2 Invarianz. 2.1 Definitionen

Größe: px
Ab Seite anzeigen:

Download "2 Invarianz. 2.1 Definitionen"

Transkript

1 2 Invarianz 2.1 Definitionen Sei im folgenden immer eine W familie (P θ ) θ Θ (abgekürzte schreibweise (P θ )) auf einem Datenraum Y zugrunde gelegt. Definition [Transformationsgruppe]. Eine Menge G Abb(Y, Y) heisst Transformationsgruppe, wenn G bezüglich der üblichen Komposition eine Gruppe ist. Insbesondere sind die Abbildungen g bijektiv. Ist die Gruppe G eindeutig indiziert, d.h. ist G = {g i i I} so, dass g i g j für alle i j, so muss auch I eine Gruppenstruktur besitzen, denn mit g i, g j G ist auch g i g j G und somit gibt es ein k I so dass g k = g i g j. Es gibt also eine Gruppenstruktur auf I mit k = i j. Insbesondere wird durch die Zuweisung i g i ein Gruppenisomorphismus gegeben. Definition A [Invarianz einer W familie]. Sei (P θ ) eine W familie und G eine Transformationsgruppe. Die Familie (P θ ) heisst G-invariant, wenn die W familie eindeutig indiziert ist und es für jedes θ Θ und für jedes g G ein θ = θ (θ, g) gibt, so dass mit Y P θ folgt, dass g(y ) P θ. Lemma. Jedes g G definiert eine eindeutige bijektive Abbildung ϕ g : Θ Θ, ϕ g (θ) = θ, wobei θ wie in der Definition gewählt sei. Beweis. Aus der Eindeutigkeit der Indizierung von (P θ ) folgt, dass es zu gegebenen g und θ nur ein θ mit der geforderten Eigenschaft gibt. Die Abbildung ϕ g ist also eindeutig definiert. Die Bijektivität folgt aus die Gruppenstruktur von G. Beispiel. Sei Y = R n. Wir definieren g b,c (y) := (cy 1 +b,..., cy n +b) = cy+b1 n R n und G := {g b,c b R, c > 0}. Sei P µ,σ 2 die W familie erzeugt durch eine Stichprobe Y 1,..., Y n aus N (µ, σ 2 ), µ R, σ 2 > 0. Da cy i + b N (cµ + b, c 2 σ 2 ), gilt für jedes g b,c G Y P µ,σ 2 g b,c (Y ) P cµ+b,c 2 σ 2. Die Familie (P µ,σ 2) ist somit G-invariant. Für ein festes g b,c wird eine Transformation ϕ gb,c : R (0, ) R (0, ) definiert, wobei ϕ gb,c (µ, σ 2 ) = (cµ + b, c 2 σ 2 ). Die Menge R (0, ) trägt somit eine Gruppenstruktur, für die mit b 1, b 2 R und c 1, c 2 > 0 gilt g b1,c 1 g b2,c 2 = g c1 b 2 +b 1,c 1 c 2. Repetition. Sei Θ ein Parameterraum und A eine Aktionsraum. Eine Abbildung L : Θ A R + heisst Verlustfunktion. Wir interpretieren L dabei so, dass L(θ, a) der Verlust ist, wenn θ der wahre Wert ist und wir uns für a entscheiden. Bei Schätzproblemen ist A = Θ und wir wählen in der Regel L(θ, a) = θ a 2. Bei Testproblemen ist A = {0, 1} und wir wählen L in der Regel so, dass L(θ, a) = a = 0 a = 1 θ Θ 0 0 l 0 θ Θ 1 l

