Inhaltliche Anforderungen für ein Mathematikstudium an der Pädagogischen Hochschule Karlsruhe

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Inhaltliche Anforderungen für ein Mathematikstudium an der Pädagogischen Hochschule Karlsruhe"

Transkript

1 Inhaltliche Anforderungen für ein Mathematikstudium an der Pädagogischen Hochschule Karlsruhe Liebe Studierende, wenn Sie Mathematik an der Pädagogischen Hochschule Karlsruhe erfolgreich studieren möchten, sollten Sie die unten aufgeführten Inhalte aus der Schulmathematik der Sekundarstufe I sicher beherrschen, da die Dozenten und Dozentinnen der Mathematik diese voraussetzen. Bei den Aufgaben können Sie testen, ob Ihre Kenntnisse ausreichen. Sollten Sie kleinere Lücken feststellen, empfehle ich Ihnen diese mit einen Nachschlagewerk zu beheben, z.b. Rolles, G. (Hg.)(009): Duden, Basiswissen Schule, Mathematik. Berlin. Sollten Sie größere Defizite feststellen oder Bedarf an Übungsmaterial haben, empfehle ich Ihnen, Schulbücher für den Mathematikunterricht für die Sekundarstufe I zu verwenden. Darüber hinaus bietet die Pädagogische Hochschule Karlsruhe derzeit in den Wochen unmittelbar vor Vorlesungsbeginn im Wintersemester Brückenkurse in Mathematik an, in denen Sie ihre Schulkenntnisse aus dem Mathematikunterricht der Sekundarstufe I wiederholen, vertiefen und festigen können. Die meisten der folgenden Inhalte sind Gegenstand der Brückenkurse in Mathematik der Pädagogischen Hochschule Karlsruhe. Sichere Schulkenntnisse reichen alleine aber im Allgemeinen für ein erfolgreiches Studium in Mathematik nicht aus. Wichtig ist die Bereitschaft, die Inhalte der Lehrveranstaltungen stets vor- und nachzuarbeiten. Dies gilt insbesondere deshalb, weil die Inhalte meistens aufeinander aufbauen und auch die Methodik und das Tempo in den Lehrveranstaltungen vom Unterricht in der Schule abweicht. Außerdem werden in vielen Lehrveranstaltungen Übungsaufgaben ausgegeben, deren selbstständige Vorbereitung unbedingt notwendig ist. Neben Fleiß ist auch die Fähigkeit, sich in abstrakte Inhalte einzuarbeiten notwendig. Wenn Sie die eben erwähnten Voraussetzungen mitbringen, erhöhen sich die Chancen deutlich, dass Ihr Studium in Mathematik gut verläuft. Ich wünsche Ihnen ein erfolgreiches Studium an der Pädagogischen Hochschule Karlsruhe! Christian Stellfeldt

2 . Arithmetik Was versteht man unter einem Dezimalsystem? Aufgabe: Lesen Sie die folgende Zahl richtig vor Billionen Milliarden Millionen Tausend Einer Kenntnisse der Zahlbereiche: natürliche, ganze, rationale und reelle Zahlen Aufgabe: Geben Sie eine Zahl an, die eine reelle Zahl, jedoch keine rationale Zahl ist., π, e, Kommutativ-, Assoziativ- und Distributivgesetz bezüglich der Addition und Multiplikation reeller Zahlen a) Kommutativgesetz: a + b = b + a bzw. a b = b a b) Assoziativgesetz: a + (b + c) = (a + b) + c bzw. a (b c) = (a b) c) c) Distributivgesetz: a (b +/- c) = ab +/- ac oder (a +/- b) c = ac +/- bc) Teiler und Vielfache Aufgabe: Sind die Ziffern,,, 5 oder 7 Teiler der beiden folgenden Zahlen? Lösen Sie die Aufgaben ohne Taschenrechner: a) 0 b) 8 a) I 0, I 0, 5 I 0 b) I 8, I 8, 7 I 8 Teilbarkeitsregeln für,, 5, 9 und 0 im Dezimalsystem bei natürlichen Zahlen Aufgabe: Sind die beiden folgenden Zahlen durch,, 5, 9 oder 0 teilbar? Lösen Sie die Aufgaben ohne Taschenrechner. a) b) 750 a) Teiler sind:, 5 und 0 b) Teiler sind:, und 9

3 Begründung: Eine Zahl ist durch teilbar, wenn ihre Einerziffer durch teilbar ist. Eine Zahl ist durch teilbar, wenn ihre Quersumme durch teilbar ist. Eine Zahl ist durch 5 teilbar, wenn sie auf 0 oder 5 endet. Eine Zahl ist durch 9 teilbar, wenn ihre Quersumme durch 9 teilbar ist. Eine Zahl ist durch 0 teilbar, wenn sie auf 0 endet. Primzahlen und Primfaktorzerlegung Aufgabe: a) Welche der folgenden Zahlen sind keine Primzahlen?:,,,, 9,, 7,, 5. b) Stellen Sie die folgenden Zahlen als Produkt von Primzahlen dar: 60, 80,. Lösungen: a),, 9, 5 b) 60 = 5 80 = 5 00 = 5 5. Größen Umrechnung von Längen-, Flächen- und Raummaßen Aufgabe: Rechnen Sie in die angegebenen Größen um: a), ha in m² b) 7,75 l in cm³ Lösungen: a), ha = 0 a =.000 m² b) 7,75 l = 0,00775 m³ = cm³. Funktionen Was ist eine Funktion oder Zuordnung? Aufgabe: Ist die Zuordnung eine Funktion? Begründen Sie. a) Parkgebühr Parkdauer b) Seitenlänge eines Quadrates Umfang des Quadrates Eine Funktion ist eine eindeutige Zuordnung (Abbildung), die jedem Element x aus einer Menge D eindeutig ein Element y aus einer Menge z zuordnet. a) Keine Funktion. Hier zahlt man für mehrere Stunden manchmal die gleiche Gebühr, wodurch es keine eindeutige Zuordnung ist und somit keine Funktion.

