Mathematisches Kaleidoskop 2014 Materialien Teil 4. Dr. Hermann Dürkop

Größe: px
Ab Seite anzeigen:

Download "Mathematisches Kaleidoskop 2014 Materialien Teil 4. Dr. Hermann Dürkop"

Transkript

1 Mathematisches Kaleidoskop 014 Materialien Teil 4 Dr. Hermann Dürkop info@ermanus.de 1

2 . Nicht ganz so bekannte Zahlbereiche..1 Die p, q-formel Irgendwann in unserem früheren Schülerleben mussten wir lernen, wie man die Lösungen einer quadratischen Gleichung findet: x + px + q = 0. (1) Man sieht mehr oder minder rasch ein, dass die üblichen Methoden: auf beiden Seiten der Gleichung dasselbe zu machen, also z.b. px auf beiden Seiten abzuziehen oder auf beiden Seiten die Wurzel zu ziehen etc., uns der Lösung des Problems nicht näherbringen. Es ist ein Trick gefragt. Hierfür erinnern wir uns an die erste binomische Formel : x + ax + a = (x + a) () Wenn wir die beiden ersten Summanden in (1) und () vergleichen, können wir auf die Idee kommen, px in Beziehung zu ax zu setzen, d.h. ax = px, also a = p/ anzusetzen, womit sich dann a = (p/) ergibt. Dies bringt uns dazu, auf beiden Seiten von (1) den Term (p/) zu addieren: x + px + (p/) + q = (p/) (x + p/) + q = (p/) (x + p/) = (p/) q Diese Methode nennt sich quadratische Ergänzung. Nun müssen wir nur noch auf beiden Seiten die Wurzel ziehen, und erhalten die beiden (möglicherweise gleichen) Lösungen: x + p/ = also x = p/ + (p/) q oder x + p/ = (p/) q oder x = p/ Dies schreibt man häufig auch in der folgenden Form: x = p + p 4q oder x = p p 4q (p/) q, (p/) q Dabei heißt der Ausdruck d = p 4q unter der Wurzel die Diskriminante der Gleichung (1), da er darüber entscheidet, ob diese zwei reelle Lösungen, nur eine oder gar keine reelle Lösung besitzt: d > 0 : d = 0 : d < 0 : reelle Lösungen, 1 reelle Lösung, keine reelle Lösung

3 Betrachten wir nun einmal so einen unlösbaren Fall von d < 0: x x + 1 = 0 Unsere Auflösungsformel liefert in diesem Falle: x = oder x = 1 3 Nun können wir noch folgende Standardisierung vornehmen: 3 = 3 1 Auf diese Weise hat man es dann nur noch mit einer seltsamen Größe, nämlich 1 zu tun, und alles andere liegt im uns wohlbekannten R. Das bedeutet, dass wir uns nur noch um eine vernünftige Interpretation für eine der beiden Lösungen der Gleichung kümmern müssen. x + 1 = 0.. Die vertrauensvolle Art, mit 1 umzugehen Wir erfinden einfach ein Symbol i, genannt imaginäre Einheit, und bilden die Menge der formalen Ausdrücke a + b i mit a, b R und rechnen mit den folgenden Regeln: α) c i = i c für alle c R β) i = i i = 1 γ) a + b i = 0 ist genau dann der Fall, wenn a = 0 und b = 0 ist Nun hoffen wir, dass bei dieser Vorgehensweise niemals Widersprüche auftauchen werden...3 Eine saubere Methode Wir führen jetzt die Zahlen der Form a + b i, die sogenannten komplexen Zahlen C, auf eine andere Art ein, die aufgrund der verwendeten Konstruktion sozusagen von Hause aus keine Widersprüche erzeugen kann. Diese Methode raubt den imaginären Zahlen jegliches Geheimnisvolle, was man natürlich irgendwie auch ein bisschen bedauerlich finden kann. 3

4 So gehen wir vor: wir bilden die Menge aller Paare (a, b) von Zahlen a, b R und definieren für diese Zahlenpaare, was es bedeuten soll, wenn man sie addiert oder multipliziert: α) Addition: (a 1, b 1 ) + (a, b ) = (a 1 + a, b 1 + b ) β) Multiplikation: (a 1, b 1 ) (a, b ) = (a 1 a b 1 b, a 1 b + a b 1 ) Wenn wir einmal nur solche Paare betrachten, deren zweite Komponente gleich 0 ist, bekommen wir die folgenden Gleichungen: (a 1, 0) + (a, 0) = (a 1 + a, 0) (a 1, 0) (a, 0) = (a 1 a, 0) (a, 0) + (0, 0) = (a, 0) (a, 0) (1, 0) = (a, 0) Wir sehen, dass sich diese Paare exakt so verhalten, wie ihre ersten Komponenten, d.h. wie die reellen Zahlen R. Daher identifizieren wir die Paare (a, 0) mit den reellen Zahlen a. Durch diese Identifizierung bekommen wir dann z.b. a (1, 0) = (a, 0). Wir identifizieren daher auch (1, 0) mit 1. Ebenso ergibt sich b (0, 1) = (b, 0) (0, 1) = (b 0 0 1, b ) = (0, b) Für das Paar (0,1) führen wir die Abkürzung i ein. So ergibt sich schließlich: (a, b) = (a, 0) + (0, b) = a (1, 0) + b (0, 1) = a + b i Wie gewünscht ist unser i = (0, 1) auch eine Lösung von x + 1 = 0: i +1 = (0, 1) (0, 1)+(1, 0) = ( , )+(1, 0) = ( 1, 0)+(1, 0) = (0, 0) = 0. Die so definierten Zahlen a+b i heißen komplexe Zahlen und ihre Menge wird mit C bezeichnet. Vorsicht: Die altmodische Schreibweise 1 anstelle von i ist sehr gefährlich und sollte lieber nicht verwendet werden; denn sonst: 1 = i i = 1 1 = ( 1) ( 1) = 1 = 1 4

