8.1) Oberflächenionisation

Größe: px
Ab Seite anzeigen:

Download "8.1) Oberflächenionisation"

Transkript

1 8.1) Oberflächenionisation Atome können bei Kontakt mit einer heißen Metalloberfläche ionisiert werden (Kontaktionisierung). Voraussetzung ist, dass die Ionisationsenergie W i kleiner ist als die Austrittsarbeit des Materials (Bsp. W mit 4.9 ev Austrittsarbeit ist ein häufig genutztes Material) Ist die Verweilzeit an der Oberfläche lang genug, um ins thermische Gleichgewicht zu kommen ( s), so ist die Wahrscheinlichkeit für die Ionisierung durch eine spezielle Form der Saha-Gleichung der Langmuir-Saha-Gleichung gegeben. P i n i ni + n 1+ g g i e e( ϕi W ) kt 1 (8.1) WS11/1 8.1

2 Dabei sind g i und g das statistische Gewicht der Ionen und der Neutralteilchen, ϕ i ist das Ionisierungspotential (Ionisationsenergie) der neutralen Gasatome und W ist die Austrittsarbeit des Metalls der heißen Oberfläche. Der Anteil der Ionen ist für die meisten Kombinationen ϕ i, W sehr klein, bis auf die Alkalimetalle. Beispiel: K auf K (.17 ev) heißes Pt Pt ϕ i 4.5 ev, W ev P i 1+ 1 e ( ) Beispiele für Ionisation auf Iridium zeigt nebenstehende Graphik. Ein großer Vorteil der Oberflächenionisierung ist die geringe Energieverschmierung der Ionen von W ~ kt << 1 ev. Eine der wichtigsten Anwendungen: Erzeugung von Cs-Ionen für Sputterquellen. WS11/1 8.

3 Wie man aus der Saha-Langmuir-Gleichung erkennt, nimmt Pi mit zunehmendem T ab, wenn ϕ W < ist. i T muss jedoch hoch genug sein, das das entsprechende Element evaporiert. Die Diffusion von Oberflächenmaterial hingegen muss im Betrieb klein genug sein (< 1% einer Monolage), damit die Ionisierungsbedingungen möglichst konstant bleiben. WS11/1 8.3

4 Im Gegensatz zu Plasma-Ionenquellen, bei denen die Extraktionsoptik von der Form des Plasmarandes abhängt, wird bei der Oberflächenquelle die Extraktion der Ionen durch die Form der heißen Oberfläche bestimmt. Außerdem ist die Strahlformierung unabhängig von der Ionenstromdichte! Neben Pellets werden auch Zeolite verwendet (Einlagerung des zu Ionisierenden Materials). Quellen mit 75 ma Strahlstrom bei.5 cm Strahldurchmesser sind ohne weiteres machbar. Der Vorrat in den Quellenkörpern bestimmt die Lebensdauer der Quelle. Erhöhung der Effizienz: hot cavity als Ionisierer viele Kontakte mit den Wänden erhöht P i In einer solchen cavity können Elemente mit ϕ i ~ 8 ev ionisiert werden. Jedoch werden fast ausschließlich einfach geladene Ionen produziert! Die Oberflächenionisation wurde zuerst von Langmuir 193 untersucht. Später wurden der Vorteil von Oberflächenbelegung mit Sauerstoff und Cäsium (positive, bzw. negative Ionen) ersichtlich. Als Oberflächen dienen überwiegend Wolfram, Iridium oder Rhenium. WS11/1 8.4

5 8.) Produktion negativ geladener Ionen an Oberflächen Die Produktion negativ geladener Ionen ist überwiegend exotherm, im Gegensatz zur Produktion positiv geladener Ionen. nterschied zu positiven Ionen: In großem Abstand praktisch kein Coulombfeld Das Elektron schafft sich durch Polarisation der neutralen Atome oder Moleküle selbst das binden Potential. Negative Ionen können durch folgende Prozesse erzeugt werden: Volumenprozesse durch Elektronenstoß mladung in Metalldämpfen mladung an Oberflächen Oberflächenumladung: Nutzen der niedrigen Austrittsarbeit von heißen Metalloberflächen (wie bei Oberflächenionisierung oder Sputterquellen) Beispiel siehe Graphik Cs Atome werden an einer heißen Oberfläche ionisiert und auf das Target beschleunigt. Dabei werden Atome des Targetmaterial herausgeschlagen und negativ geladen, vor allem, wenn noch eine Cs Oberflächenschicht aufgebracht wird. Target kann schnell über ein Targetrad gewechselt werden (Graphik). WS11/1 8.5

6 Sputterquelle WS11/1 8.6

7 WS11/1 8.7

8 Plasma-Oberflächen Konversion Plasma wird vor dem Target generiert und das Target auf negatives Potential gelegt. Ionen aus dem Plasma sputtern negative Ionen aus dem Material Die Produktion negativer Ionen ist besonders effizient, wenn das Atom die Metalloberfläche mit v verlässt, das etwas größer ist als die thermische Geschwindigkeit. Das Elektron wird während des Ejektionsprozesses übertragen. (siehe Graphik) Ein Beispiel für die Produktion negativer Ionen an einem Mg-Target zeigt die nachfolgende Graphik. WS11/1 8.8

9 Der negative Ionenstrom ergibt sich zu I I + A η exp ( n Lσ ) d I + positiver Ionenstrom, A Sputterrate, η - Produktionseffizienz für negative Ionen an der Oberfläche n o Restgasdichte, L Fluglänge durch das Restgas σ d mladungsquerschnitt WS11/1 8.9

10 8.3) Laser-Plasmaionenquellen Im nterschied zur resonanten Ionisation wird bei dieser Quelle ein Plasma durch die Energiedeposition erzeugt. Die Laserstrahlung dringt so tief in das Material ein bis f Laser fcutoff. Lokale Heizung von Elektronen via inverser Bremsstrahlung + Anregung von Atomen Material wird abliert und es entsteht eine expandierende Plasma Plume Ist die Plasmadichte so weit abgefallen, dass die cut-off Frequenz unter die Laserfrequenz fällt, dann kann das Laserlicht wieder eindringen. Dadurch werden die Elektronen im Plasma bis zu 1 kev beschleunigt. hochgeladenen Ionen, wobei T ( P Z ) / 7 (T e Elektronentemperatur, P Laserleistung, Z mittlere Ladungszustand) Den Zusammenhang verdeutlicht nachfolgende Graphik. e Laser high current mode: P ~ 1 9 W/cm, E ~ 1-5 J, t ~ 1 ns high charge state mode: P > 1 1 W/cm, E ~ 1-5 J, t ~ 1-1 ps WS11/1 8.1

