltungssätze Gravitation Reibung Hydrodynamik. Physik: Mechanik. Daniel Kraft. 2. Physik: Mechanik Daniel Kraft 2. März 2013 CC BY-SA 3.0, Grafiken teilweise CC BY-SA Wikimedia Grundlagen Zeit & Raum Zeit t R Länge x R als Koordinate Zeit & Raum Zeit t R Länge x R als Koordinate Raum

Mehr

IM3. Modul Mechanik. Maxwell sches Rad

IM3. Modul Mechanik. Maxwell sches Rad IM3 Modul Mechanik Maxwell sches Rad In dem vorliegenden Versuch soll die Energieerhaltung anhand des Maxwell schen Rades untersucht werden. Das Maxwell sche Rad ist ein Metallrad mit grossem Trägheitsmoment,

Mehr

1 Drehimpuls und Drehmoment

1 Drehimpuls und Drehmoment 1 Drehimpuls und Drehmoment Die Rotationsbewegung spielt in der Natur von der Ebene der Elementarteilchen bis zu den Strukturen des Universums eine eine bedeutende Rolle. Einige Beispiele sind 1. Spin

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

Physik 1, WS 2015/16 Musterlösung 8. Aufgabenblatt (KW 50)

Physik 1, WS 2015/16 Musterlösung 8. Aufgabenblatt (KW 50) Physik 1, WS 015/16 Musterlösung 8. Aufgabenblatt (KW 50) Aufgabe (Bleistift) Ein dünner Bleistift der Masse m und der Länge L steht zunächst mit der Spitze nach oben zeigend senkrecht auf einer Tischplatte.

Mehr

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung Die Mechanik besteht aus drei Teilgebieten: Kinetik: Bewegungsvorgänge (Translation, Rotation) Statik: Zusammensetzung und Gleichgewicht von Kräften Dynamik: Kräfte als Ursache von Bewegungen Die Mechanik

Mehr

1 Trägheitstensor (Fortsetzung)

1 Trägheitstensor (Fortsetzung) 1 Trägheitstensor (Fortsetzung) Wir verallgemeinern den in der letzten Stunde gefundenen Trägheitstensor auf den Fall einer kontinuierlichen Massenverteilung durch die Einführung der Integration über das

Mehr

2. Translation und Rotation

2. Translation und Rotation 2. Translation und Rotation 2.1 Rotation eines Vektors 2.2 Rotierendes ezugssystem 2.3 Kinetik Prof. Dr. Wandinger 2. Relativbewegungen Dynamik 2 2.2-1 2.1 Rotation eines Vektors Gesucht wird die zeitliche

Mehr

Versuch dp : Drehpendel

Versuch dp : Drehpendel U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch dp : Drehpendel Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung

Mehr

Musterlösung 2. Klausur Physik für Maschinenbauer

Musterlösung 2. Klausur Physik für Maschinenbauer Universität Siegen Sommersemester 2010 Fachbereich Physik Musterlösung 2. Klausur Physik für Maschinenbauer Prof. Dr. I. Fleck Aufgabe 1: Freier Fall im ICE Ein ICE bewege sich mit der konstanten Geschwindigkeit

Mehr

Ferienkurs Experimentalphysik Übung 2 - Lösungsvorschlag

Ferienkurs Experimentalphysik Übung 2 - Lösungsvorschlag Ferienkurs Experimentalphysik 1 2011 Übung 2 - Lösungsvorschlag 1. Elastischer Stoß a) Ein Teilchen der Masse m 1 stößt zentral und elastisch mit einem im Laborsystem ruhenden Teilchen der Masse m 2. Wie

Mehr

Übungsblatt 8 Physik für Ingenieure 1

Übungsblatt 8 Physik für Ingenieure 1 Übungsblatt 8 Physik für Ingenieure 1 Othmar Marti, (othmar.marti@physik.uni-ulm.de) 4. 12. 2001 1 Aufgaben für die Übungsstunden Statische Gleichgewichte 1, Gravitation 2, PDF-Datei 3 1. Bei einem Kollergang

Mehr

Experimentalphysik für ET. Aufgabensammlung

Experimentalphysik für ET. Aufgabensammlung Experimentalphysik für ET Aufgabensammlung 1. Drehbewegung Ein dünner Stab der Masse m = 5 kg mit der Querschnittsfläche A und der Länge L = 25 cm dreht sich um eine Achse durch seinen Schwerpunkt (siehe