2 Sei D die Menge aller Entscheidungsfunktionen d : Y A. Unter der Risikofunktion von L verstehen wir die Abbildung R L : Θ D R + mit d.h. der erwartete Verlust von d unter θ. R L (θ, d) := E θ L(θ, d(y )), Definition B [Invarianz einer Verlustfunktion]. Sei (P θ ) θ Θ eine G-invariante W familie. Eine Verlustfunktion L heisst G-invariant, wenn für alle g G eine Abbildung ψ g : A A existiert so, dass L(θ, a) = L(ϕ g (θ), ψ g (a)) für alle θ Θ und a A. Wir verlangen von der Verlustfunktion L also, dass wir für ein gegebenes g den Aktionsraum so transformieren können (mit ψ g ), dass wir den gleichen Verlust haben, wenn wir uns unter θ für a entscheiden, wie wenn wir uns unter ϕ g (θ) für ψ g (a) entscheiden. Beispiel (Fortsetzung). Wir wollen (µ, σ 2 ) schätzen. Es ist also A = R (0, ) und wir wählen dazu die Verlustfunktion L((µ, σ 2 ), (a 1, a 2 )) = (µ a 1 ) 2 +(σ 2 a 2 ) 2. Für ein festes g b,c, b R, c > 0 haben wir ϕ gb,c bereits berechnet. Wir wählen nun ψ gb,c (µ, σ 2 ) := (cµ + b, c 2 σ 2 ) (dass dies so sein muss, werden wir später sehen). Es gilt L(ϕ gb,c (µ, σ 2 ), ψ gb,c (a 1, a 2 )) = L((cµ + b, c 2 σ 2 ), (ca 1 + b, c 2 a 2 )) = (cµ + b ca 1 b) 2 + (c 2 σ 2 c 2 a 2 ) 2 = c 2 (µ ˆµ) 2 + c 4 (σ 2 a 2 ) 2. Die Verlustfunktion ist also nicht G-invariant. Definieren wir G 1 = {g b,1 G b R} als eine Untergruppe von G so ist unsere Verlustfunktion aber G 1 -invariant! Wir wollen nun Invarianz für Entscheidungsfunktionen definieren. Dazu überlegen wir uns, was eine solche Funktion d : Y A erfüllen muss, damit der erwartete Verlust unter θ derselbe ist unter jeder Transformation g, d.h. wir verlangen R L (θ, d) = R L (ϕ g (θ), d) für alle θ Θ und g G. Es gilt unter der Annahme, dass L G-invariant ist, R L (ϕ g (θ), d) = E ϕg(θ)l ( ϕ g (θ), d(y ) ) = E θ L ( ϕ g (θ), d(g(y )) ) = E θ L ( ϕ g (θ), ψ g (ψg 1 (d(g(y )))) ) = E θ L ( θ, ψg 1 (d(g(y ))) ), d.h., wir wollen, dass E θ L(θ, d(y )) = E θ L(θ, ψ 1 g jeden Fall erfüllt, wenn d(y) = ψ 1 g (d(g(y )))) gilt. Dies ist jedoch auf (d(g(y))). Also kommen wir zu folgender Definition C [Invarianz einer Entscheidungsfunktion]. Sei L eine G-invariante Verlustfunktion. Eine Entscheidungsfunktion d : Y A heisst G-invariant, wenn d g = ψ g d für alle g G. Es soll also nicht darauf ankommen, ob wir zuerst die Daten mit g transformieren und uns dann entscheiden, oder ob wir uns erst entscheiden und dann denn Entscheid mit ψ g transformieren! 2

3 2.2 Konsequenzen Wir wollen nun diskutieren, was obige Definitionen im Falle der Schätz- und Testprobleme für Konsequenzen haben. Sei im folgenden gegeben eine Transformationsgruppe G und seien die W familie (P θ ), die Verlustfunktion L und die Entscheidungsfunktion d jeweils G-invariant Testprobleme Wir wollen H 0 : θ Θ 0 vs. H 1 : θ Θ 1 testen. Es ist A = {0, 1}. Die Verlustfunktion L sieht bei Testproblemen aus wie auf Seite 1 für c 0, c 1 > 0. Wir nehmen zusätzlich an, dass l 0 l 1. Es gilt wegen der Invarianz von L, dass l 0 = L(θ, 1) = L(ϕ g (θ), ψ g (1)) für alle θ Θ 0 und g G. Es muss also gelten ψ g (1) = 1 und ϕ g (θ) Θ 0. Analoges gilt natürlich für l 1. Wir kommen also zu den Folgerungen der Invarianz bei Testproblemen. Sind alle Invarianzen erfüllt, so gilt bei Testproblemen (mit Verlustfunktion l 0 l 1 ): (T1) ϕ g (Θ i ) Θ i für alle g G und i = 1, 2 (T2) ψ g (a) = a für alle g G und a {0, 1} (T3) d g = d für alle g G (dies folgt aus (T2) und der Invarianz von d). Die Folgerung (T3) sagt insbesondere, dass wir uns unter jeder Transformation der Daten gleich entscheiden! Schätzprobleme Wir wollen den Parameter θ schätzen. Es ist somit A = Θ. Wir verlangen nun zusätzlich, dass die Verlustfunktion L vernünftig sein soll, in dem Sinne, dass L(θ, a) = 0 genau dann, wenn θ = a. D.h. der Verlust unseres Entscheides ist 0 genau dann, wenn wir uns richtig entscheiden. Also gilt wegen der Invarianz von L, dass 0 = L(θ, θ) = L(ϕ g (θ), ψ g (θ) und somit ϕ g (θ) = ψ g (θ). Folgerungen der Invarianz bei Schätzproblemen. Sind alle Invarianzen erfüllt, so gilt bei Schätzproblemenproblemen mit vernünftiger Verlustfunktion: (S1) ϕ g = ψ g für alle g G (S2) d g = ϕ g d für alle g G (dies folgt aus (S1) und der Invarianz von d). Die Folgerung (S2) sagt insbesondere, dass, wenn wir die Daten transformieren, wir den Schätzer genau gleich transformieren müssen. Wir verstehen jetzt auch, warum wir im Beispiel unsere Funktion ψ gb,c so gewählt haben! 3