11 WS11/1 8.11

12 Prinzip der Plasma-Ionenquelle: Licht wird über einen Parabolspiegel auf das Target fokussiert (Fokusdurchmesser 65 µm) Plasma expandiert und wird beschleunigt Großer Öffnungswinkel, daher zweifaches Ausblenden (vor und in expansion chamber) Nachteile: große Emittanz durch die Plasmaexpansion große Energieverschmierung (~1%) durch die Beschleunigung bei der Expansion Vorteile: hohe Ladungszustände Spitzenströme hochgeladener Ionen bis 15 ma WS11/1 8.1

13 8.4) Elektronenkanonen Bis in die dreißiger Jahre des letzten Jahrhunderts wurden Elektronenstrahlen nur in hochspezialisierten Anlagen und in Beschleunigern genutzt. Anfang der vierziger Jahre hielten Elektronenstrahlen Einzug in die Hochfrequenztechnik (Klystrone, Wanderfeldröhren, Tetroden etc.). Elektronenstrahlen werden heute in Fernseher, Elektronenmikroskopen, Schweiß- und Lithographie- Anlagen eingesetzt. Ströme: µa bis ka Strahlenergien:.1 bis kev Bei hohen Strahlströmen muß der Einfluss der Raumladung berücksichtigt werden. Einfaches Diodensystem: Verzerrung der Äquipotentiallinien durch Raumladung. Kathode - d Anode + A Raumladung stellt sich so ein, daß die Kathode nichts mehr von der Anodenspannung sieht --> Abschirmung d dx x d x WS11/1 8.13

14 WS11/ Poissongleichung: j v j x m e 1 ε ε ε ρ Lösungsansatz: n x A > 1) ( n x n n A > 3 4 n und m e j A ε mit der Randbedingung 3 4 / d A A Damit erhält man im sogenannten "raumladungsbegrenzten Bereich" für die Emissionsstromdichte: 3/ 9 4 d j A m e ε Child-Langmuir-Gesetz (8.) mit F j I * F emittierende Fläche 3/ P I mit P Perveanz (8.3) Im Falle eines planaren Diodensystems ist 9 4 d F P m e ε

15 Im Falle von Zylinder- oder Kugelsymmetrie: Lösungen von Langmuir und Blodgett I 16 π ε 9 e m α 3/ A Kugelsymmetrie I 8 π ε 9 e m 3/ A β r Zylindersymmetrie j c 4 ε 9 e 3/ A Mit m ( r c r) j ( r r) folgt Kugel c j c r α j ( r r) und Zylinder c j c r β Dabei ist r c der Kathodenradius und α(r) und β(r) können als Reihenentwicklungen dargestellt werden. 3 α γ γ γ γ γ γ mit γ r ln r c Erzeugung von Elektronenstrahlen: thermionische Emission Richardson-Dushman Beziehung für die Stromdichte: j R A b T exp φ kt A cm (8.4) WS11/1 8.15

16 Dabei ist die Konstante 4π m e k A A 1,4 3 h cm K b Materialabhängige Konstante φ ist die Austrittsarbeit, kt die thermische Energie der Elektronen j wird nur messbar, wenn T >> Raumtemperatur Typische Dioden Kennlinie: Die Bereiche sind a) der Anlaufstrombereich b) der Raumladungsbereich (Child-Langmuir) c) der Sättigungs- oder temperaturbegrenzter Bereich d) ist der Punkt, ab dem die Kennlinie von Child-Langmuir abweicht. WS11/1 8.16

17 Feldemission E-Felder in der Größenordnung von 1 7 V/cm (z.b. an Spitzen, Nadelkathoden), dabei wird das Potential an der Festkörperoberfläche soweit abgesenkt, dass die Elektronen hindurchtunneln können. -> Fowler-Nordheim Gleichung: j FE K1 K φ A exp φ cm (8.5) φ ist die Austrittsarbeit, die angelegte Spannung und K 1 und K Konstanten Strahlformierung in Elektronenkanonen: Wie formt man einen parallelen Elektronenstrahl unter Raumladungseinfluss? An der Strahlgrenze müssen 4 / 3 A x und y E y gelten. y Kathode A x y 4 / 3, y Strahl Strahlgrenze x x + y + y ρ ε x WS11/1 8.17

18 Das ist eine Cauchy-Randbedingung, bei der die Feldstärke vorgegeben ist! Es gilt in diesem Fall allgemein: y f ( x), y y Das Potential außerhalb der x-achse (y ) ist die analytische Fortsetzung der Funktion f(x) in die komplexe Ebene: ( x, y) Re( f ( z)) Re( f ( x + iy)) Taylorentwicklung: f ( iy) ( x + iy) f ( x) + iy f ( x) + f ( x)! + L (, ) y x y f ( x) f ( x) + L, ( x,) f ( x), y f ( x) y y Für den Strahlrand gilt daher y ( x, y) Re( A ( x + iy) 4 / ) Ar 4 / Re(exp( 3 iϕ)) 3 4 / 3 4 >, ) cos( ) ( ) cos( arctan( )) 4 / y x y A r ϕ A x + y ( 3 3 x WS11/1 8.18

19 4 Das Kathodenpotential c muß überall bei cos( 3 ϕ ) sein. Daher folgt für den Winkel: ϕ 3π 9π, 8 8 oder ϕ 67.5,. 5 Der Randanschluss an die Kathode muß in einem Winkel von 67.5 o gegen die Flächennormale der Kathode erfolgen, um die Divergenz eines raumladungsdominierten Strahls zu kompensieren. Randelektrode mit Piercerand WS11/1 8.19

20 Strahlformierung mit Pierce-Rand gerechnet für eine Anodenspannung von 1 V. 1 mm entspricht 4 Maschen! Perveanz einer solchen Kanone: P.9*1-7 A/V 3/, Strom I 9 ma WS11/1 8.