Mehr

Fallender Stein auf rotierender Erde

Fallender Stein auf rotierender Erde Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 24. Januar 213 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m] =

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Physik I Übung 10 - Lösungshinweise

Physik I Übung 10 - Lösungshinweise Physik I Übung - Lösungshinweise Stefan Reutter WS / Moritz Kütt Stand: 7. Februar Franz Fujara Aufgabe War die Weihnachtspause vielleicht doch zu lang? Bei der Translation eines Massenpunktes und der

Mehr

Zentralpotential. Zweikörperproblem. Symmetrie Erhaltungsgröße Vereinfachung. Transformation zu Schwerpunkts- und Relativkoordinaten

Zentralpotential. Zweikörperproblem. Symmetrie Erhaltungsgröße Vereinfachung. Transformation zu Schwerpunkts- und Relativkoordinaten Zentralpotential Zweikörperproblem Symmetrie Erhaltungsgröße Vereinfachung 1. Translation Schwerpunktsimpuls Einteilchenproblem 2. Zeittransl. Energie Dgl. 1. Ordnung 3. Rotation Drehimpuls Radialgl. Transformation

Mehr

Starrer Körper: Drehimpuls und Drehmoment

Starrer Körper: Drehimpuls und Drehmoment Starrer Körper: Drehimpuls und Drehmoment Weitere Schreibweise für Rotationsenergie: wobei "Dyade" "Dyadisches Produkt" Def.: "Dyadisches Produkt", liefert bei Skalarmultiplikation mit einem Vektor : und

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 5: Drehmoment, Gleichgewicht und Rotation Dr. Daniel Bick 16. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 16. November 2016 1 / 39 Impuls

Mehr

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie (Physik) (aus Wikipedia, der freien Enzyklopädie) Symmetrie ist ein grundlegendes Konzept der

Mehr

5 Kreisbewegung und Rotation (rotación, la)

5 Kreisbewegung und Rotation (rotación, la) 5 Kreisbewegung und Rotation Hofer 1 5 Kreisbewegung und Rotation (rotación, la) A1: Nenne Beispiele für kreisförmige Bewegungen und Drehungen aus dem Alltag! A2: Nenne die grundlegenden Bewegungsformen

Mehr

4 Die Rotation starrer Körper

4 Die Rotation starrer Körper 4 Die Rotation starrer Körper Die Bewegung eines realen Körpers ist erst dann vollständig beschrieben, wenn nicht nur seine als Translation bezeichnete geradlinige Bewegung, sondern auch seine als Rotation

Mehr

Naturwissenschaftliches Praktikum. Rotation. Versuch 1.1

Naturwissenschaftliches Praktikum. Rotation. Versuch 1.1 Naturwissenschaftliches Praktikum Rotation Versuch 1.1 Inhaltsverzeichnis 1 Versuchsziel 3 2 Grundlagen 3 2.1 Messprinzip............................. 3 2.2 Energiesatz............................. 3 2.3

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 3: Dynamik und Kräfte Dr. Daniel Bick 09. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 09. November 2016 1 / 25 Übersicht 1 Wiederholung

Mehr

2. Klausur zur Theoretischen Physik I (Mechanik)

2. Klausur zur Theoretischen Physik I (Mechanik) 2. Klausur zur Theoretischen Physik I (echanik) 09.07.2004 Aufgabe 1 Physikalisches Pendel 4 Punkte Eine homogene, kreisförmige, dünne Platte mit Radius R und asse ist am Punkt P so aufgehängt, daß sie

Mehr

Probeklausur zur Theoretischen Physik I: Mechanik

Probeklausur zur Theoretischen Physik I: Mechanik Prof. Dr. H. Friedrich Physik-Department T3a Technische Universität München Probeklausur zur Theoretischen Physik I: Mechanik Montag, 2.7.29 Hörsaal 1 1:15-11:5 Aufgabe 1 (8 Punkte) Geben Sie möglichst

Mehr

Die Keplerschen Gesetze

Die Keplerschen Gesetze Die Keplerschen Gesetze Kepler I: Die Planeten bewegen sich auf Ellipsenbahnen. In einem Brennpunkt steht die Sonne. r(t + dt) r(t) da d r = vdt Kepler II: Der Verbindungsstrahl Sonne-Planet überstreicht

Mehr

Probeklausur zur T1 (Klassische Mechanik)

Probeklausur zur T1 (Klassische Mechanik) Probeklausur zur T1 (Klassische Mechanik) WS 006/07 Bearbeitungsdauer: 10 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Arbeit, Skalarprodukt, potentielle und kinetische Energie Energieerhaltungssatz Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 4. Nov.