4 b) Ist eine Funktion. Hier wird jedem Umfang genau eine Seitenlänge zugeordnet, wenn die Seitlänge vergrößert wird, vergrößert sich automatisch der Umfang eindeusge Zuordnung / FunkSon. Definitions-, Ziel- und Wertemenge Aufgabe: Geben Sie die maximale Definitionsmenge, den entsprechenden Wertebereich und die Zielmenge der folgenden Funktion an: f(x) = x³? D = R Z = R W = R (R = reelle Zahlen) Proportionale Funktionen Antiproportionale Funktionen Die Ausflugskasse einer Hochschulgruppe enthält 80. a) Wie viel Euro kann die Gruppe täglich ausgeben, wenn sie (6, 8) Tage unterwegs ist? Und um welchen Zuordnungstyp handelt es sich bei dieser Zuordnung (Anzahl der Tage Ausgaben pro Tag)? b) Die Gruppe möchte pro Tag 0 ausgeben. Wie viel Geld benötigen sie für die Ausflugskasse, wenn sie 5 Tage (8 Tage, Tage) unterwegs sind? Um welchen Zuordnungstyp handelt es sich bei dieser Zuordnung (Anzahl der Tage Betrag der Ausflugskasse)? a) Antiproportionale Zuordnung Anzahl der Tage 6 8 Ausgaben pro Tag b) Proportionale Zuordnung Lineare Funktionen: Steigung, Steigungsdreieck, Punkt-Steigungsform Aufgabe: Geben Sie jeweils die Funktionsgleichung zu den Geraden der Zuordnung x y an, mit der sich der y- Wert berechnen lässt. Grün: y = Blau: y = x+ Rot: y = x

5 Quadratische Funktionen. Aufgabe: Zeichnen Sie die Parabeln zu den Funktionsgleichungen in ein Koordinatensystem. a) y = x²,5 b) y = (x ¾)² ½ c) y = x(x ),5 Definition: Eine Funktion mit einer Gleichung der Form y = ax² + bx + c oder solcher, die durch äquivalentes Umformen in diese Form überführt werden kann, heißt allgemeine quadratische Funktion. Diese kann umgewandelt werden in die Scheitelform y = (x d)² + c sowie die Normalform y = x² + px + q. Quadratische Gleichungen: a-b-c- oder p-q-formel Aufgabe: Lösen Sie die folgendenn Gleichungen ohne technische Hilfsmittel. a) 6x² + 5 = 8x + b) x = 5x² + 6 c) 6x + x² = a) 6x² + 5 = 8x + 0 = 6x² 8x + (0 = x² x + ) x₁ = ; x₂ = b) Diese Gleichung ist nicht lösbar, da der Wurzelausdruck negativ ist. Die Gleichung hat demzufolge keine reelle Lösung. c) 6x + x² = 0 = x² 6x + ( 0 = x² x + ) x =. Binomische Formeln, Potenzen, Wurzeln, Logarithmus und Exponentialgleichungen.,. und. binomische Formel Aufgabe: Bilden Sie mithilfe der binomischen Formeln ein Produkt a) x + x x b b) 5x² c) 6s² + 60st + 5t 5

6 a) (x² x)² b) (5x + ) (5x ) c) (6s +5t)² Potenzgesetze. Aufgabe: Vereinfachen Sie die folgenden Terme soweit wie möglich. a) ab³a 5ba²b b) w³ : w c) a³ b a²b a) a²b² (b 5) b) w² c) a 5 b. Aufgabe: Bestimmen Sie die Lösung so genau wie möglich. a) x = b) (x + ) = 6 c) 5 a) x = = b) x = 6 = c) x = x = = = = 6 Zehnerpotenzen. Aufgabe: Berechnen Sie mithilfe der Potenzgesetze ohne Verwendung eines Taschenrechners. 7-5 a) 9, 0, 0 b) 0 0 c) 5,8 0 Lösung der. Aufgabe: 7-5 a) 6,8 0 = b) ( ) ( 0 0 ) = 6 0² = 600 c) 0, Aufgabe: Schreiben Sie mithilfe der Zehnerpotenzen mit einer Stelle nach dem Komma. a) b) 0,009 c).80 Lösung der. Aufgabe: a) 8,7-0 b),9 0 c),8 0² Rechnen mit Wurzeln Aufgabe: Vereinfachen Sie: a) b) 50 7 c) 7 8 a) 0 7 b) 6 5 c) 6

7 Zusammenhang zwischen Potenz- und Wurzelgesetze. Aufgabe: Schreiben Sie die Ausdrücke als Potenz. a) 9 7 b) Lösung der. Aufgabe: 9 a) 7 b). Aufgabe: Schreiben Sie als Potenz und vereinfachen Sie. a) 6 b) 0 x 5 Lösung der. Aufgabe: a) b) x Logarithmus Aufgabe: Bestimmen Sie a bzw. b. a) log a = b) 9 log 8 b = a) a = 9 a = 9 a = 7 b) 8 = b b = 8 b = Exponentialgleichungen Aufgabe: Bestimmen Sie x. a) 0 x x+ = 0, b) = 6 a) x log 0 = log 0, log0 x = x = 0,5 log0, x+ b) = 6 log6 ( x+) log = log 6 x + = = x = log 7

8 5. Geometrie Für die Lösungen der Geometrieaufgaben lohnt es sich, auch mal in einem Schulbuch nachzuschauen. Kreisfläche und -umfang. Aufgabe: Ein Kreisausschnitt hat den Radius,5 cm und den Mittelpunktswinkel 7. Wie groß ist sein Flächeninhalt, wie viel Prozent der Kreisfläche ist das? Wie lang ist der Kreisbogen?. Aufgabe: Ein Kreisausschnitt mit der Bogenlänge cm hat den Mittelpunktswinkel 7. Wie groß sind sein Radius und sein Flächeninhalt? Lösung der. Aufgabe: a) A 5,98cm² Anteil d. Ausschnitts an Gesamtfläche % b,5 cm Lösung der. Aufgabe: b) r,7cm A 5,0cm² Scheitel-, Stufen-, Wechsel-, Nebenwinkel Konstruktionen (nur) mit Zirkel und Lineal (Grundkonstruktionen) Aufgaben: a) Konstruieren Sie (nur mit Zirkel und Lineal) die Mittelsenkrechte einer Strecke. b) Konstruieren Sie in einem Dreieck (nur mit Zirkel und Lineal) die Winkelhalbierenden. Besondere Punkte und Linien des Dreiecks Aufgabe: Konstruieren Sie in einem beliebigen Dreieck den Inkreis. Kongruenzsätze Aufgabe: Untersuchen Sie, welche der folgenden Aussagen wahr sind und welche nicht. Begründen Sie. a) Zwei rechtwinklige Dreiecke sind zueinander kongruent, wenn sie in einer Seitenlänge und einem weiteren Winkel übereinstimmen. b) Zwei gleichschenklige Dreiecke sind zueinander kongruent, wenn sie in der Länge eines Schenkels und in einem Basiswinkel übereinstimmen. a) Ja, durch diese Angaben lässt sich ein Dreieck eindeutig konstruieren, da eine Seite und alle Winkel gegeben sind (wsw). b) Ja, durch diese Angaben lässt sich ein Dreieck eindeutig konstruieren, da zwei Seiten und ein Winkel gegeben sind (Ssw). 8