21 Man kann die Äquipotentialinien auch mit einem Wehneltzylinder formen. Dabei wird das Potential an der Wehnelt-Elektrode so eingestellt, dass die Äquipotentiallinie, welche das Kathodenpotential repräsentiert, im Piercewinkel an die Kathodenecke anschließt. Wehneltzylinder finden in Elektronenmikroskopen und Fernsehgeräten ihre Anwendung. WS11/1 8.1

Physik der Halbleitertechnologie

Physik der Halbleitertechnologie Physik der Halbleitertechnologie III: DC-Plasmen Gerhard Franz ISBN 978-3-943872-03-3 Kompetenzzentrum Nanostrukturtechnik Hochschule München http://www.gerhard-franz.org Gerhard Franz: Plasmakurs WS 2013/14

Mehr

Ionenquellen und Sekundärstrahlung Seminar Kern- und Teilchenphysik Thorsten Erlen. VORTRAG am

Ionenquellen und Sekundärstrahlung Seminar Kern- und Teilchenphysik Thorsten Erlen. VORTRAG am Ionenquellen und Sekundärstrahlung Seminar Kern- und Teilchenphysik Thorsten Erlen VORTRAG am 17.12.2013 Gliederung Übersicht Ionen & Teilchen 1. Erzeugen von Elektronenstrahlen 2. Ionenquellen 3. Anti-Teilchen

Mehr

Über die Herstellung dünner Schichten mittels Sputtern

Über die Herstellung dünner Schichten mittels Sputtern Methodenvortrag 26.01.00 1 Methodenvortrag Graduiertenkolleg Neue Hochleistungswerkstoffe für effiziente Energienutzung Jens Müller Arbeitsgruppe Dr.H.Schmitt Technische Physik Geb.38 Universität des Saarlandes

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007 Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #35 am 28.06.2007 Vladimir Dyakonov Leitungsmechanismen Ladungstransport in Festkörpern Ladungsträger

Mehr

Physik. Abiturwiederholung. Das Elektrische Feld

Physik. Abiturwiederholung. Das Elektrische Feld Das Elektrische Feld Strom Strom ist bewegte Ladung, die Stromstärke ergibt sich also als Veränderung der Ladung nach der Zeit, also durch die Ableitung. Somit kann man die Ladung als Fläche betrachten,

Mehr

Praktikumsprotokoll. Versuch Nr. 504 Thermische Elektronenemission. Frank Hommes und Kilian Klug

Praktikumsprotokoll. Versuch Nr. 504 Thermische Elektronenemission. Frank Hommes und Kilian Klug Praktikumsprotokoll Versuch Nr. 504 Thermische Elektronenemission und Durchgeführt am: 15 Juni 2004 Inhaltsverzeichnis 1 Einleitung 3 2 Theoretische Hintergründe 3 2.1 Austrittsarbeit und Energieverteilung................

Mehr

Grundlagen der Quantentheorie

Grundlagen der Quantentheorie Grundlagen der Quantentheorie Ein Schwarzer Körper (Schwarzer Strahler, planckscher Strahler, idealer schwarzer Körper) ist eine idealisierte thermische Strahlungsquelle: Alle auftreffende elektromagnetische

Mehr

5. Matrix unterstützte Laserdesorption/Ionisation (Matrix assisted laser desorption/ionisation

5. Matrix unterstützte Laserdesorption/Ionisation (Matrix assisted laser desorption/ionisation Kapitel 2 Ionenerzeugung 2.1 Ionisationsprozesse Ionenquellen (engl.: ion sources) sind von großer Bedeutung in der Massenspektrometrie. Nur durch effiziente Produktion und Ionisation der in den Massenspektrometer

Mehr

Atomphysik für Studierende des Lehramtes

Atomphysik für Studierende des Lehramtes Atomphysik für Studierende des Lehramtes Teil 5 Elektronenladung und Elektronenmasse elektrische Ladungen in magnetischen Feldern aus der Lorentz-Kraft (v x B) folgt eine Kreisbewegung der elektrischen

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2012-2 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12: Aufgabe 13: Aufgabe

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung 4 Quantenphänomene Aufgabe 1: Photoeffekt 1 Ein monochromatischer Lichtstrahl trifft auf eine Kalium-Kathode

Mehr

Demonstrations-Planar-Triode

Demonstrations-Planar-Triode Demonstrations-Planar-Triode 1. Anode 2. Gitter 3. Halter mit 4-mm-Steckerstift zum Anschluss des Gitters 4. Heizwendel 5. Katodenplatte 6. Verbindung der Heizfadenzuführung mit der inneren Beschichtung

Mehr

Massenspektrometrie (MS)

Massenspektrometrie (MS) Massenspektrometrie (MS) Die Massenspektrometrie ist unter den heute routinemäßig verwendeten Methoden die jüngste, denn ihre Anwendung begann erst um 1960. Seit den Arbeiten von BIEMANN über Fragmentierungsmuster

Mehr

3.4. Leitungsmechanismen

3.4. Leitungsmechanismen a) Metalle 3.4. Leitungsmechanismen - Metall besteht aus positiv geladenen Metallionen und frei beweglichen Leitungselektronen (freie Elektronengas), Bsp.: Cu 2+ + 2e - - elektrische Leitung durch freie

Mehr

Physikalische. Grundlagen. L. Kölling, Fw Minden

Physikalische. Grundlagen. L. Kölling, Fw Minden Physikalische Grundlagen L. Kölling, Fw Minden Radioaktivität kann man weder sehen, hören, fühlen, riechen oder schmecken. Daher muss sie der FA (SB) zumindest verstehen, um im Einsatzfall die erforderlichen

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Übung Qi Li, Bernhard Loitsch, Hannes Schmeiduch Donnerstag, 08.03.2012 1 Schwarzer Körper Außerhalb der Erdatmosphäre misst man das Maximum des Sonnenspektrums bei einer