4 2.3 Anwendung Wir wollen nun betrachten, wie wir obiges Prinzip anwenden können, um zu guten Schätz- oder Testfunktionen zu gelangen. Die Strategie wird wie folgt sein: Gegeben die G-Invarianz von (P θ ) und L suchen wir eine G-invariante Testfunktion d. Allgemein Schätzer Tests 1 Wähle Transformationsgruppe G auf Y 2 3 Kontrolliere G-Invarianz von (P θ ); wenn nicht erfüllt, G verkleinern und 2 Kontrolliere G-Invarianz von L. Wenn nicht erfüllt, G verkleinern und 3 L(θ, a) = θ a 2 L wie auf Seite 1 und ϕ g(θ i) Θ i 4 Gleichung der Definition C aufstellen, d.h. d(g(y)) = ψ g(d(y)) d(g(y)) = ϕ g(d(y)) d(g(y)) = d(y) 5 Gleichung lösen mit Suffizienz; falls keine Lösung, G verkleinern und 5; falls nicht eindeutig, G vergrössern und 2 Beispiel (Fortsetzung). Wir wollen immernoch (µ, σ 2 ) schätzen. Die Schritte 1, 2 und 3 haben wir bereits gemacht und herausgefunden, dass wir G verkleinern mussten auf G 1. Zu dieser Untergruppe ist L nun invariant. Wir können also weitermachen mit Schritt 4. Die Gleichung bei Schätzproblemen lautet d(g b,1 (y)) = ϕ gb,1 (d(y)). Da wir ausser dem Suffizienz verlangen, soll unser Schätzer nur von der suffizienten Statistik ( n ) n (T 1 (y), T 2 (y)) = y i, abhängen, d.h. d(y) = d(t 1 (y), T 2 (y)) für eine Funktion d = ( d 1, d 2 ). Wir erhalten somit die Gleichung i=1 i=1 y 2 i d(t 1 (y + b1 n ), T 2 (y + b1 n ) = ( d 1 (T 1 (y), T 2 (y)) + b, d 2 (T 1 (y), T 2 (y))). (I) Die linke Seite der Gleichung können wir nun berechnen. Es ist T 1 (y+b1 n ) = T 1 (y)+ nb und T 2 (y + b1 n ) = T 2 (y) 2 + 2bT 1 (y) + nb 2. Schreiben wir t i = T i (y) für i = 1, 2 so erhalten wir aus (I) die neue Gleichung d(t 1 + nb, t bt 1 + nb 2 ) = ( d 1 (t 1, t 2 ) + b, d 2 (t 1, t 2 )), (II) oder ausgeschrieben d 1 (t 1 + nb, t bt 1 + nb 2 ) = d 1 (t 1, t 2 ) + b, (II 1 ) d 2 (t 1 + nb, t bt 1 + nb 2 ) = d 2 (t 1, t 2 ). (II 2 ) Da obige Gleichungen für alle t 1, t 2 und b gelten, gelten sie insbesondere auch für b = t 1 /n. d 1 (0, t 2 2 t 2 1/n) = d 1 (t 1, t 2 ) t 1 /n, (III 1 ) d 2 (0, t 2 2 t 2 1/n) = d 2 (t 1, t 2 ). (III 2 ) 4