9 Zentrische Streckung Aufgabe: Zeichnen Sie ein Dreieck und strecken Sie es an einem beliebigen Punkt Z mit dem Streckfaktor k =,5. Sinus, Cosinus und Tangens am rechtwinkligen Dreieck Aufgabe: In einem Dreieck beträgt b =5,9 cm, a =,8 cm und γ = 90. Berechnen Sie die Länge der Seite c sowie α und β. c 7,0 cm; β 57, ; α,8 9

Stoffplan Mathematik G9. Klasse 5. Zahlen. Größen. ebene Geometrie. Terme. Flächen und Körper. Stand 5/2016

Stoffplan Mathematik G9. Klasse 5. Zahlen. Größen. ebene Geometrie. Terme. Flächen und Körper. Stand 5/2016 Stoffplan Mathematik G9 Stand 5/2016 Klasse 5 Zahlen natürliche Zahlen, Anordnung auf dem Zahlenstrahl. Vorgänger, Nachfolger. Stellenwertsystem. Grundrechenarten, schriftliche Verfahren. Begriffe: Summand/Summe,

Mehr

@ GN GRUNDWISSEN MATHEMATIK. Inhalt... Seite

@ GN GRUNDWISSEN MATHEMATIK. Inhalt... Seite Inhaltverzeichnis Inhalt... Seite Klasse 5: 1 Zahlen... 1 1.1 Zahlenmengen... 1 1.2 Dezimalsystem... 1 1.3 Römische Zahlen... 1 1.4 Runden... 1 1.5 Termarten... 1 1.6 Rechengesetze... 2 1.7 Rechnen mit

Mehr

Klasse Mathematische Inhalte Kompetenzen Zeitvorgaben 5 1. Zahlen und Größen

Klasse Mathematische Inhalte Kompetenzen Zeitvorgaben 5 1. Zahlen und Größen auf der Basis des Kernlehrplans für das Fach an Lehrwerk: Lambacher Schweizer, für Gymnasien 5 1. Zahlen und Größen Darstellen - Strichlisten- Säulendiagramme - Große Zahlen - Größen messen und schätzen

Mehr

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m) Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus

Mehr

Propädeutikum Mathematik

Propädeutikum Mathematik Propädeutikum Mathematik Wintersemester 2016 / 2017 Carsten Krupp BBA und IBS Vorkurs Mathematik - Wintersemester 2016 / 2017 Seite 1 Literaturhinweise Cramer, E., Neslehova, J.: Vorkurs Mathematik, Springer,

Mehr

MATHEMATIK: Übergang von der Mittelstufe zur Oberstufe

MATHEMATIK: Übergang von der Mittelstufe zur Oberstufe LEITIDEE 1 : Zahl und Operationen Zahlentheoretische Grundkenntnisse und Rechentechniken Zahlbereiche Prozent und Zinsrechnung Terme Gleichungen und Ungleichungen Rechengesetze für Potenzen Ich beherrsche

Mehr

Grundwissen. 7. Jahrgangsstufe. Mathematik

Grundwissen. 7. Jahrgangsstufe. Mathematik Grundwissen 7. Jahrgangsstufe Mathematik Grundwissen Mathematik 7. Jahrgangsstufe Seite 1 1 Geometrie 1.1 Grundkonstruktionen Lotkonstruktion I: Gegeben ist die Gerade g und der Punkt P, der nicht auf

Mehr

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt.

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl

Mehr

Digitaler Mathe-Adventskalender Lehrplan Mathematik. Sekundarstufe I. Geschwister-Scholl-Gymnasium Pulheim, August 2001.

Digitaler Mathe-Adventskalender Lehrplan Mathematik. Sekundarstufe I. Geschwister-Scholl-Gymnasium Pulheim, August 2001. Digitaler Mathe-Adventskalender 2006 Lehrplan Mathematik Sekundarstufe I Geschwister-Scholl-Gymnasium Pulheim, August 2001 Klasse 5 Klasse 8 Klasse 6 Klasse 9 Klasse 7 Klasse 10 Klasse 5 Natürliche Zahlen

Mehr

MATHEMATIK 7. Schulstufe Schularbeiten

MATHEMATIK 7. Schulstufe Schularbeiten MATHEMATIK 7. Schulstufe Schularbeiten 1. S c h u l a r b e i t Grundrechnungsarten mit ganzen Zahlen Koordinatensystem rationale Zahlen Prozentrechnung a) Berechne: [( 26) : (+ 2) ( 91) : ( 7)] + ( 12)

Mehr

Erftgymnasium der Stadt Bergheim Schulinternes Curriculum für das Fach Mathematik in der Sekundarstufe I

Erftgymnasium der Stadt Bergheim Schulinternes Curriculum für das Fach Mathematik in der Sekundarstufe I Erftgymnasium der Stadt Bergheim Schulinternes Curriculum für das Fach Mathematik in der Sekundarstufe I Klasse 5 Inhaltliches Fachwissen Fachmethodische Kompetenzen Formalia - Natürliche Zahlen (incl.

Mehr

2. Bereich der reellen Zahlen IR

2. Bereich der reellen Zahlen IR Fachinternes Curriculum für das Fach Mathematik (letzte Aktualisierung: 14.03.2014) Ab Schuljahr: 14/15 Jahrgang: 9 Die dritte Klassenarbeit wird in Klasse 9 über 90 Minuten geschrieben. Zeitraum Pflichtmodul

Mehr

Propädeutikum Mathematik

Propädeutikum Mathematik Propädeutikum Mathematik Sommersemester 2016 Carsten Krupp BBA Seite 1 Literaturhinweise Cramer, E., Neslehova, J.: Vorkurs Mathematik, Springer, 2004 Piehler, Sippel, Pfeiffer: Mathematik zum Studieneinstieg,

Mehr

I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE

I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE I. Reelle Zahlen 1. Die Menge der rationalen Zahlen und die Menge der irrationalen Zahlen bilden zusammen die Menge der reellen Zahlen. Nenne Beispiele für rationale und irrationale Zahlen.. Aus negativen