Mehr

Glüh- und Feldemission

Glüh- und Feldemission Physikalisches Anfängerpraktikum 2 Gruppe Mo-16 Sommersemester 2006 Jens Küchenmeister (1253810) Julian Merkert (1229929) Versuch: P2-62 Glüh- und Feldemission - Vorbereitung - Vorbemerkung In Metallen

Mehr

Systematisierung Felder und Bewegung von Ladungsträgern in Feldern

Systematisierung Felder und Bewegung von Ladungsträgern in Feldern Systematisierung Felder und Bewegung von Ladungsträgern in Feldern Systematisierung Feld Unterschiede: Beschreibung Ursache Kräfte auf elektrisches Feld Das elektrische Feld ist der besondere Zustand des

Mehr

Quantenphysik. Albert Einstein Mitbegründer der Quantenphysik. Modellvorstellung eines Quants

Quantenphysik. Albert Einstein Mitbegründer der Quantenphysik. Modellvorstellung eines Quants Quantenphysik Albert Einstein Mitbegründer der Quantenphysik Modellvorstellung eines Quants Die Wechselwirkung von Licht und Materie 1888 Wilhelm Hallwachs Bestrahlung von unterschiedlichen Metallplatten

Mehr

31. Lektion. Röntgenstrahlen. 40. Röntgenstrahlen und Laser

31. Lektion. Röntgenstrahlen. 40. Röntgenstrahlen und Laser 31. Lektion Röntgenstrahlen 40. Röntgenstrahlen und Laser Lerhnziel: Röntgenstrahlen entstehen durch Beschleunigung von Elektronen oder durch die Ionisation von inneren Elektronenschalen Begriffe Begriffe:

Mehr

Verfahren Grundlagen 1.2 Röntgen. 1.2 Grundlagen. Reichow-Heymann-Menke Handbuch Röntgen mit Strahlenschutz Grundwerk 11/801

Verfahren Grundlagen 1.2 Röntgen. 1.2 Grundlagen. Reichow-Heymann-Menke Handbuch Röntgen mit Strahlenschutz Grundwerk 11/801 Verfahren 1.2 Röntgen 1.2 Reichow-Heymann-Menke Handbuch Röntgen mit Strahlenschutz Grundwerk 11/801 Verfahren 1.2 Röntgen Inhaltsvrzeichnis 1.2 Prof. Dr. Christian Blendl 1.2.1 Erzeugung ionisierender

Mehr

Bewegung von Teilchen im elektrischen und magnetischen Feld Schularbeiten bis Oktober 1995

Bewegung von Teilchen im elektrischen und magnetischen Feld Schularbeiten bis Oktober 1995 Bewegung von Teilchen im elektrischen und magnetischen Feld Schularbeiten bis Oktober 1995 1) Ein Elektron (e = 1,6.10-19 C ; m e = 9,1.10-31 kg) mit der Anfangsgeschwindigkeit v o = 2.10 6 m/s durchläuft

Mehr

Ionisierender Effekt von Röntgenstrahlung

Ionisierender Effekt von Röntgenstrahlung Verwandte Begriffe Ionisierender Effekt, Erzeugung von Röntgenstrahlung, Elektroskop. Prinzip So wie die Strahlen, die von einem radioaktiven Strahler ausgehen, in der Lage sind, Luft zu ionisieren, so

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

2. Klausur in K1 am

2. Klausur in K1 am Name: Punkte: Note: Ø: Physik Kursstufe Abzüge für Darstellung: Rundung:. Klausur in K am 7.. 00 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: e =,60

Mehr

Schnecke auf expandierendem Ballon

Schnecke auf expandierendem Ballon Schnecke auf expandierendem Ballon Kann in einem sich expandierenden Uniersum das Licht einer Galaxie auch die Punkte erreichen, die sich on ihr mit mehr als Lichtgeschwindigkeit entfernen? 1 Als einfaches

Mehr

Die Lage der Emissionsbanden der charakteristischen Röntgenstrahlung (anderer Name: Eigenstrahlung) wird bestimmt durch durch das Material der Kathode durch das Material der Anode die Größe der Anodenspannung

Mehr

3. Stromtransport in Gasen i) Erzeugung von Ladungsträgern ii) Unselbständige Entladung iii) Selbständige Entladung

3. Stromtransport in Gasen i) Erzeugung von Ladungsträgern ii) Unselbständige Entladung iii) Selbständige Entladung Netz Hochspannung 0 1 0 20 Elektrische Leitung 1. Leitungsmechanismen Bändermodell 2. Ladungstransport in Festkörpern i) Temperaturabhängigkeit Leiter ii) Eigen- und Fremdleitung in Halbleitern iii) Stromtransport

Mehr

Radioaktivität und Strahlenschutz. FOS: Energie von Strahlungsteilchen und Gammaquanten

Radioaktivität und Strahlenschutz. FOS: Energie von Strahlungsteilchen und Gammaquanten R. Brinkmann http://brinkmann-du.de Seite 1 25.11.2013 Radioaktivität und Strahlenschutz FOS: Energie von Strahlungsteilchen und Gammaquanten Energieeinheit Elektronenvolt (ev) Bekannte Energieeinheiten:

Mehr

Äußerer lichtelektrischer Effekt

Äußerer lichtelektrischer Effekt Grundexperiment 1 UV-Licht Video: 301-1 Grundexperiment 2 UV-Licht Grundexperiment 3 Rotes Licht Video: 301-2 Grundexperiment 3 UV-Licht Glasplatte Video: 301-2 Herauslösung von Elektronen aus Metallplatte

Mehr

Lk Physik in 13/1 1. Klausur Nachholklausur Blatt 1 (von 2)

Lk Physik in 13/1 1. Klausur Nachholklausur Blatt 1 (von 2) Blatt 1 (von 2) 1. Elektronenausbeute beim Photoeekt Eine als punktförmig aufzufassende Spektrallampe L strahlt eine Gesamt-Lichtleistung von P ges = 40 W der Wellenlänge λ = 490 nm aus. Im Abstand r =

Mehr

RÖNTGENTECHNIK : RÖHRE RÖNTGENTECHNIK : RÖHRE RÖNTGENTECHNIK : RÖHRE RÖNTGENTECHNIK : RÖHRE DIE DREHANODEN-RÖHRE DIE DREHANODEN-RÖHRE