5 ..4 Geometrische Deutung (Gaußsche Zahlenebene) Wir ordnen jeder komplexen Zahl z = x + y i den Punkt (x, y) der Ebene zu: Dadurch wird C als die sogenannte Gaußsche Zahlenebene dargestellt. Nun kann man anstelle der x, y-koordinaten jeden Punkt der Ebene aber auch eindeutig durch seinen Abstand vom Koordinatenursprung (0,0) und seinen Winkel φ bzgl. der x-achse charakterisieren. Wenn der Abstand mit r bezeichnet wird, erhält man folgenden Zusammenhang: z = x + y i = r cos(φ) + r sin(φ) i = r (cos(φ) + i sin(φ)) Für die Multiplikation zweier solcher komplexer Zahlen (in Polarkoordinaten) ergibt sich mithilfe von Additionstheoremen für Sinus und Cosinus: z 1 z = r 1 (cos(φ 1 ) + i sin(φ 1 )) r (cos(φ ) + i sin(φ )) = r 1 r (cos(φ 1 + φ ) + i sin(φ 1 + φ )) Zwei komplexe Zahlen werden also multipliziert, indem man ihre Längen multipliziert und ihre Winkel addiert. Speziell die komplexe Zahl z = cos(360 /17)+ i sin(360 /17) hat dann die Länge 1 und bildet mit der x-achse den Winkel, den wir brauchen, um den ersten Eckpunkt eines regulären 17-Ecks darzustellen. Wenn wir dann diesen Winkel 17-mal aneinanderfügen, haben wir eine Volldrehung vollzogen und sind wieder im Startpunkt angekommen, d.h. es gilt für den ersten Eckpunkt z des 17-Ecks: z 17 = 1 5

6 Das Verdienst von Gauß bestand also darin zu zeigen, dass man diese Gleichung allein unter Verwendung von Quadratwurzeln und Grundrechenarten lösen kann...5 Erweiterungen in der Resterechnung Wir hatten in der ersten Sitzung gesehen, dass man in der Menge der Reste modulo einer Primzahl p nach Herzenslust addieren, subtrahieren, multiplizieren und dividieren kann (nur nicht durch 0). Ferner gelten diverse Vertauschbarkeits- und Klammerregeln. Eine solche Menge nennt man einen Körper. Die Körper der Resterechnung modulo p bestehen nur aus endlich vielen Elementen. Man nennt beliebige endliche Körper Galois-Körper und bezeichnet sie mit F p n oder auch GF (p n ). Die Anzahl der Elemente eines solchen Körpers ist immer eine Potenz einer Primzahl p, daher die Bezeichnungsweise. Wir haben den einfachsten Körper dieser Art bereits kennengelernt, nämlich F = {0, 1} mit den einfachen Regeln: = = 0, = = 1, 0 c = c 0 = 0, 1 1 = 1 Wir untersuchen nun, ob wir in F jede quadratische Gleichung lösen können oder ob wir wieder so etwas wie die imaginäre Einheit i erfinden müssen, um die Lösbarkeit zu erzwingen. Betrachten wir alle quadratischen Gleichungen, die wir für unser F bilden können: x = 0, x + x = 0, x + 1 = 0, x + x + 1 = 0, x = 0 ist Lösung x = 0 und x = 1 sind Lösungen x = 1 ist Lösung = 1, = 1, also gibt es keine Lösung Also beschaffen wir uns vertrauensvoll eine formale Lösung und nennen sie z.b. α. Es gilt dann nach Definition: α + α + 1 = 0, also α = α 1, und wegen 1 = 1 : α = α + 1. Damit hat unser neuer erweiterter Körper die Elemente {0, 1, α, 1 + α}. Er heißt dann F 4 oder GF (4). 6

7 Wir wollen uns noch das Einspluseins und das Einmaleins anschauen: + 1 α 1 + α α α α 1 + α α α α 1 + α 1 1 α 1 + α α α 1 + α α 1 + α 1 α Als Übung ist es sicher interessant, eine entsprechende quadratische Erweiterung von F 3 zu konstruieren und sich das zugehörige Einspluseins und Einmaleins anzuschauen. Die Rechenregeln in F 3 = Z/3Z finden Sie ja im Teil 1 der Materialien...6 Taschenspielertricks und die p-adischen Zahlen Wir betrachten einmal die folgende unendliche Summe: s = Man erkennt, dass man sich desto stärker der 1 nähert, je mehr Summanden man berücksichtigt. Die Summe s sollte also 1 sein. Wir argumentieren jetzt folgendermaßen: }{{} = s Das ergibt für unsere Summe s: = ( ) }{{} = 1/ s s = s, also 1 s = 1, und damit s = 1 Jetzt benutzen wir ein ähnliches Argument für folgende Summe : Man hat: s = = unendlich = }{{}}{{} = s = s Das ergibt für unsere Summe s: s = 1 + s, also s = 1 Ist denn etwa -1 dasselbe wie unendlich? 7