Mehr

5 Kinematik der Rotation (Drehbewegungen) 6 Dynamik der Translation

5 Kinematik der Rotation (Drehbewegungen) 6 Dynamik der Translation Inhalt 1 4 Kinematik der Translation 4.1 Koordinatensysteme 4. Elementare Bewegungen 5 Kinematik der Rotation (Drehbewegungen) 6 Dynamik der Translation 6.1 Die Newton sche Aiome 6.1.1 Erstes Newton sches

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 6. Nov. Gravitation + Planetenbewegung Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html Kraft = Impulsstrom F = d p dt = dm dt v = dn

Mehr

MECHANIK II. Arbeit, Energie, Leistung Impuls Rotationen

MECHANIK II. Arbeit, Energie, Leistung Impuls Rotationen Physik für Pharmazeuten MECHANIK II Arbeit, Energie, Leistung Impuls Rotationen Mechanik ikii Flaschenzug Mechanik ikii Flaschenzug: beobachte: F 1 kleiner als F (Gewichtskraft), aber: r größer alsr aber:

Mehr

8. Starre Körper. Die φ-integration liefert einen Faktor 2π. Somit lautet das Ergebnis

8. Starre Körper. Die φ-integration liefert einen Faktor 2π. Somit lautet das Ergebnis Übungen zur T1: Theoretische Mechanik, SoSe213 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 425 8. Starre Körper Dr. James Gray James.Gray@physik.uni-muenchen.de Übung 8.1: Berechnung von Trägheitstensoren

Mehr

Der Trägheitstensor J

Der Trägheitstensor J Der Trägheitstensor J Stellen wir uns einen Kreisel vor, der um eine beliebige Achse dreht. Gilt die Beziehung L = J ω in jedem Bezugssystem? Dazu betrachten wir nochmals die Bewegung eines starren Körpers.

Mehr

E1 Mechanik Lösungen zu Übungsblatt 3

E1 Mechanik Lösungen zu Übungsblatt 3 Ludwig Maximilians Universität München Fakultät für Physik E1 Mechanik en zu Übungsblatt 3 WS 014 / 015 Prof. Dr. Hermann Gaub Aufgabe 1 Sonnensystem Abstände innerhalb des Sonnensystems werden häufig

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 4: Arbeit, Energie und Meachnik starrer Körper Dr. Daniel Bick 17. November 2017 Daniel Bick Physik für Biologen und Zahnmediziner 17. November 2017 1 / 39

Mehr

1 Krummlinige Koordinatensysteme

1 Krummlinige Koordinatensysteme 1 Krummlinige Koordinatensysteme 1.1 Ebene Polarkoordinaten Ebene Polarkoordinaten sind für zweidimensionale rotationssymmetrische Probleme geeignet. Die Länge der gedachten Verbindungslinie eines Punktes

Mehr

Physik 1 Zusammenfassung

Physik 1 Zusammenfassung Physik 1 Zusammenfassung Lukas Wilhelm 31. August 009 Inhaltsverzeichnis 1 Grundlagen 3 1.1 Mathe...................................... 3 1.1.1 Einheiten................................ 3 1. Trigonometrie..................................

Mehr

E1 Mechanik Lösungen zu Übungsblatt 2

E1 Mechanik Lösungen zu Übungsblatt 2 Ludwig Maimilians Universität München Fakultät für Physik E1 Mechanik en u Übungsblatt 2 WS 214 / 215 Prof. Dr. Hermann Gaub Aufgabe 1 Drehbewegung einer Schleifscheibe Es werde die Schleifscheibe (der

Mehr

Theoretische Physik 1 Mechanik

Theoretische Physik 1 Mechanik Technische Universität München Fakultät für Physik Ferienkurs Theoretische Physik 1 Mechanik Skript zu Vorlesung 1: Grundlagen der Newton schen Mechanik, Zweiteilchensysteme gehalten von: Markus Krottenmüller

Mehr

Übungen zur Vorlesung PN1 Lösung zu Blatt 5

Übungen zur Vorlesung PN1 Lösung zu Blatt 5 Aufgabe 1: Geostationärer Satellit Übungen zur Vorlesung PN1 Lösung zu Blatt 5 Ein geostationärer Satellit zeichnet sich dadurch aus, dass er eine Umlaufdauer von einem Tag besitzt und sich folglich seine

Mehr