RÖNTGENTECHNIK : RÖHRE RÖNTGENTECHNIK : RÖHRE RÖNTGENTECHNIK : RÖHRE RÖNTGENTECHNIK : RÖHRE DIE DREHANODEN-RÖHRE DIE DREHANODEN-RÖHRE DIE DREHANODEN-RÖHRE DIE DREHANODEN-RÖHRE Grundsätzlicher Aufbau einer Drehanodenröhre. Der Anodenteller (1) aus Wolfram ist über eine Molybdänwelle (2) mit dem kugelgelagerten Rotor (3) verbunden. Der

Mehr

2. Elektrisches Feld 2.2 Elektrostatisches Feld

2. Elektrisches Feld 2.2 Elektrostatisches Feld Definition Verschiebungsfluß und Verschiebungsflußdichte Arbeit im elektrostatischen Feld Feld einer geladenen Kugel, Zylinder Potential im elektrischen Feld Feld einer Linienladung 1 Feldbegriff Elektrisches

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 11. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 11. 06.

Mehr

Reihen- und Parallelschaltung von Kondensatoren

Reihen- und Parallelschaltung von Kondensatoren Ladung Spannung Kapazität Skizze wir-sind-klasse.jimdo.com Das elektrische Feld Energie des Kondensators Die Energie sitzt nach Faradays Feldvorstellung nicht bei den Ladungen auf den Platten sondern zwischen

Mehr

Spezifische Ladung eines Elektrons

Spezifische Ladung eines Elektrons A12 Spezifische Ladung eines Elektrons Die spezifische Elektronenladung e/m e soll aus der Bahnkurve eines Elektronenstrahls im homogenen magnetischen Feld bestimmt werden. 1. Theoretische Grundlagen 1.1

Mehr

Versuch 20 Kennlinie der Vakuumdiode

Versuch 20 Kennlinie der Vakuumdiode Physikalisches Praktikum Versuch 20 Kennlinie der Vakuumdiode Praktikanten: Johannes Dörr Gruppe: 14 mail@johannesdoerr.de physik.johannesdoerr.de Datum: 13.02.2007 Katharina Rabe Assistent: Sebastian

Mehr

Äußerer lichtelektrischer Effekt Übungsaufgaben

Äußerer lichtelektrischer Effekt Übungsaufgaben Aufgabe: LB S.66/9 Durch eine Natriumdampflampe wird Licht der Wellenlänge 589 nm (gelbe Natriumlinien) mit einer Leistung von 75 mw ausgesendet. a) Berechnen Sie die Energie der betreffenden Photonen!

Mehr

FK Experimentalphysik 3, Lösung 3

FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter Ein Spalt, der von einer Lichtquelle beleuchtet wird, befindet sich im Abstand von 10 cm vor einem Beugungsgitter (Strichzahl

Mehr

Institut für Angewandte Physik LINAC AG. Prof. Dr. H. Podlech 1

Institut für Angewandte Physik LINAC AG. Prof. Dr. H. Podlech 1 Hochfrequenz-Resonatoren Prof. Dr. H. Podlech 1 Maxwellgleichungen Bedeutung?? Prof. Dr. H. Podlech 2 Maxwellgleichungen im Vakuum Prof. Dr. H. Podlech 3 Wellengleichungen 2. Maxwell-Gl. Wellengleichung

Mehr

Übungsblatt 08. Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik

Übungsblatt 08. Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik Übungsblatt 08 Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik 2.06.2008 Aufgaben. Das folgende Diagramm zeigt die Kollektor-Kennlinien eines Transistors bei

Mehr

43. Strahlenschutz und Dosimetrie. 36. Lektion Wechselwirkung und Reichweite von Strahlung

43. Strahlenschutz und Dosimetrie. 36. Lektion Wechselwirkung und Reichweite von Strahlung 43. Strahlenschutz und Dosimetrie 36. Lektion Wechselwirkung und Reichweite von Strahlung Lernziel: Die Wechselwirkung von radioaktiver Strahlung (α,β,γ( α,β,γ) ) ist unterschiedlich. Nur im Fall von α-

Mehr

Elektromagnetische Felder und Wellen. Klausur Herbst Aufgabe 1 (5 Punkte) Aufgabe 2 (3 Punkte) Aufgabe 3 (5 Punkte) Aufgabe 4 (12 Punkte) Kern

Elektromagnetische Felder und Wellen. Klausur Herbst Aufgabe 1 (5 Punkte) Aufgabe 2 (3 Punkte) Aufgabe 3 (5 Punkte) Aufgabe 4 (12 Punkte) Kern Elektromagnetische Felder und Wellen Klausur Herbst 2000 Aufgabe 1 (5 Punkte) Ein magnetischer Dipol hat das Moment m = m e z. Wie groß ist Feld B auf der z- Achse bei z = a, wenn sich der Dipol auf der

Mehr

Spezifische Ladung des Elektrons

Spezifische Ladung des Elektrons Spezifische Ladung des Elektrons 1. Aufgaben 1. Die von einer Spule (a) und von einer Helmholtz-Spulenanordnung (b) erzeugte magnetische Flußdichte ist längs der Rotationssymmetrieachse zu messen und grafisch

Mehr

A. Mechanik (18 Punkte)

A. Mechanik (18 Punkte) Prof. Dr. A. Hese Prof. Dr. G. v. Oppen Dipl.-Phys. G. Hoheisel Dipl.-Phys. R. Jung Technische Universität Berlin Name: Vorname: Matr. Nr.: Fachbereich: Platz Nr.: Tutor: A. Mechanik (18 Punkte) 1. Wie

Mehr

E1 Mechanik Musterlösung Übungsblatt 6

E1 Mechanik Musterlösung Übungsblatt 6 Ludwig Maximilians Universität München Fakultät für Physik E1 Mechanik Musterlösung Übungsblatt 6 WS 214 / 215 Prof. Dr. Hermann Gaub Aufgabe 1 Zwei Kugeln der gleichen Masse mit den Geschwindigkeiten

Mehr

Aufgabe 1 ( 3 Punkte)

Aufgabe 1 ( 3 Punkte) Elektromagnetische Felder und Wellen: Klausur 2016-2 1 Aufgabe 1 ( 3 Punkte) Welche elektrische Feldstärke benötigt man, um ein Elektron (Masse m e, Ladung q = e) im Schwerefeld der Erde schweben zu lassen?