8 Dieses seltsame Ergebnis ist nicht so unsinnig, wie man zunächst denken könnte. In der Tat ist es unsinnig im Körper der reellen Zahlen R, in dem divergiert, d.h. gar keine reelle Zahl ist und infolgedessen man mit diesem s weder irgendwelche sinnvollen Gleichungen aufstellen kann, noch solche Gleichungen in reeller Manier irgendwie umstellen kann. Dennoch hat der deutsche Mathematiker Kurt Hensel ( ) Körper von Zahlen erfunden, in denen positive Potenzen einer Primzahl p nicht etwa wachsen, sondern schrumpfen, wo also z.b. 8 in gewissem Sinne kleiner als 4 und 4 kleiner als usw. ist. Diese Körper heißen p-adische Zahlkörper und werden häufig durch das Symbol Q p bezeichnet. Man setzt sie in der Zahlentheorie anstelle der Kongruenzen modulo p n ein, da man in ihnen z.b. dividieren kann, was wegen der Nullteiler bei den Resten modulo p n ja nicht immer möglich ist...7 Die Hamiltonschen Quaternionen Wir haben an ein paar Beispielen gesehen, wie man unter Umständen einen Zahlbereich, also einen Körper erweitern kann. Nun hatten wir ja R zum Körper der komplexen Zahlen C erweitert. Kann man denn nun C nochmals durch Hinzunahme endlich vieler sozusagen imaginärer Elemente sinnvoll erweitern? Der sogenannte Hauptsatz der Algebra besagt, dass C algebraisch abgeschlossen ist, d.h. das jede algebraische Gleichung in C eine Lösung hat. Es gibt also keine künstlichen Lösungen, die wir noch hinzufügen könnten. Bei C hatten wir aber eine geometrische Deutung für die Multiplikation mit komplexen Zahlen kennengelernt, die uns zeigte, dass man sie als Drehung und zentrische Streckung in der Ebene verstehen kann. Vielleicht lässt sich ja doch eine andersartige Erweiterung finden, die man geometrisch begründet, z.b. eine 3-dimensionale Zahlenmenge mit einer Addition, Subtraktion, Multiplikation und (wenn es denn möglich ist) auch einer Division durch alles, was nicht 0 ist, wobei etwa die Multiplikation sich irgendwie als Bewegung im 3-dimensionalen Raum deuten lässt. Der irische Mathematiker und Physiker William Rowan Hamilton ( ) hat lange Zeit nach solchen 3-dimensionalen Rechengesetzen gesucht, d.h. nach einer 3-dimensionalen Erweiterung von R, die die angenehmen Eigenschaften eines Körpers besitzt. Im Jahre 1843 hatte er endlich Erfolg bei dieser Suche, wobei aber nicht etwas 3-dimensionales, sondern eine 4- dimensionale Struktur herauskam, die sogenannten Quaternionen, die nach ihm als Hamiltonsche Quaternionen bezeichnet werden, als Symbol H. 8

9 In H gibt es drei imaginäre Einheiten i, j, k, die folgenden Gesetzen gehorchen: i = j = k = 1, ij = k, jk = i, ki = j Die Elemente von H sind alle Quadrupel der Form: a + bi + cj + dk mit a, b, c, d R Es gelten hier die üblichen Klammergesetze. Was aber nicht mehr gilt, ist das Kommutativgesetz, das die Vertauschbarkeit von Faktoren gestattet, dafür gilt bei den Quaternionen: ji = ij = k, kj = jk = i, ik = ki = j Mit H kann man z.b. Drehungen im 3-dimensionalen Raum durch Multiplikation von Quaternionen erzeugen, was ihre Gebrauchsfähigkeit in der Physik, aber auch in der Computergraphik (Spiele) unter Beweis stellt. 9

Zahlen und Gleichungen

Zahlen und Gleichungen Kapitel 2 Zahlen und Gleichungen 21 Reelle Zahlen Die Menge R der reellen Zahlen setzt sich zusammen aus den rationalen und den irrationalen Zahlen Die Mengen der natürlichen Zahlen N, der ganzen Zahlen

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen:

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen: 2. Zahlbereiche Besonderheiten und Rechengesetze Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen: 2.1. Die natürlichen Zahlen * + besitzt abzählbar unendlich viele Elemente

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Komplexe Zahlen. 1) Motivierende Aufgabe. 2) Historisches

Komplexe Zahlen. 1) Motivierende Aufgabe. 2) Historisches Annelie Heuser, Jean-Luc Landvogt und Ditlef Meins im 1. Semester Komplexe Zahlen Will man nur addieren und subtrahieren, multiplizieren und dividieren, kommt man uneingeschränkt mit reellen Zahlen aus.

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems

Mehr

Die Menge der reellen Zahlen vereinigt die Menge der rationalen Zahlen mit der Menge der irrationalen

Die Menge der reellen Zahlen vereinigt die Menge der rationalen Zahlen mit der Menge der irrationalen 9 Menge der natürlichen Zahlen Axiome von Peano: 1. 1 ist eine natürliche Zahl. 2. Jede Zahl a hat einen bestimmten Nachfolger a + in der Menge der natürlichen Zahlen.. Stets ist a + 1, d.h. es gibt keine

Mehr

Vorkurs Mathematik 1

Vorkurs Mathematik 1 Vorkurs Mathematik 1 Einführung in die mathematische Notation Konstanten i komplexe Einheit i 2 + 1 = 0 e Eulersche Zahl Kreiszahl 2 Einführung in die mathematische Notation Bezeichner Primzahlen, Zähler

Mehr

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich.

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich. 3.5 Ringe und Körper Gehen wir noch mal zu den ganzen Zahlen zurück. Wir wissen: (Z, + ist eine Gruppe, es gibt aber als Verknüpfung noch die Multiplikation, es gibt ein neutrales Element bezüglich, es

Mehr

Erster Zirkelbrief: Komplexe Zahlen

Erster Zirkelbrief: Komplexe Zahlen Matheschülerzirkel Universität Augsburg Schuljahr 04/05 Erster Zirkelbrief: Komplexe Zahlen Inhaltsverzeichnis Zahlenbereiche. Natürliche Zahlen................................. Ganze Zahlen...................................3

Mehr

7. KOMPLEXE ZAHLEN. und die. KOMPLEXE e-funktion

7. KOMPLEXE ZAHLEN. und die. KOMPLEXE e-funktion 7. KOMPLEXE ZAHLEN und die KOMPLEXE e-funktion 1 Wir gehen aus von der Ebene, versehen mit einem Koordinatensystem und x, y-koordinaten. Dann entsprechen Punkte z in der Ebene Zahlenpaaren: z = (x, y)

Mehr

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel:

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel: 1. Zahlenmengen Wissensgrundlage Aufgabenbeispiele Gib die jeweils kleinstmögliche Zahlenmenge an, welche die Zahl enthält? R Q Q oder All diejenigen Zahlen, die sich nicht mehr durch Brüche darstellen

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

Kapitel 2 Algebra und Arithmetik. Inhalt

Kapitel 2 Algebra und Arithmetik. Inhalt Kapitel 2 Algebra und Arithmetik Seite 1 Inhalt 2.1 Zahlbereiche N, Z, Q, R 2.2 Terme und (Un-) Gleichungen Lineare und quadratische Gleichungen, Nullstellen von Polynomen und gebrochenrationalen Funktionen,

Mehr

Komplexe Zahlen und Wechselstromwiderstände

Komplexe Zahlen und Wechselstromwiderstände Komplexe Zahlen und Wechselstromwiderstände Axel Tobias 22.2.2000 Ein besonderer Dank geht an Ingo Treunowski, der die Übertragung meines Manuskriptes in L A TEX durchgeführt hat tob skript komplex.tex.