5 Schreiben wir s 2 := t 2 2 t2 1 /n = (y i ȳ) 2 und ˆd i (s 2 ) := d i (0, s 2 ), so können wir vereinfachen d 1 (t 1, t 2 ) = t 1 /n + ˆd 1 (s 2 ), (III 1 ) d 2 (t 1, t 2 ) = ˆd 2 (s 2 ). (III 2 ) Offensichtlich reicht die Struktur der Gruppe G 1 nicht aus, um unsere Schätzer eindeutig festzulegen. Wir vergrössern also unsere Gruppe und gehen dann zurück zu Schritt 2. Mit der grösseren Gruppe G 1 = {g b,c b R, c = ±1} sind die Bedingungen (wie man leicht nachrechnet) in den Schritten 2 und 3 erfüllt. Wir erhalten analog zur Gleichung (II) d 1 (ct 1 + nb, c 2 t bct 1 + nb 2 ) = c d 1 (t 1, t 2 ) + b, (IV 1 ) d 2 (ct 1 + nb, c 2 t bct 1 + nb 2 ) = c 2 d2 (t 1, t 2 ). (IV 2 ) Mit der Wahl c = 1 und b = t 1 /n erhalten wir analog zu (III) und somit d 1 (0, t 2 2 t 2 1/n) = d 1 (t 1, t 2 ) + t 1 /n, (V 1 ) d 2 (0, t 2 2 t 2 1/n) = d 2 (t 1, t 2 ). (V 2 ) d 1 (t 1, t 2 ) = t 1 /n ˆd 1 (s 2 ), (V 1 ) d 2 (t 1, t 2 ) = ˆd 2 (s 2 ). (V 2 ) Aus (III 1 ) und (V 1 ) folgt direkt ˆd 1 (s 2 ) = 0 und somit haben wir einen (Invarianz- )Schätzer für µ erhalten ˆµ(y) := ˆd 1 (T 1 (y), T 2 (y)) = 1 n n y i, was unserer intuitiven Vorstellung entspricht. Was uns immer noch fehlt ist ein Schätzer für σ 2. Offensichtlich reicht die Struktur von G 1 immer noch nicht, um einen eindeutigen Schätzer zu definieren. Wir haben jedoch zumindest herausgefunden, dass ein solcher Schätzer eine Funktion von s 2 sein muss. Das Problem liegt bei der Verlustfunktion, die die dazu notwendigen Transformationen (Streckungen) nicht durchlässt. Wenn wir also eine vernünftige Verlustfunktion finden, welche alle Transformationen der Form g b,c, b, c R, c 0, durchlässt, sollten wir den Schätzer eindeutig festlegen können. Wir definieren also unsere Transformationsgruppe G := {g b,c b R, c R } und die Verlustfunktion L ( (µ, σ 2 ), (a 1, a 2 ) ) = (µ a 1) 2 ( ) σ 2 2 σ a 2 a 2 Es lässt sich leicht nachprüfen, dass (P µ,σ 2) und L G -Invariant sind. Die Funktionen ϕ gb,c bleiben dieselben, und wir können somit direkt mit den Gleichungen (IV) weiterrechnen. Setzen wir b = ct 1 /n so erhalten wir aus den Gleichungen (IV 2 ) d 2 (0, c 2 s 2 ) = c 2 d2 (t 1, t 2 ) i=1 5

6 und mit c 2 = 1/s 2 d2 (t 1, t 2 ) = d 2 (0, 1)s 2. Wir wissen jetzt also, dass der Invarianz-Schätzer für σ 2 von der Form ˆσ 2 (y) := d 2 (0, 1)s 2 ist, wobei wir die Konstante d 2 (0, 1) mit dem Invarianzprinzip nicht mehr weiter spezifizieren können und wir müssen somit andere Prinzipien anwenden. Wollen wir z.b. Erwartungstreue, so muss gelten E µ,σ 2 ˆσ 2 (Y ) = σ 2. Wir wissen, dass s 2 die χ 2 n 1 Verteilung hat mit Erwartungswert n 1. Setzen wir d 2 (0, 1) := 1/(n 1), so kriegen wir in der Tat einen erwartungstreuen Schätzer. 6

Einführung in die statistische Testtheorie II

Einführung in die statistische Testtheorie II 1 Seminar: Simulation und Bildanalyse mit Java Einführung in die statistische Testtheorie II Guntram Seitz Sommersemester 2004 1 WIEDERHOLUNG 2 1 Wiederholung Grundprinzip: Annahme: Beobachtungen bzw.