Mehr

Elektromagnetische Felder und Wellen: Lösung zur Klausur

Elektromagnetische Felder und Wellen: Lösung zur Klausur Elektromagnetische Felder und Wellen: zur Klausur 2014-2 1 Aufgabe 1 ( 7 Punkte) Eine ebene Welle der Form E = (E x, ie x, 0) exp{i(kz + ωt)} trifft aus dem Vakuum bei z = 0 auf ein Medium mit ε = 6 und

Mehr

22. Wärmestrahlung. rmestrahlung, Quantenmechanik

22. Wärmestrahlung. rmestrahlung, Quantenmechanik 22. Wärmestrahlung rmestrahlung, Quantenmechanik Plancksches Strahlungsgesetz: Planck (1904): der Austausch von Energie zwischen dem strahlenden System und dem Strahlungsfeld kann nur in Einheiten von

Mehr

CMB Echo des Urknalls. Max Camenzind Februar 2015

CMB Echo des Urknalls. Max Camenzind Februar 2015 CMB Echo des Urknalls Max Camenzind Februar 2015 Lemaître 1931: Big Bang des expandierenden Universums Big Bang : Photonenhintergrund + Neutrinohintergrund 3-Raum expandiert: dx a(t) dx ; Wellenlängen

Mehr

14.5 Einwirkung elektrischer Felder auf Elektronenbahnen: Elektronenoptik

14.5 Einwirkung elektrischer Felder auf Elektronenbahnen: Elektronenoptik 14.5 Einwirkung elektrischer Felder auf Elektronenbahnen: Elektronenoptik Die im elektrischen Feld auf Elektronen ausgeübten Kräfte finden vielfache Anwendung bei Elektronenströmen im Hochvakuum. Als Beispiel

Mehr

= 6,63 10 J s 8. (die Plancksche Konstante):

= 6,63 10 J s 8. (die Plancksche Konstante): 35 Photonen und Materiefelder 35.1 Das Photon: Teilchen des Lichts Die Quantenphysik: viele Größen treten nur in ganzzahligen Vielfachen von bestimmten kleinsten Beträgen (elementaren Einheiten) auf: diese

Mehr

ist Beobachten, Messen und Auswerten von Naturerscheinungen und Naturgesetzen Physikalische Größen und Einheiten

ist Beobachten, Messen und Auswerten von Naturerscheinungen und Naturgesetzen Physikalische Größen und Einheiten ist Beobachten, Messen und Auswerten von Naturerscheinungen und Naturgesetzen Um physikalische Aussagen über das Verhältnis von Messgrößen zu erhalten, ist es notwendig die Größen exakt und nachvollziehbar

Mehr

Die Diode. Roland Küng, 2009

Die Diode. Roland Küng, 2009 Die Diode Roland Küng, 2009 Halbleiter Siliziumgitter Halbleiter Eine aufgebrochene kovalente Bindung (Elektronenpaar) produziert ein Elektron und ein Loch Halbleiter Typ n z.b. Phosphor Siliziumgitter

Mehr

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und

Mehr

Elektrochemische Kinetik. FU Berlin Constanze Donner / Ludwig Pohlmann 2010 1

Elektrochemische Kinetik. FU Berlin Constanze Donner / Ludwig Pohlmann 2010 1 Elektrochemische Kinetik FU Berlin Constanze Donner / Ludwig Pohlmann 2010 1 FU Berlin Constanze Donner / Ludwig Pohlmann 2010 2 Elektrochemische Kinetik Was war: Die NernstGleichung beschreibt das thermodynamische

Mehr

Inhalt. 10. Elektrostatik. 10. Elektrostatik

Inhalt. 10. Elektrostatik. 10. Elektrostatik Inhalt 10. Elektrostatik 10.1 Elektrische Ladung 10.2 Coulombsches Gesetz 10.3 Elektrisches Feld 10.4 Kraft auf Ladungen 10.5 Elektrisches Potential 10.6 Elektrische Kapazität 1.1 Der Raum 10.1 Elektrische

Mehr

Lösungen zu den Aufg. S. 363/4

Lösungen zu den Aufg. S. 363/4 Lösungen zu den Aufg. S. 363/4 9/1 Die gemessene Gegenspannung (s. Tab.) entspricht der max. kin. Energie der Photoelektronen; die Energie der Photonen = E kin der Elektronen + Austrittsarbeit ==> h f

Mehr

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn 22.02.200 Probeklausur Elektrotechnik I für Maschinenbauer Name: Vorname: Matr.-Nr.: Fachrichtung:

Mehr

81 Übungen und Lösungen

81 Übungen und Lösungen STR ING Elektrotechnik 10-81 - 1 _ 81 Übungen und Lösungen 81.1 Übungen 1. ELEKTRISCHES FELD a 2 A α 1 b B Zwischen zwei metallischen Platten mit dem Abstand a = 15 mm herrsche eine elektrische Feldstärke

Mehr

Aufgabe 1 - Schiefe Ebene - (10 Punkte)

Aufgabe 1 - Schiefe Ebene - (10 Punkte) - schriftlich Klasse: 4AW (Profil A) - (HuR) Prüfungsdauer: Erlaubte Hilfsmittel: Bemerkungen: 4h Taschenrechner TI-nspire CAS Der Rechner muss im Press-to-Test-Modus sein. Formelsammlung Beginnen Sie

Mehr

Lk Physik in 12/1 1. Klausur aus der Physik Blatt 1 (von 2) C = 4πε o r

Lk Physik in 12/1 1. Klausur aus der Physik Blatt 1 (von 2) C = 4πε o r Blatt 1 (von 2) 1. Ladung der Erde 6 BE a) Leite aus dem oulombpotential die Beziehung = 4πε o r für die Kapazität einer leitenden Kugel mit Radius r her. In der Atmosphäre herrscht nahe der Erdoberfläche