Mehr

10. Die komplexen Zahlen.

10. Die komplexen Zahlen. 10-1 Funktionen 10 Die kompleen Zahlen Dies ist ein Thema, das unberechtigter Weise als schwer gilt! Die Konstruktion der kompleen Zahlen ist viel einfacher zu verstehen ist, als einige der bisherigen

Mehr

Einführung Seite 28. Zahlenebene C. Vorlesung bzw. 24. Oktober 2013

Einführung Seite 28. Zahlenebene C. Vorlesung bzw. 24. Oktober 2013 Einführung Seite 8 Vorlesung 1 3. bzw. 4. Oktober 013 Komplexe Zahlen Seite 9 Lösung von x + 1 = 0, pq-formel liefert x 1/ = ± 1 ; }{{} verboten Definition Imaginäre Einheit i := 1 Dann x 1/ = ±i; i =

Mehr

2. Die Satzgruppe des Pythagoras

2. Die Satzgruppe des Pythagoras Grundwissen Mathematik 9. Klasse Seite von 17 1.4 Rechnen mit reellen Zahlen a) Multiplizieren und Dividieren von reellen Zahlen + Es gilt: a b = a b mit ab R, 0 Beispiele: 18 = 36 = 6 14 14 7 = = a a

Mehr

5. Komplexe Zahlen. 5.1 Was ist eine Zahl?

5. Komplexe Zahlen. 5.1 Was ist eine Zahl? 5. Komplexe Zahlen Komplexe Zahlen sind Zahlen der Form a + bi, wo a und b reelle Zahlen sind und i = 1 ist. Wurzeln aus negativen Zahlen gibt es nicht, wird man da antworten, und in der Tat gibt es keine

Mehr

Reelle Zahlen (R)

Reelle Zahlen (R) Reelle Zahlen (R) Bisher sind bekannt: Natürliche Zahlen (N): N {,,,,,6... } Ganze Zahlen (Z): Z {...,,,0,,,... } Man erkennt: Rationale Zahlen (Q):.) Zwischen den natürlichen Zahlen befinden sich große

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Lösungen Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Kapitel I: Mengen Aufgabe

Mehr

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.)

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.) 3. Untergruppen 19 3. Untergruppen Nachdem wir nun einige grundlegende Gruppen kennengelernt haben, wollen wir in diesem Kapitel eine einfache Möglichkeit untersuchen, mit der man aus bereits bekannten

Mehr

Grundwissen 5. Klasse

Grundwissen 5. Klasse Grundwissen 5. Klasse 1/5 1. Zahlenmengen Grundwissen 5. Klasse Natürliche Zahlen ohne Null: N 1;2;3;4;5;... mit der Null: N 0 0;1;2;3;4;... Ganze Zahlen: Z... 3; 2; 1;0;1;2;3;.... 2. Die Rechenarten a)

Mehr

GW Mathematik 5. Klasse

GW Mathematik 5. Klasse Begriffe zur Gliederung von Termen Term Rechenart a heißt b heißt a + b (Summe) Addition 1. Summand 2. Summand a b (Differenz) Subtraktion Minuend Subtrahend a b ( Produkt) Multiplikation 1. Faktor 2.

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Vektoren und Matrizen Einführung: Wie wir gesehen haben, trägt der R 2, also die Menge aller Zahlenpaare, eine Körperstruktur mit der Multiplikation (a + bi(c + di ac bd + (ad + bci Man kann jedoch zeigen,

Mehr

3 Vom Zählen zur Induktion

3 Vom Zählen zur Induktion 7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,

Mehr

00. Einiges zum Vektorraum R n

00. Einiges zum Vektorraum R n 00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen

Mehr

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin 1 Hausaufgaben vom 12.09.2007 Zahlentheorie 1 Aufgabe 1.1 Berechne die (quadratischen)

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 1, Montag vormittag Vektoralgebra Ein Vektor lässt sich geometrisch als eine gerichtete Strecke darstellen,

Mehr

Halbgruppen, Gruppen, Ringe

Halbgruppen, Gruppen, Ringe Halbgruppen-1 Elementare Zahlentheorie Einige Bezeichnungen Halbgruppen, Gruppen, Ringe Die Menge N 0 der natürlichen Zahlen 0, 1, 2, Die Menge N = N 1 der von Null verschiedenen natürlichen Zahlen Die

Mehr

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl

Mehr

GF(2 2 ) Beispiel eines Erweiterungskörpers (1)

GF(2 2 ) Beispiel eines Erweiterungskörpers (1) GF(2 2 ) Beispiel eines Erweiterungskörpers (1) Im Kapitel 2.1 wurde bereits gezeigt, dass die endliche Zahlenmenge {0, 1, 2, 3} q = 4 nicht die Eigenschaften eines Galoisfeldes GF(4) erfüllt. Vielmehr

Mehr

Strahlensätze anwenden. ähnliche Figuren erkennen und konstruieren. ähnliche Figuren mit Hilfe zentrischer Streckung konstruieren.