Mehr

Minimalziele Mathematik

Minimalziele Mathematik Jahrgang 5 o Kopfrechnen, Kleines Einmaleins o Runden und Überschlagrechnen o Schriftliche Grundrechenarten in den Natürlichen Zahlen (ganzzahliger Divisor, ganzzahliger Faktor) o Umwandeln von Größen

Mehr

Zusammenstellung aus ehemaligen DDR Prüfungsaufgaben (Aufgabe 6)

Zusammenstellung aus ehemaligen DDR Prüfungsaufgaben (Aufgabe 6) (Aufgabe 6) 0. Klasse Abschlussprüfungen Jahrgänge 970 99 Fach Mathematik Material für Fachberater, gedacht als Beispiele für die Aufgabe der neuen brandenburger Prüfungsaufgaben 970 6 a) Ermitteln Sie

Mehr

Fachberatung Mathematik Hilde Zirkler Goethe-Gymnasium Bensheim Bensheim, im Juni Übergang Klasse 10/E1 (G9) und Klasse 9/E1 (G8)

Fachberatung Mathematik Hilde Zirkler Goethe-Gymnasium Bensheim Bensheim, im Juni Übergang Klasse 10/E1 (G9) und Klasse 9/E1 (G8) Fachberatung Mathematik Hilde Zirkler Goethe-Gymnasium Bensheim Bensheim, im Juni 0 Übergang Klasse 0/E (G9) und Klasse 9/E (G8) Mathematik Übungsaufgaben zum Mittelstufenstoff im Fach Mathematik. Lineare

Mehr

JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen

JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen ELEMENTE DER MATHEMATIK 5 Schroedel Verlag Argumentieren Problemlösen Modellieren Werkzeuge Arithmetik/ Algebra Funktionen Geometrie

Mehr

I. Symmetrie. II. Grundkonstruktionen

I. Symmetrie. II. Grundkonstruktionen I. Symmetrie Achsensymmetrie Zwei Figuren, die bezüglich einer Achse symmetrisch zueinander sind, nennt man achsensymmetrisch. Punktsymmetrie Zwei Figuren, die bei einer Halbdrehung um einen Punkt ineinander

Mehr

Gegeben sind die Punkte A(6 7) und B(-5 3). Bestimme eine Funktion, deren Graph durch die beiden Punkte verläuft.

Gegeben sind die Punkte A(6 7) und B(-5 3). Bestimme eine Funktion, deren Graph durch die beiden Punkte verläuft. Blatt 1 Gegeben sind die Punkte A(6 7) und B(-5 3). Bestimme eine Funktion, deren Graph durch die beiden Punkte verläuft. Berechne: 1 n + x 1 x+ 1 C Formuliere den Höhensatz h A B Frau Huber zahlt am 21.01.2005

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe .0 Berechne folgende Terme:.. x + 4 = x =. (y x) (x + y) =.0 Schreibe ohne Klammern und vereinfache soweit wie möglich:. (x + ) (x 4) =. (0,4x + y) (0,4x y) + (y) =. Ermittle den Extremwert durch Termumformung.

Mehr

Klasse 5-10: Lambacher-Schweizer Mathematik, Klett-Verlag

Klasse 5-10: Lambacher-Schweizer Mathematik, Klett-Verlag Ziele -1- Der Unterricht in der Sekundarstufe I soll mathematisches Denken als wichtigstes Mittel zur rationalen Erkenntnis und Gestaltung unserer Welt durch Erstellung und Nutzung entsprechender Modelle

Mehr

Sekundarschulabschluss für Erwachsene

Sekundarschulabschluss für Erwachsene SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe 1.0 Gegeben ist die Funktion f: y = 1 ( ) 1 x + in G= x. 1.1 Tabellarisiere f für x = [ -1; 7 ] mit x = 1 sowie für x =,5 und x =,5. 1. Zeichne den Graphen von f. Für die Zeichnung: 1 LE = 1 cm - 1 x 8-1

Mehr

1. Daten und Diagramme Beispiele / Veranschaulichung

1. Daten und Diagramme Beispiele / Veranschaulichung 1. Daten und Diagramme / Veranschaulichung Zum Vergleich von Daten sind Säulen- und Balkendiagramme geeignet: Bei dieser Arbeit gab es zweimal die Note 1, siebenmal die Note 2, usw. Die Verteilung innerhalb

Mehr

7.1 Algebra Rechnen mit rationalen Zahlen und Termen

7.1 Algebra Rechnen mit rationalen Zahlen und Termen Gymnasium bei St. Anna, Augsburg Seite 1 Grundwissen 7. Klasse 7.1 Algebra 7.1.1 Rechnen mit rationalen Zahlen und Termen WH: Siehe dazu..3 Vorrangregeln und.. K-, A-, D-Gesetze sowie 6. Rechengesetze

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Achsensymmetrie. Grundkonstruktionen

Achsensymmetrie. Grundkonstruktionen M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5 (Stark 7 S. 6ff) Lösungen IV. a) gleichschenklig 0) a) () α = β = 6,7 () β = 7,8 ; γ = 4,4 () α = 4 ; γ = (4) α = β = (80 γ)/ b) 79,6 und 0,8 oder 0, und 0, c) α = β = 64 ; γ = d) gleichschenklig; zwei

Mehr

Grundlagen Mathematik 7. Jahrgangsstufe

Grundlagen Mathematik 7. Jahrgangsstufe ALGEBRA 1. Grundlagen Grundlagen Mathematik 7. Jahrgangsstufe Menge der ganzen Zahlen Z = {..., -3, -2, -1, 0, 1, 2, 3,... } Menge der rationalen Zahlen Q = { z z Z und n N } (Menge aller n positiven und

Mehr

Abtei-Gymnasium Brauweiler Schulinterner Lehrplan im Fach Mathematik (Stand )

Abtei-Gymnasium Brauweiler Schulinterner Lehrplan im Fach Mathematik (Stand ) Abtei-Gymnasium Brauweiler Schulinterner Lehrplan im Fach Mathematik (Stand 20.08.2012) Jg. Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen 5 Arithmetik / Algebra Große Zahlen auf verschiedene

Mehr

Berufliches Gymnasium Gelnhausen

Berufliches Gymnasium Gelnhausen Berufliches Gymnasium Gelnhausen Fachbereich Mathematik Die inhaltlichen Anforderungen für das Fach Mathematik für Schülerinnen und Schüler, die in die Einführungsphase (E) des Beruflichen Gymnasiums eintreten

Mehr

Übungsaufgaben zu quadratischen Gleichungen und Parabeln

Übungsaufgaben zu quadratischen Gleichungen und Parabeln Übungsaufgaben zu quadratischen Gleichungen und Parabeln Binomische Formeln:. binomische Formel: ( a + b) = a + ab + b. binomische Formel:. binomische Formel: ( a b) = a ab + b ( a + b)(a b) = a b Lösungsformel

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Wissen und Können 1. Terme Terme sind sinnvolle Rechenausdrücke mit Zahlen, Variablen und Rechenzeichen. Berechnung von Termwerten

Mehr

Strahlensätze anwenden. ähnliche Figuren erkennen und konstruieren. ähnliche Figuren mit Hilfe zentrischer Streckung konstruieren.