Mehr

Licht als Teilchenstrahlung

Licht als Teilchenstrahlung Der Photoeffekt: die auf die Materie einfallende Strahlung löst ein Elektron aus. Es gibt eine Grenzfrequenz, welche die Strahlung haben muss, um das Atom gerade zu ionisieren. Licht als Teilchenstrahlung

Mehr

Aufdampfen und Molekularstrahlepitaxie

Aufdampfen und Molekularstrahlepitaxie Aufdampfen und Molekularstrahlepitaxie Eine der klassischen Methoden frische, saubere Oberflächen im UHV zu präparieren ist das Aufdampfen und Kondensieren dünner Filme. a) Polykristalline Filme Polykristalline

Mehr

Otto-von-Guericke-Universität Magdeburg Lehrstuhl Mikrosystemtechnik

Otto-von-Guericke-Universität Magdeburg Lehrstuhl Mikrosystemtechnik Mechanische Eigenschaften Die Matrix der Verzerrungen ε ij und die Matrix der mechanischen Spannungen σ ij bilden einen Tensor 2. Stufe und werden durch den Tensor 4. Stufe der elastischen Koeffizienten

Mehr

Atomphysik NWA Klasse 9

Atomphysik NWA Klasse 9 Atomphysik NWA Klasse 9 Radioaktive Strahlung Strahlung, die im Inneren der Atomkerne entsteht heißt radioaktive Strahlung. Wir unterscheiden zwischen Teilchen- und Wellenstrahlung! Strahlung in der Natur

Mehr

Auflösungsvermögen von Mikroskopen

Auflösungsvermögen von Mikroskopen Auflösungsvermögen von Mikroskopen Menschliches Auge Lichtmikroskopie 0.2 µm Optisches Nahfeld Rasterelektronen mikroskopie Transmissions Elektronenmikroskopie Rastersonden mikroskopie 10 mm 1 mm 100 µm

Mehr

Einführung in die theoretische Physik II Sommersemester 2015

Einführung in die theoretische Physik II Sommersemester 2015 Einführung in die theoretische Physik II Sommersemester 25 martin.eckstein@mpsd.cfel.de Ausgewählte Aufgaben zur Klausurvorbereitung Lösungshinweise Aufgabe : Elektrostatik Betrachten Sie eine geladene

Mehr

Kennlinie der Vakuum-Diode

Kennlinie der Vakuum-Diode Physikalisches Praktikum für das Hauptfach Physik Versuch 20 Kennlinie der Vakuum-Diode Wintersemester 2005 / 2006 Name: Mitarbeiter: EMail: Gruppe: Daniel Scholz Hauke Rohmeyer physik@mehr-davon.de B9

Mehr

Wiederholung: praktische Aspekte

Wiederholung: praktische Aspekte Wiederholung: praktische Aspekte Verkleinerung des Kathodendunkelraumes! E x 0 Geometrische Grenze der Ausdehnung einer Sputteranlage; Mindestentfernung Target/Substrat V Kathode (Target/Quelle) - + d

Mehr

5.5 Elektrisches Zentralfeld, Coulombsches Gesetz

5.5 Elektrisches Zentralfeld, Coulombsches Gesetz 5 Elektrizität und Magnetismus 5.5 Elektrisches Zentralfeld, Coulombsches Gesetz Elektrisches Zentralfeld Kugel mit Radius r um eine Punktladung = ǫ 0 Ed A = ǫ 0 E E d A Kugel da = ǫ 0 E(4πr 2 ) (5.26)

Mehr

Physik für Mediziner und Zahnmediziner

Physik für Mediziner und Zahnmediziner Physik für Mediziner und Zahnmediziner Vorlesung 19 Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1 PET: Positronen-Emissions-Tomographie Kernphysik PET Atomphysik Röntgen

Mehr

Übungen: Kraftwirkung in magnetischen Feldern

Übungen: Kraftwirkung in magnetischen Feldern Übungen: Kraftwirkung in magnetischen Feldern Aufgabe 1: Zwei metallische Leiter werden durch einen runden, beweglichen Kohlestift verbunden. Welche Beobachtung macht ein(e) Schüler(in), wenn der Stromkreis

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #26 04/12/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Spektrum des H-Atoms Energieniveaus der erlaubten Quantenbahnen E n = " m # e4 8 # h 2 # $ 0 2

Mehr

3 Elektrische Leitung

3 Elektrische Leitung 3.1 Strom und Ladungserhaltung 3 Elektrische Leitung 3.1 Strom und Ladungserhaltung Elektrischer Strom wird durch die Bewegung von Ladungsträgern hervorgerufen. Er ist definiert über die Änderung der Ladung

Mehr

Kennlinien von Elektronenröhren

Kennlinien von Elektronenröhren Versuch C 12: - C12.1 - Kennlinien von Elektronenröhren 1. Literatur: Bergmann-Schäfer, Lehrbuch der Experimentalphysik, Bd. II W. Walcher, Praktikum der Physik W. Westphal, Physikalisches Praktikum Gerthsen-Kneser-Vogel,

Mehr

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 28. Atomphysik, Röntgenstrahlung (Fortsetzung: Röntgenröhre, Röntgenabsorption) 29. Atomkerne, Radioaktivität (Nuklidkarte, α-, β-, γ-aktivität, Dosimetrie)

Mehr

Aufgabenblatt Z/ 01 (Physikalische Größen und Einheiten)

Aufgabenblatt Z/ 01 (Physikalische Größen und Einheiten) Aufgabenblatt Z/ 01 (Physikalische Größen und Einheiten) Aufgabe Z-01/ 1 Welche zwei verschiedenen physikalische Bedeutungen kann eine Größe haben, wenn nur bekannt ist, dass sie in der Einheit Nm gemessen

Mehr

Äußerer lichtelektrischer Effekt (Äußerer Fotoeffekt; HALLWACHS-Effekt)

Äußerer lichtelektrischer Effekt (Äußerer Fotoeffekt; HALLWACHS-Effekt) Äußerer lichtelektrischer Effekt (Äußerer Fotoeffekt; HALLWACHS-Effekt) Experiment 1: Bestrahlung einer elektrisch geladene Zinkplatte mit Licht Rotlichtlampe; positive Ladung Quecksilberdampflampe; positive

Mehr

Übungsaufgaben z. Th. Plattenkondensator

Übungsaufgaben z. Th. Plattenkondensator Übungsaufgaben z. Th. Plattenkondensator Aufgabe 1 Die Platten eines Kondensators haben den Radius r 18 cm. Der Abstand zwischen den Platten beträgt d 1,5 cm. An den Kondensator wird die Spannung U 8,

Mehr

Im ersten Teil dieses Versuchs wird ein Elektronenstrahl im homogenen Magnetfeld untersucht.