Strahlensätze anwenden. ähnliche Figuren erkennen und konstruieren. ähnliche Figuren mit Hilfe zentrischer Streckung konstruieren. MAT 09-01 Ähnlichkeit 14 Doppelstunden Leitidee: Raum und Form Thema im Buch: Zentrische Streckung (G), Ähnlichkeit (E) Strahlensätze anwenden. ähnliche Figuren erkennen und konstruieren. ähnliche Figuren

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} Ganze Zahlen : Aus

Mehr

Warum sind die komplexen Zahlen cool? (meiner lieben 7SV gewidmet)

Warum sind die komplexen Zahlen cool? (meiner lieben 7SV gewidmet) Warum sind die komplexen Zahlen cool? (meiner lieben 7SV gewidmet) Intro: Du kennst die reellen Zahlen. Sie entsprechen den Punkten auf einer Strecke bzw. auf dem Zahlenstrahl. - Man kann sie der Größe

Mehr

JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen

JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen ELEMENTE DER MATHEMATIK 5 Schroedel Verlag Argumentieren Problemlösen Modellieren Werkzeuge Arithmetik/ Algebra Funktionen Geometrie

Mehr

Aufgabensammlung Klasse 8

Aufgabensammlung Klasse 8 Aufgabensammlung Klasse 8 Inhaltsverzeichnis 1 Potenzen mit natürlichen Hochzahlen 3 1.1 Rechenregeln für das Rechnen mit Potenzen..................... 3 1.1.1 Addition und Subtraktion von Potenzen...................

Mehr

Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln

Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln Michael Kniely November 2009 1 Vorbemerkungen Definition. Sei n N +, ϕ(n) := {d [0, n 1] ggt (d, n) = 1}. Die Abbildung ϕ : N + N + heißt

Mehr

Propädeutikum Mathematik

Propädeutikum Mathematik Propädeutikum Mathematik Sommersemester 2016 Carsten Krupp BBA Seite 1 Literaturhinweise Cramer, E., Neslehova, J.: Vorkurs Mathematik, Springer, 2004 Piehler, Sippel, Pfeiffer: Mathematik zum Studieneinstieg,

Mehr

Didaktik der Zahlbereiche 4. Die Menge der ganzen Zahlen. Mathematikunterricht in der Jahrgangsstufe 7. Zahlbereichserweiterungen in der Hauptschule

Didaktik der Zahlbereiche 4. Die Menge der ganzen Zahlen. Mathematikunterricht in der Jahrgangsstufe 7. Zahlbereichserweiterungen in der Hauptschule Zahlbereichserweiterungen in der Hauptschule Didaktik der Zahlbereiche 4 Dr. Christian Groß Lehrstuhl Didaktik der Mathematik Universität Augsburg Wintersemester 2006/07 Natürliche Zahlen, : Klasse 5 positive

Mehr

Technische Universität München. Lösung Montag WS 2013/14. (Einheitskreis, ohne Rechnung ersichtlich) (Einheitskreis, ohne Rechnung ersichtlich)

Technische Universität München. Lösung Montag WS 2013/14. (Einheitskreis, ohne Rechnung ersichtlich) (Einheitskreis, ohne Rechnung ersichtlich) Technische Universität München Andreas Wörfel Ferienkurs Analysis 1 für Physiker Lösung Montag WS 01/1 Aufgabe 1 Zum warm werden: Komplexe Zahlen - Lehrling Bestimmen Sie das komplex Konjugierte, den Betrag

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Inhaltsverzeichnis Mathematik

Inhaltsverzeichnis Mathematik 1. Mengenlehre 1.1 Begriff der Menge 1.2 Beziehungen zwischen Mengen 1.3 Verknüpfungen von Mengen (Mengenoperationen) 1.4 Übungen 1.5 Übungen (alte BM-Prüfungen) 1.6 Zahlenmengen 1.7 Grundmenge (Bezugsmenge)

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume

Mehr

Erzeugende Funktionen

Erzeugende Funktionen Hallo! Erzeugende Funktionen sind ein Mittel um lineare Rekursionen schneller ausrechnen zu können. Es soll die Funktion nicht mehr als Rekursion angeschrieben werden, sondern so, dass man nur n einsetzen

Mehr

Teil I.2 Lösen von Bestimmungsgleichungen

Teil I.2 Lösen von Bestimmungsgleichungen Brückenkurs Mathematik Teil I.2 Lösen von Bestimmungsgleichungen Staatliche Studienakademie Leipzig Studienrichtung Informatik Dr. Susanne Schneider 12. September 2011 Bestimmungsgleichungen 1 Reelle Zahlen

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

ALGEBRA UND MENGENLEHRE

ALGEBRA UND MENGENLEHRE ALGEBRA UND MENGENLEHRE EINE EINFÜHRUNG GRUNDLAGEN DER ALGEBRA 1 VARIABLE UND TERME In der Algebra werden für Grössen, mit welchen gerechnet wird, verallgemeinernd Buchstaben eingesetzt. Diese Platzhalter

Mehr

Faktorisierung bei Brüchen und Bruchtermen

Faktorisierung bei Brüchen und Bruchtermen Faktorisierung bei Brüchen und Bruchtermen Rainer Hauser Mai 2016 1 Einleitung 1.1 Rationale Zahlen Teilt man einen Gegenstand in eine Anzahl gleich grosse Stücke, so bekommt man gebrochene Zahlen, die

Mehr

4. Vektorräume und Gleichungssysteme

4. Vektorräume und Gleichungssysteme technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof Dr H M Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 41 und 42 4 Vektorräume

Mehr

3.1. Die komplexen Zahlen

3.1. Die komplexen Zahlen 3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen

Mehr

= * 281 = : 25 = oder 7x (also 7*x) oder (2x + 3) *9 oder 2a + 7b (also 2*a+ 7*b)

= * 281 = : 25 = oder 7x (also 7*x) oder (2x + 3) *9 oder 2a + 7b (also 2*a+ 7*b) GLEICHUNGEN Gleichungslehre Bisher haben Sie Aufgaben kennen gelernt, bei denen eine Rechenoperation vorgegeben war und Sie das Ergebnis berechnen sollten. Nach dem Gleichheitszeichen war dann das Ergebnis