Strahlensätze anwenden. ähnliche Figuren erkennen und konstruieren. ähnliche Figuren mit Hilfe zentrischer Streckung konstruieren. MAT 09-01 Ähnlichkeit 14 Doppelstunden Leitidee: Raum und Form Thema im Buch: Zentrische Streckung (G), Ähnlichkeit (E) Strahlensätze anwenden. ähnliche Figuren erkennen und konstruieren. ähnliche Figuren

Mehr

Sekundarschulabschluss für Erwachsene. Geometrie A 2012

Sekundarschulabschluss für Erwachsene. Geometrie A 2012 SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2012 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Allgemeiner Maschinenbau Fahrzeugtechnik Dresden 2002

Mehr

Grundwissen Mathematik 7. Klasse

Grundwissen Mathematik 7. Klasse Welfen-Gymnasium Schongau 1 Grundwissen Mathematik 7. Klasse Wissen Aufgaben/Beispiele Lösungen Achsenspiegelung Eigenschaften der Achsenspiegelung: - Die Verbindungsstrecke von Punkt P und Bildpunkt P

Mehr

Übungsaufgaben zum Mittelstufenstoff im Fach Mathematik

Übungsaufgaben zum Mittelstufenstoff im Fach Mathematik Fachberatung Mathematik Hilde Zirkler Goethe-Gymnasium Bensheim Bensheim, im Juni 009 Übergang Klasse 10 / Klasse 11 Mathematik Übungsaufgaben zum Mittelstufenstoff im Fach Mathematik 1. Lineare Funktionen

Mehr

Brückenkurs Mathematik für Studierende der Chemie

Brückenkurs Mathematik für Studierende der Chemie Brückenkurs Mathematik für Studierende der Chemie PD Dr Dirk Andrae (nach Vorlagen von Dr Werner Gans vom WS 2015/2016) Institut für Chemie und Biochemie Freie Universität Berlin 20 September 2016 1 Teil:

Mehr

Helmholtz-Gymnasium Helmholtzstr. 18, Bonn Tel / FAX 0228 /

Helmholtz-Gymnasium Helmholtzstr. 18, Bonn Tel / FAX 0228 / Helmholtz-Gymnasium Helmholtzstr. 18, 53123 Bonn Tel. 0228 / 777250 - FAX 0228 / 777264 sekretariat@helmholtz-bonn.de Schulinternes Curriculum des Faches Mathematik für die Sekundarstufe I Das Curriculum

Mehr

Grundwissen 7 Bereich 1: Terme

Grundwissen 7 Bereich 1: Terme Bereich 1: Terme Termwerte 1.1 S1 T (1) = 6 T (2) = 7 T ( 2) 3 = 12 1 4 = 12, 25 1.2 S1 m 2 0, 5 0 1 2 1 3 6 6 2 A(m) 7 11 5 0 1 Setzt man die Zahl 5 ein, so entsteht im Nenner die Zahl 0. Durch 0 zu teilen

Mehr

Heinrich-Mann-Gymnasium schulinterner Lehrplan Stand

Heinrich-Mann-Gymnasium schulinterner Lehrplan Stand Heinrich-Mann-Gymnasium schulinterner Lehrplan Stand 04.09.2013 Mathematik Klasse 5 (Lehrbuch: Lambacher Schweizer, ausgehend von vier Wochenstunden, kursiv optional, Übungsmaterial kann aus den Servicebänden

Mehr

Formelsammlung Mathematik 9

Formelsammlung Mathematik 9 I Lineare Funktionen... 9.) Funktionen... 9.) Proportionale Funktionen... 9.) Lineare Funktionen... 9.4) Bestimmung von linearen Funktionen:... II) Systeme linearer Gleichungen... 9.5) Lineare Gleichungen

Mehr

Schulinterner Lehrplan Mathematik für die Jahrgangsstufe 5 (G 8)

Schulinterner Lehrplan Mathematik für die Jahrgangsstufe 5 (G 8) I Schulinterner Lehrplan Mathematik für die Jahrgangsstufe 5 (G 8) Inhaltsbezogene Kompetenzen / Kapitel Natürliche Zahlen 1) Zählen und Darstellen 2) Große Zahlen; Runden 3) Rechnen; Fachbegriffe; Kopfrechnen

Mehr

1. Schularbeit Stoffgebiete:

1. Schularbeit Stoffgebiete: 1. Schularbeit Stoffgebiete: Grundrechnungsarten mit ganzen Zahlen Koordinatensystem a) Berechne: 6 Punkte [( 36) + ( 64)] : ( 4) + ( 144) : ( 12) 16 ( 2) = b) Löse die drei Gleichungen und mache die Probe:

Mehr

Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar.

Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar. Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar. Es gelten der Stoff aus www.mathbu.ch 8+ resp. 9+. A00 Arithmetisches Rechnen / allgemeines Rechnen

Mehr

Schulcurriculum für das Fach Mathematik

Schulcurriculum für das Fach Mathematik Evangelisches Gymnasium Siegen Schulcurriculum für das Fach Mathematik Unterrichtsinhalte der Jahrgangsstufe 5 1. Zahlen (Kapitel 1) Runden und Schätzen Große Zahlen Zahlen in Bildern 2. Größen (Kapitel

Mehr

Propädeutikum Mathematik

Propädeutikum Mathematik Propädeutikum Mathematik Wintersemester 2016/2017 Prof. Dr. Dieter Leitmann Abteilung WI WiSe 2016/17 Seite 1 Literaturhinweise Cramer, E., Neslehova, J.: Vorkurs Mathematik, Springer, 2004 Piehler, Sippel,

Mehr

Curriculum Mathematik

Curriculum Mathematik Klasse 5 Natürliche Zahlen Rechnen mit natürlichen Zahlen: Kopfrechnen, Überschlag, Runden, schriftliches Rechnen, Rechengesetze, Vorrangregeln, Terme berechnen Zahlenstrahl und Maßstäbe Darstellung von