Mehr

4.2 Methoden um Tests zu finden: Likelihood Quotienten Tests (LRT) Falls X 1,..., X n iid aus f(x θ), so gilt für die Likelihood Funktion

4.2 Methoden um Tests zu finden: Likelihood Quotienten Tests (LRT) Falls X 1,..., X n iid aus f(x θ), so gilt für die Likelihood Funktion 4.2 Methoden um Tests zu finden: Likelihood Quotienten Tests (LRT) Falls X 1,..., X n iid aus f(x θ), so gilt für die Likelihood Funktion L(θ x) = f(x θ) = n f(x i θ). Falls L(θ x) > L(θ x), für θ, θ Θ,

Mehr

3.3 Methoden zur Evaluierung von Schätzern

3.3 Methoden zur Evaluierung von Schätzern 3.3 Methoden zur Evaluierung von Schätzern Bis jetzt haben wir nur glaubwürdige Techniken zur Konstruktion von Punktschätzern besprochen. Falls unterschiedliche Schätzer für einen Parameter resultieren,

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Motivation Grundgesamtheit mit unbekannter Verteilung F Stichprobe X 1,...,X n mit Verteilung F Realisation x 1,...,x n der Stichprobe Rückschluss auf F Dr. Karsten Webel 160 Motivation (Fortsetzung) Kapitel

Mehr

Kapitel 6. Suffiziente Statistiken. 6.1 Vorbetrachtungen

Kapitel 6. Suffiziente Statistiken. 6.1 Vorbetrachtungen Kapitel 6 Suffiziente Statistiken In diesem Kapitel untersuchen wir einen weiteren statistischen Begriff, der eng mit Likelihoodfunktionen zusammenhängt und mit der Frage nach eventuell möglicher Datenreduktion

Mehr

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar "Statistische Methoden in der Physik"

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar Statistische Methoden in der Physik Studentenseminar "Statistische Methoden in der Physik" Gliederung 1 2 3 Worum geht es hier? Gliederung 1 2 3 Stichproben Gegeben eine Beobachtungsreihe x = (x 1, x 2,..., x n ): Realisierung der n-dimensionalen

Mehr

3 Topologische Gruppen

3 Topologische Gruppen $Id: topgr.tex,v 1.4 2010/05/31 08:41:53 hk Exp hk $ 3 Topologische Gruppen Nachdem wir jetzt gezeigt haben das Quotienten G/H topologischer Gruppen wieder topologische Gruppen sind, wollen wir das Ergebnis

Mehr

Definition 1.2. Eine kontinuierliche Gruppe mit einer endlichen Menge an Parametern heißt endliche kontinuierliche Gruppe. x cosξ sinξ y sinξ cosξ

Definition 1.2. Eine kontinuierliche Gruppe mit einer endlichen Menge an Parametern heißt endliche kontinuierliche Gruppe. x cosξ sinξ y sinξ cosξ 8 Gruppentheorie 1 Lie-Gruppen 1.1 Endliche kontinuierliche Gruppe Definition 1.1. Eine Menge G mit einer Verknüpfung m heißt Gruppe, falls folgende Axiome erfüllt sind: (i) Die Operation m, genannt Multiplikation,

Mehr

Das Bayes'sche Prinzip

Das Bayes'sche Prinzip Das Bayes'sche Prinzip Olivia Gradenwitz Patrik Kneubühler Seminar über Bayes Statistik FS8 26. Februar 28 1 Bayes'sches statistisches Modell 1.1 Statistische Probleme und statistische Modelle In diesem

Mehr

7. Hypothesentests. Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang. X habe die unbekannte VF F X (x)

7. Hypothesentests. Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang. X habe die unbekannte VF F X (x) 7. Hypothesentests Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang X habe die unbekannte VF F X (x) Interessieren uns für einen unbekannten Parameter θ der Verteilung von X 350 Bisher:

Mehr

Kapitel VII - Funktion und Transformation von Zufallsvariablen

Kapitel VII - Funktion und Transformation von Zufallsvariablen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VII - Funktion und Transformation von Zufallsvariablen Markus Höchstötter Lehrstuhl

Mehr

Kapitel VIII - Tests zum Niveau α

Kapitel VIII - Tests zum Niveau α Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel VIII - Tests zum Niveau α Induktive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh Testsituationen

Mehr

2. Prinzipien der Datenreduktion

2. Prinzipien der Datenreduktion 2. Prinzipien der Datenreduktion Man verwendet die Information in einer Stichprobe X 1,..., X n, um statistische Inferenz über einen unbekannten Parameter zu betreiben. Falls n groß ist, so ist die beobachtete

Mehr

3.4 Asymptotische Evaluierung von Sch atzer Konsistenz Konsistenz Definition 3.4.1: konsistente Folge von Sch atzer

3.4 Asymptotische Evaluierung von Sch atzer Konsistenz Konsistenz Definition 3.4.1: konsistente Folge von Sch atzer 3.4 Asymptotische Evaluierung von Schätzer 3.4.1 Konsistenz Bis jetzt haben wir Kriterien basierend auf endlichen Stichproben betrachtet. Konsistenz ist ein asymptotisches Kriterium (n ) und bezieht sich