Mehr

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen Algebra und Diskrete Mathematik, PS3 Sommersemester 2016 Prüfungsfragen Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper). Wodurch

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt, desto größer

Mehr

DEMO für www.mathe-cd.de

DEMO für www.mathe-cd.de (1) Rechnen mit Paaren und Tripeln () Eine Gleichung mit oder 3 Unbekannten (3) Zwei Gleichungen mit 3 Unbekannten Datei Nr. 61 011 Stand 19. Oktober 010 Friedrich W. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

MatheBasics Teil 3 Grundlagen der Mathematik

MatheBasics Teil 3 Grundlagen der Mathematik Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft MatheBasics Teil 3 Grundlagen der Mathematik Version vom 05.02.2015 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der

Mehr

Vektorgeometrie. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)

Vektorgeometrie. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden) fua3673 Fragen und Antworten Vektorgeometrie (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis Vektorgeometrie im Raum. Fragen................................................. Allgemeines..........................................

Mehr

Prof. Dr. G. Wagner Ingenieurmathematik Begleittext Seite 1

Prof. Dr. G. Wagner Ingenieurmathematik Begleittext Seite 1 Prof. Dr. G. Wagner Ingenieurmathematik Begleittext Seite 1 Kapitel 3 Lineare Gleichungssysteme 3.1. Einleitung Beispiel 1 3 Kinder haben eingekauft. Franz hat 4 Lakritzen, 2 Schokoriegel und 5 Kaugummis

Mehr

Polynome Teil V: Elementarsymmetrische Funktionen.

Polynome Teil V: Elementarsymmetrische Funktionen. Die WURZEL Werkstatt Mathematik Polynome Teil V: Elementarsymmetrische Funktionen. Es gibt Gleichungssysteme, die lassen sich mit schulischen Mitteln nicht bzw. nur sehr mühsam knacken. So musste etwa

Mehr

Negative Zahlen. Lösung: Ordne in einen Zahlenstrahl ein! 7;5; 3; 6. Das Dezimalsystem

Negative Zahlen. Lösung: Ordne in einen Zahlenstrahl ein! 7;5; 3; 6. Das Dezimalsystem Negative Zahlen Negative Zahlen Ordne in einen Zahlenstrahl ein! 7;5; 3; 6 Das Dezimalsystem Zerlege in Stufen! Einer, Zehner, usw. a) 3.185.629 b) 24.045.376 c) 3.010.500.700 Das Dezimalsystem a) 3M 1HT

Mehr

Aufgaben zu Kapitel 14

Aufgaben zu Kapitel 14 Aufgaben zu Kapitel 14 1 Aufgaben zu Kapitel 14 Verständnisfragen Aufgabe 14.1 Haben (reelle) lineare Gleichungssysteme mit zwei verschiedenen Lösungen stets unendlich viele Lösungen? Aufgabe 14.2 Gibt

Mehr

Die komplexen Zahlen

Die komplexen Zahlen Kapitel 9 Die komplexen Zahlen Der Körper der komplexen Zahlen Die Gauß sche Zahlenebene Algebraische Gleichungen Anwendungen Der Körper der komplexen Zahlen Die Definition der komplexen Zahlen Definition

Mehr

Kürzen und Erweitern Die drei Gesichter einer Vergröbern bzw. Verfeinern der Einteilung nutzen

Kürzen und Erweitern Die drei Gesichter einer Vergröbern bzw. Verfeinern der Einteilung nutzen Schulcurriculum Mathematik Städtisches Gymnasium Eschweiler Klasse 6 (G8) - rationale Zahlen - mit Zahlen und Symbolen umgehen Grundregeln für Rechenaus- einfache Brüche und Größen, Rechnen mit rationalen

Mehr

A2.3 Lineare Gleichungssysteme

A2.3 Lineare Gleichungssysteme A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen

Mehr

1 Rechnen. Addition rationaler Zahlen gleicher Vorzeichen Summand + Summand = Summe

1 Rechnen. Addition rationaler Zahlen gleicher Vorzeichen Summand + Summand = Summe Rationale Zahlen Die ganzen Zahlen zusammen mit allen positiven und negativen Bruchzahlen heißen rationale Zahlen. Die Menge der rationalen Zahlen wird mit Q bezeichnet. Je weiter links eine Zahl auf dem

Mehr

Curriculum MATHEMATIK Sekundarstufe I. Genoveva-Gymnasium Köln Lehrplan SEK1 G8 Mathematik Seite 1

Curriculum MATHEMATIK Sekundarstufe I. Genoveva-Gymnasium Köln Lehrplan SEK1 G8 Mathematik Seite 1 Curriculum MATHEMATIK Sekundarstufe I Klasse Inhalte Fertigkeiten Sonstiges 5 Natürliche Zahlen und Größen Große Zahlen Stellentafel Zweiersystem; Römische Zahlzeichen Zahlenstrahl Runden von Zahlen Bilddiagramme

Mehr

2 Rationale und reelle Zahlen

2 Rationale und reelle Zahlen 2 reelle Es gibt Mathematik mit Grenzwert (Analysis) und Mathematik ohne Grenzwert (z.b Algebra). Grenzwerte existieren sicher nur dann, wenn der Zahlbereich vollständig ist, also keine Lücken aufweist

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2016 Lineare Gleichungssysteme Schwerpunkte: Interpretation und Verständnis der Gleichungen Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik unter

Mehr

Formelsammlung Mathematik 9

Formelsammlung Mathematik 9 I Lineare Funktionen... 9.) Funktionen... 9.) Proportionale Funktionen... 9.) Lineare Funktionen... 9.4) Bestimmung von linearen Funktionen:... II) Systeme linearer Gleichungen... 9.5) Lineare Gleichungen