Mehr

Grundwissen 8I/11. Terme

Grundwissen 8I/11. Terme Grundwissen 8I/ Termumformungen. Vereinfachung von Produkten Terme Halte dich an folgende Reihenfolge: Klammern bei Potenzen auflösen Vorzeichen des Produkts bestimmen Ordnen: Zahlen zuerst, dann Variablen

Mehr

Themenbereich: Besondere Dreiecke Seite 1 von 6

Themenbereich: Besondere Dreiecke Seite 1 von 6 Themenbereich: Besondere Dreiecke Seite 1 von 6 Lernziele: - Kenntnis der Bezeichnungen für besondere Dreiecke - Kenntnis der Seiten- und Winkelbezeichnungen bei besonderen Dreiecken - Kenntnis der Eigenschaften

Mehr

Achsensymmetrie. Konstruktionen. Mathematik-Grundwissen Klassenstufe 7

Achsensymmetrie. Konstruktionen. Mathematik-Grundwissen Klassenstufe 7 Wissen Achsensymmetrie Beispiel Figuren die an einer Achse a gespiegelt werden nennt man achsensymmetrisch bezüglich a. Die Verbindungsstrecke zwischen zwei achsensymmetrischen Punkten wird durch die Achse

Mehr

Mathematik. Allgemeine Hinweise. Grundwissen und Kernkompetenzen. 9.1 Terme (ca. 24 Std.)

Mathematik. Allgemeine Hinweise. Grundwissen und Kernkompetenzen. 9.1 Terme (ca. 24 Std.) Mathematik Mathematik Vorbereitungsklasse 1 Allgemeine Hinweise Die Beziehungen zwischen Geometrie und Algebra werden in der Jahrgangsstufe 9 weiter ausgebaut. Die Schüler erweitern ihre Fähigkeiten, geometrische

Mehr

Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS

Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS Stoff für den Einstufungstest Mathematik in das 1. Jahr AHS: Mit und ohne Taschenrechner incl. Vorrangregeln ( Punkt vor Strich, Klammern, ):

Mehr

Zahlen. Bruchrechnung. Natürliche Zahlen

Zahlen. Bruchrechnung. Natürliche Zahlen Themenübersicht 1/5 Alle aktuell verfügbaren Themen (Klasse 4 10) Dieses Dokument bildet alle derzeit verfügbaren Themen ab. Die jeweils aktuellste Version des Dokuments können Sie auf der Startseite in

Mehr

Übungen aus dem Buch: 65/15; 69/16; 74/8; 97/9a; 101/6c; 101/8; 106/10; 108/Beweise; 116/8a Aufgaben auf S. 151: 1; 2; 3; 4; 5; c Mc.

Übungen aus dem Buch: 65/15; 69/16; 74/8; 97/9a; 101/6c; 101/8; 106/10; 108/Beweise; 116/8a Aufgaben auf S. 151: 1; 2; 3; 4; 5; c Mc. AB 25, Seite 1 Satz von Thales 8e 08.03.2012 Aus alten Klassenarbeiten: 1) Trapez: Gegeben ist ein Trapez mit den gegenüber liegenden Seiten a und c und der Höhe h a auf a. Erläutere mit einer Skizze,

Mehr

Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten

Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten Ausgewählte Aufgaben zur Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten Lehrplanabschnitt M 9.6 Fortführung der Raumgeometrie Ausführliche Hinweise zur Verwendung der folgenden

Mehr

z. B. Packung c) Nenne einen Gegenstand, der etwa 1 kg wiegt. Zucker, Mehl, Milch d) Zeichne ein Quadrat mit dem Flächeninhalt 9 cm².

z. B. Packung c) Nenne einen Gegenstand, der etwa 1 kg wiegt. Zucker, Mehl, Milch d) Zeichne ein Quadrat mit dem Flächeninhalt 9 cm². Einsetzbar ab Lerneinheit Zuordnungen a) Runde 34,92 auf Zehntel. 35,0 b) Berechne: 3 5 11 3 +. = 1 4 8 8 8 z. B. Packung c) Nenne einen Gegenstand, der etwa 1 kg wiegt. Zucker, Mehl, Milch d) Zeichne

Mehr

OvTG Gauting, Grundwissen Mathematik 7. Klasse

OvTG Gauting, Grundwissen Mathematik 7. Klasse 1. Symmetrie (vgl. auch Grundwissen 5. Klasse) Achsensymmetrie Zwei Figuren, die bezüglich einer Achse symmetrisch zueinander sind, nennt man achsensymmetrisch. a Punktsymmetrie Zwei Figuren, die bei einer

Mehr

Damit kann die Kantenlänge s berechnet werden: s = s=17cm ; 3s = 51cm; 5s = 85 cm d) Volumen des Würfels: 2197cm 3

Damit kann die Kantenlänge s berechnet werden: s = s=17cm ; 3s = 51cm; 5s = 85 cm d) Volumen des Würfels: 2197cm 3 1 a) b) c) d) 3 59.57 3.905493027 3.905 (mit TR lösen) 3 656.589 8.691562701 8.692 (mit TR lösen) 3 125.125 5.001666111 5.002 (mit TR lösen) 3 30.8994 3.137978874 3.138 (mit TR lösen) e) 3 30 1256 0.287989866

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe 1. Bestimme m so, dass die quadratische Gleichung nur 1 Lösung hat: 4x² - mx + 5m = 0 2.0 Von einer zentrischen Streckung sind A (-3/3), A (2/-2), B (-5/-1), B (2,5/-1) und C(-5/3) bekannt. 2.1 Konstruiere

Mehr

Mit symbolischen, formalen und technischen Elementen der Mathematik umgehen Wertetabellen zur Bearbeitung linearer Zusammenhänge nutzen.