Im ersten Teil dieses Versuchs wird ein Elektronenstrahl im homogenen Magnetfeld untersucht. 1. Problem n diesem Versuch lernen Sie die Kraftwirkung eines -Feldes auf eine bewegte Ladung kennen. ies untersuchen sie an zwei Beispielen: unächst untersuchen sie die Auslenkung eines Elektronenstrahls

Mehr

Kennlinie der Vakuum-Diode

Kennlinie der Vakuum-Diode Physikalisches Grundpraktikum Versuch 17 Kennlinie der Vakuum-Diode Praktikant: Tobias Wegener Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de a.osterkorn@stud.uni-goettingen.de Tutor:

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 27. 04. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 27. 04. 2009

Mehr

Übungsblatt 4 ( )

Übungsblatt 4 ( ) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 0 Übungsblatt 4 (08.06.0) ) Geladene Kugeln Zwei homogen geladene Eisenkugeln mit den Ladungen Q = q = q = 0, 0µC haben einen

Mehr

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS B SCIENTIFIC PHYSICS Triode S 11 Bedienungsanleitung 1/15 ALF 1 5 7 1 Führungsstift Stiftkontakte Kathodenplatte Heizwendel 5 Gitter Anode 7 -mm-steckerstift zum Anschluss der Anode 1. Sicherheitshinweise

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

Ein Beitrag zu Dünnschichtsolarzellen auf der Basis von Cu(In, Ga)Se 2

Ein Beitrag zu Dünnschichtsolarzellen auf der Basis von Cu(In, Ga)Se 2 1. Seminarvortrag Graduiertenkolleg 1 Seminarvortrag Graduiertenkolleg Neue Hochleistungswerkstoffe für effiziente Energienutzung Ein Beitrag zu Dünnschichtsolarzellen auf der Basis von Cu(In, Ga)Se 2

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 26. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 26. 06.

Mehr

14. elektrischer Strom

14. elektrischer Strom Ladungstransport, elektrischer Strom 14. elektrischer Strom In Festkörpern: Isolatoren: alle Elektronen fest am Atom gebunden, bei Zimmertemperatur keine freien Elektronen -> kein Stromfluß Metalle: Ladungsträger

Mehr

Physik III - Anfängerpraktikum- Versuch 601

Physik III - Anfängerpraktikum- Versuch 601 Physik III - Anfängerpraktikum- Versuch 601 Sebastian Rollke (103095) und Daniel Brenner (105292) 21. September 2005 Inhaltsverzeichnis 1 Theorie 2 1.1 Grundlagen.......................................

Mehr

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4. 4. Die ebene Platte 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.4-1 Schallabstrahlung einer unendlichen ebenen Platte: Betrachtet

Mehr

Magnetfeld in Leitern

Magnetfeld in Leitern 08-1 Magnetfeld in Leitern Vorbereitung: Maxwell-Gleichungen, magnetischer Fluss, Induktion, Stromdichte, Drehmoment, Helmholtz- Spule. Potentiometer für Leiterschleifenstrom max 5 A Stufentrafo für Leiterschleife

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #28 10/12/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Reichweite radioaktiver Strahlung Alpha-Strahlung: Wenige cm in Luft Abschirmung durch Blatt Papier,

Mehr

Theoretischen Physik II SS 2007 Klausur II - Aufgaben und Lösungen

Theoretischen Physik II SS 2007 Klausur II - Aufgaben und Lösungen Theoretischen Physik II SS 007 Klausur II - Aufgaben und Lösungen Aufgabe Hohlleiter Gegeben sei ein in z-richtung unendlich langer, gerader Hohlleiter (Innenradius R/3, Außenradius R), der einen Stromfaden

Mehr

Analytische Chemie (für Biol. / Pharm. Wiss.)

Analytische Chemie (für Biol. / Pharm. Wiss.) Analytische Chemie (für Biol. / Pharm. Wiss.) Teil: Trenntechniken (Chromatographie, Elektrophorese) Dr. Martin Pabst HCI D323 Martin.pabst@org.chem.ethz.ch http://www.analytik.ethz.ch/ Zusammenfassung

Mehr

Physik IV Einführung in die Atomistik und die Struktur der Materie

Physik IV Einführung in die Atomistik und die Struktur der Materie Physik IV Einführung in die Atomistik und die Struktur der Materie Sommersemester 011 Vorlesung 04 1.04.011 Physik IV - Einführung in die Atomistik Vorlesung 4 Prof. Thorsten Kröll 1.04.011 1 Versuch OH

Mehr

Friedrich-Alexander-Universität Erlangen-Nürnberg. Lehrstuhl für Elektronische Bauelemente. Prof. Dr.-Ing. H. Ryssel. vhb-kurs Halbleiterbauelemente

Friedrich-Alexander-Universität Erlangen-Nürnberg. Lehrstuhl für Elektronische Bauelemente. Prof. Dr.-Ing. H. Ryssel. vhb-kurs Halbleiterbauelemente Friedrich-Alexander-Universität Prof. Dr.-Ing. H. Ryssel vhb-kurs Halbleiterbauelemente Übungsaufgaben Teil 3: Feldeffekttransistoren Übung zum vhb-kurs Halbleiterbauelemente Seite 15 Feldeffekttransistoren

Mehr

Induktion, Polarisierung und Magnetisierung

Induktion, Polarisierung und Magnetisierung Übung 2 Abgabe: 11.03. bzw. 15.03.2016 Elektromagnetische Felder & Wellen Frühjahrssemester 2016 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Induktion, Polarisierung und Magnetisierung In dieser

Mehr