Mehr

Schulinterne Richtlinien Mathematik auf der Grundlage des Kernlehrplans 2005

Schulinterne Richtlinien Mathematik auf der Grundlage des Kernlehrplans 2005 Schulinterne Richtlinien Mathematik auf der Grundlage des Kernlehrplans 2005 Klasse 5 I Natürliche Zahlen 1 Zählen und darstellen 2 Große Zahlen 3 Rechnen mit natürlichen Zahlen 4 Größen messen und schätzen

Mehr

4 Kongruenz und Modulorechnung

4 Kongruenz und Modulorechnung 1 4 Kongruenz und Modulorechnung In unserer Zeitrechnung haben wir uns daran gewöhnt, nur mit endlich vielen Zahlen zu rechnen. Es ist gerade 3 Uhr und in 50 Stunden muss ich abreisen. Wie spät ist es

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

fwg Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: Zahlenstrahl

fwg Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl 0 1 2 3 4 5 6 7 8 Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt,

Mehr

Tipps und Tricks zum sicheren Rechnen. Wie rechnet man geschickt? Klammerregeln üben. Rechengesetze. Datei Nr Stand 10.

Tipps und Tricks zum sicheren Rechnen. Wie rechnet man geschickt? Klammerregeln üben. Rechengesetze. Datei Nr Stand 10. Klasse 5 Arithmetik natürlicher Zahlen Tipps und Tricks zum sicheren Rechnen Wie rechnet man geschickt? Klammerregeln üben Rechengesetze Datei Nr. 10011 Stand 10. April 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK

Mehr

5.4 Vektorgeometrie. 1 Repetition der Vektorgeometrie I Freie Vektoren, Ortsvektoren Die skalare Multiplikation eines Vektors...

5.4 Vektorgeometrie. 1 Repetition der Vektorgeometrie I Freie Vektoren, Ortsvektoren Die skalare Multiplikation eines Vektors... 5.4 Vektorgeometrie Inhaltsverzeichnis Repetition der Vektorgeometrie I. Freie Vektoren, Ortsvektoren................................... Die skalare Multiplikation eines Vektors.............................3

Mehr

Geometrische Objekte im 3-dimensionalen affinen Raum oder,... wie nützlich ist ein zugehöriger Vektorraum der Verschiebungen

Geometrische Objekte im 3-dimensionalen affinen Raum oder,... wie nützlich ist ein zugehöriger Vektorraum der Verschiebungen Geometrische Objekte im -dimensionalen affinen Raum Bekanntlich versteht man unter geometrischen Objekten Punktmengen, auf die man die üblichen Mengenoperationen wie z.b.: Schnittmenge bilden: - aussagenlogisch:

Mehr

Buch: Mathematik heute [Realschule Niedersachsen], Schroedel

Buch: Mathematik heute [Realschule Niedersachsen], Schroedel Klasse: 5 Buch: heute [Realschule Niedersachsen], Schroedel 1. Einheit: Zahlen und Größen S. 7 - S. 45 WH.: Grundrechenarten, Kopfrechenfertigkeiten 2. Einheit: Rechnen mit natürlichen Zahlen und Größen

Mehr

1 Vorlesungen: und Vektor Rechnung: 1.Teil

1 Vorlesungen: und Vektor Rechnung: 1.Teil 1 Vorlesungen: 4.10.005 und 31.10.005 Vektor Rechnung: 1.Teil Einige in der Physik auftretende Messgrößen sind durch eine einzige Zahl bestimmt: Temperatur T K Dichte kg/m 3 Leistung P Watt = J/s = kg

Mehr

Repetitionsaufgaben: Lineare Gleichungen

Repetitionsaufgaben: Lineare Gleichungen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Gleichungen Zusammengestellt von Hannes Ernst, KSR Lernziele: - Lineare Gleichungen von Hand auflösen können. - Lineare Gleichungen mit Parametern

Mehr

Einführungsphase Mathematik. Thema: Quadratische Funktionen. quadratische Gleichungen

Einführungsphase Mathematik. Thema: Quadratische Funktionen. quadratische Gleichungen Thema: Quadratische Funktionen quadratische Gleichungen Normalform einer linearen Funktion Normalform einer quadratischen Funktion Handelt es sich um quadratische Funktionen??? Ja, denn a = 3, b = 0, c

Mehr

4.4. Rang und Inversion einer Matrix

4.4. Rang und Inversion einer Matrix 44 Rang und Inversion einer Matrix Der Rang einer Matrix ist die Dimension ihres Zeilenraumes also die Maximalzahl linear unabhängiger Zeilen Daß der Rang sich bei elementaren Zeilenumformungen nicht ändert

Mehr

Mathematische Grundlagen 2. Termrechnen

Mathematische Grundlagen 2. Termrechnen Inhaltsverzeichnis: 2. Termrechnen... 2 2.1. Bedeutung von Termen... 2 2.2. Terme mit Variablen... 4 2.3. Vereinfachen von Termen... 5 2.3.1. Zusammenfassen von gleichartigen Termen... 5 2.3.2. Vereinfachen

Mehr

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte Geometrie Geometrie W. Kuhlisch Brückenkurs 206. Vektorrechnung und analytische Geometrie der Ebene, Kegelschnitte 2. Vektorrechnung und analytische Geometrie des Raumes, Anwendungen in der Geometrie,

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Timo Stöcker Erstsemestereinführung Informatik TU Dortmund 22. März 2011 Heute Themen Lineare Gleichungssysteme Matrizen Timo Stöcker https://fsinfo.cs.tu-dortmund.de/studis/ese/vorkurse/mathe

Mehr

Inhaltliche Anforderungen für ein Mathematikstudium an der Pädagogischen Hochschule Karlsruhe

Inhaltliche Anforderungen für ein Mathematikstudium an der Pädagogischen Hochschule Karlsruhe Inhaltliche Anforderungen für ein Mathematikstudium an der Pädagogischen Hochschule Karlsruhe Liebe Studierende, wenn Sie Mathematik an der Pädagogischen Hochschule Karlsruhe erfolgreich studieren möchten,