Mit symbolischen, formalen und technischen Elementen der Mathematik umgehen Wertetabellen zur Bearbeitung linearer Zusammenhänge nutzen. MAT 07-01 Zuordnungen 14 DS Leitidee: Funktionaler Zusammenhang Thema im Buch: Unterwegs Werte aus Schaubildern ablesen und ihre Bedeutung erklären. entscheiden und begründen, ob es sich um eine nicht

Mehr

Grundwissen. 5. Jahrgangsstufe. Mathematik

Grundwissen. 5. Jahrgangsstufe. Mathematik Grundwissen 5. Jahrgangsstufe Mathematik Grundwissen Mathematik 5. Jahrgangsstufe Seite 1 1 Natürliche Zahlen 1.1 Große Zahlen und Zehnerpotenzen eine Million = 1 000 000 = 10 6 eine Milliarde = 1 000

Mehr

Fach: Mathematik Klasse 5/6

Fach: Mathematik Klasse 5/6 Fach: Mathematik Klasse 5/6 ganze Zahlen rationale Zahlen Zehnerpotenzen Brüche Dezimalbrüche Prozentangaben Addieren Subtrahieren Multiplizieren Dividieren Taschenrechner Inhaltsformeln einfache Gleichungen

Mehr

Einstiegsvoraussetzungen 1. Semester

Einstiegsvoraussetzungen 1. Semester Einstiegsvoraussetzungen 1. Semester Bereich: Zahlen und Maße Mengen können Mengen angeben. verstehen die Begriffe Element von und Teilmenge und können sie anwenden. kennen die Mengenoperationen Vereinigung,

Mehr

Selbsttest Mathematik des FB 14 der Universität Kassel

Selbsttest Mathematik des FB 14 der Universität Kassel Selbsttest Mathematik des F 1 der Universität Kassel Der folgende Selbsttest soll Ihnen helfen Ihre mathematischen Fähigkeiten besser einzuschätzen, um zu erkennen, ob Ihre Mathematikkenntnisse für einen

Mehr

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen.

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen. Das vorliegende Skript beschäftigt sich mit dem Thema Elementargeometrie. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft(MSG) im Schuljahr 2012/2013. Die vorliegende

Mehr

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe

Mehr

MW-E Mathematikwettbewerb der Einführungsphase

MW-E Mathematikwettbewerb der Einführungsphase MW-E Mathematikwettbewerb der Einführungsphase. Februar 0 MW-E Mathematikwettbewerb der Einführungsphase Hinweis: Von jeder Schülerin bzw. jedem Schüler werden fünf Aufgaben gewertet. Werden mehr als fünf

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengang Bauingenieurwesen Dresden 2005 . Mengen Kenntnisse

Mehr

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel:

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel: 1. Zahlenmengen Wissensgrundlage Aufgabenbeispiele Gib die jeweils kleinstmögliche Zahlenmenge an, welche die Zahl enthält? R Q Q oder All diejenigen Zahlen, die sich nicht mehr durch Brüche darstellen

Mehr

Definitions- und Formelübersicht Mathematik

Definitions- und Formelübersicht Mathematik Definitions- Formelübersicht Mathematik Definitions- Formelübersicht Mathematik Mengen Intervalle Eine Menge ist eine Zusammenfassung von wohlunterschiedenen Elementen zu einem Ganzen. Dabei muss entscheidbar

Mehr

Gymnasium Hilpoltstein Grundwissen 7. Jahrgangsstufe

Gymnasium Hilpoltstein Grundwissen 7. Jahrgangsstufe Wissen / Können 1. Symmetrie Gymnasium Hilpoltstein Grundwissen 7. Jahrgangsstufe Definitionen und Beispiele Achsensymmetrie Eine Figur heißt achsensymmetrisch, wenn sie durch Umklappen um eine Gerade

Mehr

8.1 Proportionalität. 8.2 Funktionen Proportionale Zuordnungen Funktion. P = x y ist der Vorrat von 6000g.

8.1 Proportionalität. 8.2 Funktionen Proportionale Zuordnungen Funktion. P = x y ist der Vorrat von 6000g. Gmnasium bei St. Anna, Augsburg Seite Grundwissen 8. Klasse 8. Proportionalität 8.. Proportionale Zuordnungen Gehört bei einer Zuordnung zweier Größen zu einem Vielfachen der einen Größe das gleiche Vielfache

Mehr

Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius)

Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius) Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius) 1 Grundregeln des Rechnens 1.1 Zahlbereiche......... Zahlen N {1, 2, 3,...}......... Zahlen Z {..., 2, 1, 0, 1, 2,...}......... Zahlen Q { a b a Z, b N}.........

Mehr

Die am Goethe-Gymnasium eingeführten Mathematikbücher der Klassen 8, 9 10

Die am Goethe-Gymnasium eingeführten Mathematikbücher der Klassen 8, 9 10 Goethe-Gymnasium Bensheim Fachschaft Mathematik Hilde Zirkler Bensheim, im Juli 006 Übergang Klasse 10 / Klasse 11 Mathematik Übungsaufgaben zum Mittelstufenstoff im Fach Mathematik 1. Lineare Funktionen

Mehr

1.2 Rechnen mit Termen II

1.2 Rechnen mit Termen II 1.2 Rechnen mit Termen II Inhaltsverzeichnis 1 Ziele 2 2 Potenzen, bei denen der Exponent negativ oder 0 ist 2 3 Potenzregeln 3 4 Terme mit Wurzelausdrücken 4 5 Wurzelgesetze 4 6 Distributivgesetz 5 7

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

3 Geometrisches Beweisen

3 Geometrisches Beweisen 22 3 Geometrisches Beweisen 3.1 Axiome Durch empirische Untersuchungen werden immer wieder Gesetzmäßigkeiten gefunden, die man versucht durch logische Schlüsse zu begründen. Irgendwann am Ende einer Schlusskette

Mehr

Grundwissen. 7. Jahrgangsstufe. Mathematik

Grundwissen. 7. Jahrgangsstufe. Mathematik Grundwissen 7. Jahrgangsstufe Mathematik Grundwissen Mathematik 7. Jahrgangsstufe Seite 1 1 Geometrie 1.1 Grundkonstruktionen Lotkonstruktion I: Gegeben ist die Gerade g und der Punkt P, der nicht auf

Mehr

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1 2006 Runde 1 Aufgabe 1 Die Ziffern von 1 bis 5 sollen so in einer Reihe angeordnet werden, dass jedes Paar benachbarter Ziffern eine Zahl ergibt, die ein Produkt zweier einstelliger Zahlen ist. Bestimme

Mehr

1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...}

1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} 1 Grundwissen Mathematik 5.Klasse Gymnasium SOB 1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} Darstellung am Zahlenstrahl: Darstellung

Mehr

Graphen quadratischer Funktionen und deren Nullstellen

Graphen quadratischer Funktionen und deren Nullstellen Binomische Formeln Mithilfe der drei binomischen Formeln kann man Funktionen bzw. Gleichungen vereinfachen. 1. Binomische Formel ( Plusformel ) a 2 + 2 a b+ b 2 = (a+ b) 2 Herleitung: (a+ b) 2 = (a+ b)

Mehr

Fachcurriculum. Mathematik Klassen 7 und 8

Fachcurriculum. Mathematik Klassen 7 und 8 Fachcurriculum Mathematik Klassen 7 und 8 Ab Schuljahr 2006/07 (überarbeitet 2013/14) Mathematik 7/8 Seite 1 Themenbereich 7.1 Prozent- und Zinsrechnung Absoluter und relativer Vergleich - Anteile in Prozent.