Mehr

Konfidenzbereiche. Kapitel Grundlagen. Wir gehen wieder von einem allgemeinen (parametrischen) statistischen Modell aus,

Konfidenzbereiche. Kapitel Grundlagen. Wir gehen wieder von einem allgemeinen (parametrischen) statistischen Modell aus, Kapitel 4 Konfidenzbereiche 4.1 Grundlagen Wir gehen wieder von einem allgemeinen parametrischen statistischen Modell aus, M, A, P ϑ ; sei eine Funktion des Parameters gegeben, die einen interessierenden

Mehr

BAYES SCHE STATISTIK

BAYES SCHE STATISTIK BAES SCHE STATISTIK FELIX RUBIN EINFÜHRUNG IN DIE STATISTIK, A.D. BARBOUR, HS 2007 1. Einführung Die Bayes sche Statistik gibt eine weitere Methode, um einen unbekannten Parameter θ zu schätzen. Bisher

Mehr

Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen

Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen Induktive Statistik Prof. Dr. W.-D. Heller

Mehr

Maße auf Produkträumen

Maße auf Produkträumen Maße auf Produkträumen Es seien (, Ω 1 ) und (X 2, Ω 2 ) zwei Meßräume. Wir wollen uns zuerst überlegen, wie wir ausgehend davon eine geeignete σ-algebra auf X 2 definieren können. Wir betrachten die Menge

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

Parameterschätzung. Kapitel 14. Modell Es sei {P θ θ Θ}, Θ R m eine Familie von Verteilungen auf χ (sog. Stichprobenraum),

Parameterschätzung. Kapitel 14. Modell Es sei {P θ θ Θ}, Θ R m eine Familie von Verteilungen auf χ (sog. Stichprobenraum), Kapitel 14 Parameterschätzung Modell Es sei {P θ θ Θ}, Θ R m eine Familie von Verteilungen auf χ (sog. Stichprobenraum), = ( 1,..., n ) sei eine Realisierung der Zufallsstichprobe X = (X 1,..., X n ) zu

Mehr

2.3 Intervallschätzung

2.3 Intervallschätzung 2.3.1 Motivation und Hinführung Bsp. 2.11. [Wahlumfrage] Der wahre Anteil der rot-grün Wähler 2009 war genau 33.7%. Wie groß ist die Wahrscheinlichkeit, in einer Zufallsstichprobe von 1000 Personen genau

Mehr

2.6 Der Satz von Fubini

2.6 Der Satz von Fubini 1 2.6 Der Satz von Fubini Unser Ziel ist der Beweis des folgenden Ergebnisses. 6.1. Satz von Fubini Sei f : R n+m R integrierbar. Dann gibt es eine Nullmenge N R m, so dass gilt: 1. Für alle y R m \ N

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Beispiel 3.4: (Fortsetzung Bsp. 3.) bekannt: 65 i=1 X i = 6, also ˆp = X = 6 65 = 0, 4 Überprüfen der Voraussetzungen: (1) n = 65 30 () n ˆp = 6 10 (3) n (1 ˆp) = 39 10 Dr. Karsten Webel 194 Beispiel 3.4:

Mehr

Wir gehen wieder von einem allgemeinen (parametrischen) statistischen Modell aus, (

Wir gehen wieder von einem allgemeinen (parametrischen) statistischen Modell aus, ( Kapitel 4 Konfidenzbereiche Wir gehen wieder von einem allgemeinen parametrischen statistischen Modell aus, M, A, P ϑ ; sei eine Funktion des Parameters gegeben, die einen interessierenden Teil-Parameter

Mehr

Die partielle Likelihood-Funktion

Die partielle Likelihood-Funktion Die partielle Likelihood-Funktion Roger Züst 12. Juni 26 1 Repetition: Maximum-Likelihood-Methode Hat man n unabhängige Beobachtungen x 1, x 2,..., x n einer Zufallsvariablen X und eine Familie von möglichen

Mehr

T2 Quantenmechanik Lösungen 4

T2 Quantenmechanik Lösungen 4 T2 Quantenmechanik Lösungen 4 LMU München, WS 17/18 4.1. Lösungen der Schrödinger-Gleichung Beweisen Sie die folgenden Aussagen. Prof. D. Lüst / Dr. A. Schmi-May version: 06. 11. a) Die Separationskonstante

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 5 In dieser Vorlesung diskutieren wir Normalteiler, das sind Untergruppen, für die Links- und Rechtsnebenklassen übereinstimmen.