Mehr

WURZEL Werkstatt Mathematik Polynome Teil III oder Probleme lösen mit Quadratfunktionen

WURZEL Werkstatt Mathematik Polynome Teil III oder Probleme lösen mit Quadratfunktionen Die WURZEL Werkstatt Mathematik Polynome Teil III oder Probleme lösen mit Quadratfunktionen Es passiert im Alltagsgeschehen oft, dass mit Kanonen auf Spatzen geschossen wird. Auch in der Mathematik vor

Mehr

UND MOSES SPRACH AUCH DIESE GEBOTE

UND MOSES SPRACH AUCH DIESE GEBOTE UND MOSES SPRACH AUCH DIESE GEBOTE 1. Gebot: Nur die DUMMEN kürzen SUMMEN! Und auch sonst läuft bei Summen und Differenzen nichts! 3x + y 3 darfst Du NICHT kürzen! x! y. Gebot: Vorsicht bei WURZELN und

Mehr

Mit symbolischen, formalen und technischen Elementen der Mathematik umgehen Wertetabellen zur Bearbeitung linearer Zusammenhänge nutzen.

Mit symbolischen, formalen und technischen Elementen der Mathematik umgehen Wertetabellen zur Bearbeitung linearer Zusammenhänge nutzen. MAT 07-01 Zuordnungen 14 DS Leitidee: Funktionaler Zusammenhang Thema im Buch: Unterwegs Werte aus Schaubildern ablesen und ihre Bedeutung erklären. entscheiden und begründen, ob es sich um eine nicht

Mehr

Potenzen - Wurzeln - Logarithmen

Potenzen - Wurzeln - Logarithmen Potenzen - Wurzeln - Logarithmen Anna Geyer 4. Oktober 2006 1 Potenzrechnung Potenz Produkt mehrerer gleicher Faktoren 1.1 Definition (Potenz): (i) a n : a... a, n N, a R a... Basis n... Exponent od. Hochzahl

Mehr

Inhaltsverzeichnis 1 Rechnen 1.1 Die Zahlen 1.2 Zahlen darstellen 1.3 Addieren 1.4 Subtrahieren 1.5 Vereinfachen algebraischer Summen

Inhaltsverzeichnis 1 Rechnen 1.1 Die Zahlen 1.2 Zahlen darstellen 1.3 Addieren 1.4 Subtrahieren 1.5 Vereinfachen algebraischer Summen 6 Inhaltsverzeichnis 1 Rechnen... 11 1.1 Die Zahlen... 11 1.1.1 Zahlenmengen und ihre Darstellung... 11 1.1.2 Übersicht über weitere Zahlenmengen... 17 1.1.3 Zahlen vergleichen... 18 1.1.4 Größen, Variablen

Mehr

Was sind Vektoren? Wozu braucht man sie?

Was sind Vektoren? Wozu braucht man sie? Was sind Vektoren? Wozu braucht man sie? Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at 30. März 2005 1 Einleitung Dieser

Mehr

[Ganze] [ ] Zahlen in verschiedenen Formen deuten können, als Zustände gegenüber einem Nullpunkt, als Punkte auf einer Zahlengeraden

[Ganze] [ ] Zahlen in verschiedenen Formen deuten können, als Zustände gegenüber einem Nullpunkt, als Punkte auf einer Zahlengeraden September Es geht weiter... 1 Ganze Zahlen 1.1 Zahlen gegensätzlich deuten 1.2 Die Zahlengerade 1.3 Ganze Zahlen ordnen 1.4 Ganze Zahlen addieren und subtrahieren 1.5 Ganze Zahlen multiplizieren und dividieren

Mehr

Demo-Text für Quadratwurzeln ALGEBRA. Teil 1. Einführung und Grundeigenschaften. (Klasse 8 / 9) Friedrich W.

Demo-Text für  Quadratwurzeln ALGEBRA. Teil 1. Einführung und Grundeigenschaften. (Klasse 8 / 9) Friedrich W. Teil 1 Einführung und Grundeigenschaften (Klasse 8 / 9) Datei Nr. 101 Friedrich W. Buckel Stand: 1. Mai 014 ALGEBRA Quadratwurzeln INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Vorwort Die Einführung des 1-jährigen

Mehr

Propädeutikum Mathematik

Propädeutikum Mathematik Propädeutikum Mathematik Wintersemester 2016/2017 Prof. Dr. Dieter Leitmann Abteilung WI WiSe 2016/17 Seite 1 Literaturhinweise Cramer, E., Neslehova, J.: Vorkurs Mathematik, Springer, 2004 Piehler, Sippel,

Mehr

Basiswissen Klasse 5, Algebra (G8)

Basiswissen Klasse 5, Algebra (G8) Basiswissen Klasse, Algebra (G8) Natürliche Zahlen Sicherer Umgang mit den vier Grundrechenarten MH 1, S. 4- Große Zahlen schreiben und lesen Rechenregeln, wie Punkt vor Strich, Klammern Rechengesetze:

Mehr

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch WS 2010/2011 14. Januar 2011 Geometrie mit Übungen Übungsblatt 9, Musterlösungen Aufgabe 33. Es werden Kreise in der Euklidischen

Mehr

Minimalziele Mathematik

Minimalziele Mathematik Jahrgang 5 o Kopfrechnen, Kleines Einmaleins o Runden und Überschlagrechnen o Schriftliche Grundrechenarten in den Natürlichen Zahlen (ganzzahliger Divisor, ganzzahliger Faktor) o Umwandeln von Größen

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13

Corinne Schenka Vorkurs Mathematik WiSe 2012/13 4. Lineare Gleichungssysteme Ein lineares Gleichungssystem ist ein System aus Gleichungen mit Unbekannten, die nur linear vorkommen. Dieses kann abkürzend auch in Matrizenschreibweise 1 notiert werden:

Mehr