Mehr

Fit für die MSS? Wiederholungsaufgaben aus Klasse 8-10

Fit für die MSS? Wiederholungsaufgaben aus Klasse 8-10 Fit für die MSS? Wiederholungsaufgaben aus Klasse 8-0 Aufgaben Richtig Themengebiet : Terme /. Vereinfache: (9x ) + 3x xy + x ( 3xy) (x + 3) (x ) + (x + 3)² abc 5x 0 3yx x +. Kürze: a) b) c) d) 5a² b 5

Mehr

Übergang Klasse 10/E1 (G9) und Klasse 9/E1 (G8) Mathematik. Übungsaufgaben zum Mittelstufenstoff im Fach Mathematik

Übergang Klasse 10/E1 (G9) und Klasse 9/E1 (G8) Mathematik. Übungsaufgaben zum Mittelstufenstoff im Fach Mathematik Fachberatung Mathematik Hilde Zirkler Goethe-Gymnasium Bensheim Bensheim, im Juli 04 Übergang Klasse 0/E (G9) und Klasse 9/E (G8) Mathematik Übungsaufgaben zum Mittelstufenstoff im Fach Mathematik a. Lineare

Mehr

Fach : Mathematik Klasse 5/6. Kerncurriculum Schulcurriculum Hinweise

Fach : Mathematik Klasse 5/6. Kerncurriculum Schulcurriculum Hinweise Fach : Mathematik Klasse 5/6 Kompetenzen siehe Bildungsplan 1. Leitidee Zahl ganze Zahlen rationale Zahlen Zehnerpotenzen Brüche Dezimalbrüche Prozentangaben 2. Leitidee Algorithmus Addieren Subtrahieren

Mehr

Themen des schulinternen Curriculums Mathematik

Themen des schulinternen Curriculums Mathematik Brüche I Figuren und Körper I Rechnen in N und Z Größen Beschreibende Statistik Themen des schulinternen Curriculums Mathematik Klasse 5 Fragebögen auswerten Diagramme erstellen und Informationen daraus

Mehr

- G1 - Grundlagen der Mathematik - Bruchrechnen - MSS Böblingen. Einstiegsaufgaben: Merke: a) Addieren von Brüchen. b) Subtrahieren von Brüchen.

- G1 - Grundlagen der Mathematik - Bruchrechnen - MSS Böblingen. Einstiegsaufgaben: Merke: a) Addieren von Brüchen. b) Subtrahieren von Brüchen. MSS Böblingen - Bruchrechnen - - G - Einstiegsaufgaben: a a a) + = 6x 4x a + a b) = 6x x a a c) = 6x 4x a a d) : = 6x 4x e) 7 = Merke: a) Addieren von Brüchen b) Subtrahieren von Brüchen c) Multiplizieren

Mehr

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $ $Id: dreieck.tex,v 1.6 2013/04/18 15:03:29 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck Wir hatten gerade begonnen uns mit den speziellen Punkten im Dreieck zu beschäftigen. Dabei beschränken

Mehr

Rechnen mit Quadratwurzeln

Rechnen mit Quadratwurzeln 9. Grundwissen Mathematik Algebra Klasse 9 Rechnen mit Quadratwurzeln Die Quadratwurzel aus a ist diejenige nichtnegative Zahl aus R, deren Quadrat wieder a ergibt. a nennt man Radikand. Man schreibt dafür

Mehr

Mathematik Quadratwurzel und reelle Zahlen

Mathematik Quadratwurzel und reelle Zahlen Mathematik Quadratwurzel und reelle Zahlen Grundwissen und Übungen a : a a Stefan Gärtner 1999 004 Gr Mathematik elementare Algebra Seite Inhalt Inhaltsverzeichnis Seite Grundwissen Definition Quadratwurzel

Mehr

Grundwissen. Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium. Jahrgangsstufe: 7(G8)

Grundwissen. Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium. Jahrgangsstufe: 7(G8) Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium Gymnasium Eckental Neunkirchener Straße 9042 Eckental Grundwissen Jahrgangsstufe: 7(G8) Vereinfachen von Summen

Mehr

Eingangstest Mathematik

Eingangstest Mathematik Eingangstest Mathematik DHBW Mannheim Fachbereich Technik e-mail: Adresse: Gesamtzeit: 20 Minuten Gesamtpunktzahl: 20 Beachten Sie bitte folgende Punkte:. Der folgende Test umfasst neun Aufgabenblöcke.

Mehr

Lösungen zum Thema Geometrie. Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt.

Lösungen zum Thema Geometrie. Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt. Lösungen zum Thema Geometrie Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt. Höhe h c Winkelhalbierende w α Mittelsenkrechte ms c Seitenhalbierende s c b)

Mehr

Stoffverteilungsplan Mathematik Klasse 5 Schuljahr 2015/2016

Stoffverteilungsplan Mathematik Klasse 5 Schuljahr 2015/2016 Klasse 5 Schuljahr 2015/2016 Bereich 1 Strichlisten und Diagramme Zahlenstrahl und Anordnung Dezimalsystem Große Zahlen; Schätzen; Runden Große Einmaleins Bereich 2 Natürliche Zahlen Addition und Subtraktion

Mehr

Mathematiklehrplan GYMNASIUM VOGELSANG SOLINGEN Städtisches Gymnasium für Jungen und Mädchen mit Sekundarstufen I und II

Mathematiklehrplan GYMNASIUM VOGELSANG SOLINGEN Städtisches Gymnasium für Jungen und Mädchen mit Sekundarstufen I und II Klasse : 5 3 Wochen 1. Zahlen und Größen Große Zahlen, Dezimalsystem, Potenzen, Runden, Größen, (optional: Einfache Bruchteile von Größen), Messen und schätzen, Diagramme Projekt Weltraum 2. Die vier Grundrechenarten

Mehr

FUNKTIONEN. ein Leitprogramm für die Berufsmaturität

FUNKTIONEN. ein Leitprogramm für die Berufsmaturität FUNKTIONEN ein Leitprogramm für die Berufsmaturität von Johann Berger 2000 Inhaltsverzeichnis Einleitung 3 Arbeitsanleitung 3 1 Der Funktionsbegriff 3 2 Lineare 6 3 Quadratische 10 EINLEITUNG Dieses Leitprogramm

Mehr