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

Lösung Übungsblatt 5

Lösung Übungsblatt 5 Lösung Übungsblatt 5 5. Januar 05 Aufgabe. Die sogenannte Halb-Normalverteilung spielt eine wichtige Rolle bei der statistischen Analyse von Ineffizienzen von Produktionseinheiten. In Abhängigkeit von

Mehr

Kapitel 9. Schätzverfahren und Konfidenzintervalle. 9.1 Grundlagen zu Schätzverfahren

Kapitel 9. Schätzverfahren und Konfidenzintervalle. 9.1 Grundlagen zu Schätzverfahren Kapitel 9 Schätzverfahren und Konfidenzintervalle 9.1 Grundlagen zu Schätzverfahren Für eine Messreihe x 1,...,x n wird im Folgenden angenommen, dass sie durch n gleiche Zufallsexperimente unabhängig voneinander

Mehr

Übungen zur Diskreten Mathematik I Blatt 6

Übungen zur Diskreten Mathematik I Blatt 6 1 Blatt 6 Aufgabe 19 Es sei M := {n N : n 2} und R := {(n, m) M M : n teilt m}. a) Zeigen Sie, dass R eine Ordnungsrelation auf M ist. b) Überprüfen Sie, ob R eine totale Ordnung auf M ist. c) Zeigen Sie,

Mehr

Zusammenfassung. 2.7 Eigenwerte und Eigenvektoren 53. in 2.1: Lösung eines linearen Gleichungssystems

Zusammenfassung. 2.7 Eigenwerte und Eigenvektoren 53. in 2.1: Lösung eines linearen Gleichungssystems 7 Eigenwerte und Eigenvektoren 53 Zusammenfassung in : Lösung eines linearen Gleichungssystems Formalisierung: a x + a x + + a n x n b a x + a x + + a n x n b a m x + a m x + + a mn x n b m A x b Lösungsmethode:

Mehr

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge ÜBUNGSBLATT 0 LÖSUNGEN MAT/MAT3 ANALYSIS II FRÜHJAHRSSEMESTER 0 PROF DR CAMILLO DE LELLIS Aufgabe Finden Sie für folgende Funktionen jene Punkte im Bildraum, in welchen sie sich lokal umkehren lassen,

Mehr

Induktive Statistik Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung

Induktive Statistik Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung Induktive Statistik Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung Georg Bol bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de

Mehr

Mathematische Statistik Aufgaben zum Üben. Schätzer

Mathematische Statistik Aufgaben zum Üben. Schätzer Prof. Dr. Z. Kabluchko Wintersemester 2016/17 Philipp Godland 14. November 2016 Mathematische Statistik Aufgaben zum Üben Keine Abgabe Aufgabe 1 Schätzer Es seien X 1,..., X n unabhängige und identisch

Mehr

OLS-Schätzung: asymptotische Eigenschaften

OLS-Schätzung: asymptotische Eigenschaften OLS-Schätzung: asymptotische Eigenschaften Stichwörter: Konvergenz in Wahrscheinlichkeit Konvergenz in Verteilung Konsistenz asymptotische Verteilungen nicht-normalverteilte Störgrößen zufällige Regressoren

Mehr

Statistik II. Weitere Statistische Tests. Statistik II

Statistik II. Weitere Statistische Tests. Statistik II Statistik II Weitere Statistische Tests Statistik II - 19.5.2006 1 Überblick Bisher wurden die Test immer anhand einer Stichprobe durchgeführt Jetzt wollen wir die statistischen Eigenschaften von zwei

Mehr

(a) Welche der folgenden Gruppen hat 24 Elemente? D 6 GL 2 (F 2 ) X Die Tetraedergruppe. (b) Welche der folgenden Aussagen ist wahr?

(a) Welche der folgenden Gruppen hat 24 Elemente? D 6 GL 2 (F 2 ) X Die Tetraedergruppe. (b) Welche der folgenden Aussagen ist wahr? Aufgabe 1. (10 Punkte) Bei den folgenden Teilaufgaben ist jeweils genau eine Antwort richtig; diese ist anzukreuzen. Beweise oder Begründungen sind nicht erforderlich. Für jede richtige Antwort erhalten

Mehr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr TUM Ferienkurs Lineare Algebra WiSe 8/9 Dipl.-Math. Konrad Waldherr Musterlösung Relationen Aufgabe Auf R sei die Relation σ gegeben durch (a, b)σ(c, d) : a + b c + d. Ist σ reflexiv, symmetrisch, transitiv,

Mehr

Einführung in die statistische Testtheorie

Einführung in die statistische Testtheorie 1 Seminar Simulation und Bildanalyse mit Java von Benjamin Burr und Philipp Orth 2 Inhalt 1. Ein erstes Beispiel 2. 3. Die Gütefunktion 4. Gleichmäßig beste Tests (UMP-Tests) 1 Einführendes Beispiel 3

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Mathematisches Institut Prof. Dr. R. Frank / Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie 12.04.2012

Mehr

10 Untermannigfaltigkeiten

10 Untermannigfaltigkeiten 10. Untermannigfaltigkeiten 1 10 Untermannigfaltigkeiten Definition. Eine Menge M R n heißt k-dimensionale Untermannigfaltigkeit des R n, 1 k n, falls es zu jedem a M eine offene Umgebung U R n von a und

Mehr

1.3 Wiederholung der Konvergenzkonzepte

1.3 Wiederholung der Konvergenzkonzepte 1.3 Wiederholung der Konvergenzkonzepte Wir erlauben nun, dass der Stichprobenumfang n unendlich groß wird und untersuchen das Verhalten von Stichprobengrößen für diesen Fall. Dies liefert uns nützliche

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 1 Multivariate Verfahren Musterlösung Aufgabe 1 (40 Punkte) Auf der dem Kurs beigelegten CD finden Sie im Unterverzeichnis Daten/Excel/ die Datei zahlen.xlsx. Alternativ können Sie

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38 Dynamische Systeme und Zeitreihenanalyse Multivariate Normalverteilung und ML Schätzung Kapitel 11 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Multivariate

Mehr

Kapitel XI - Operationscharakteristik und Gütefunktion

Kapitel XI - Operationscharakteristik und Gütefunktion Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XI - Operationscharakteristik und Gütefunktion Induktive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo

Mehr

Erweiterter Euklidischer Algorithmus

Erweiterter Euklidischer Algorithmus Erweiterter Euklidischer Algorithmus Algorithmus ERWEITERTER EUKLIDISCHER ALG. (EEA) EINGABE: a, b N 1 If (b = 0) then return (a, 1, 0); 2 (d, x, y) EEA(b, a mod b); 3 (d, x, y) (d, y, x a b y); AUSGABE:

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 2 2 Gewöhnliche Differentialgleichungen 2. Einleitung Sei f : D R wobei D R 2. Dann nennt man y = f(x, y) (5) eine (gewöhnliche) Differentialgleichung (DGL) erster Ordnung. Als Lösung von (5) akzeptiert

Mehr

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe Kapitel 4 Statistische Tests 4.1 Grundbegriffe Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe X 1,..., X n. Wir wollen nun die Beobachtung der X 1,...,

Mehr

Statistische Methoden

Statistische Methoden Statistische Methoden Dr. C.J. Luchsinger 4 Testtheorie Literatur Kapitel 4 * Lindgren: Kapitel 9, 10 * Cartoon Guide: Kapitel 8 * Krengel: 6, 14 * Stahel: Kapitel 8, 10, 11, 12 Aufbau dieses Kapitels:

Mehr

Lösungsskizzen zu Übungsblatt 1

Lösungsskizzen zu Übungsblatt 1 Lösungsskizzen zu Übungsblatt 1 26. Oktober 2016 Algebra Wintersemester 2016-17 Prof. Andreas Rosenschon, PhD Anand Sawant, PhD Diese Lösungen erheben nicht den Anspruch darauf vollständig zu sein. Insbesondere

Mehr

Weitere Eigenschaften

Weitere Eigenschaften Weitere Eigenschaften Erklärung der Subtraktion: x y := x + ( y) (5) Die Gleichung a + x = b hat die eindeutig bestimmte Lösung x = b a. Beweis: (a) Zunächst ist x = b a eine Lösung, denn a + x = a + (b

Mehr

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1 Aufgabe 1 (2 + 2 + 2 + 1 Punkte) Gegeben sei folgende gemeinsame Wahrscheinlichkeitsfunktion f(x, y) = P (X = x, Y = y) der Zufallsvariablen X und Y : 0.2 x = 1, y = 1 0.3 x = 2, y = 1 f(x, y) = 0.45 x

Mehr

Suffizienz und Vollständigkeit

Suffizienz und Vollständigkeit KAPITEL 7 Suffizienz und Vollständigkeit 7.1. Definition der Suffizienz im diskreten Fall Beispiel 7.1.1. Betrachten wir eine unfaire Münze, wobei die Wahrscheinlichkeit θ, dass die Münze Kopf zeigt, geschätzt

Mehr

Abbildung 10.1: Das Bild zu Beispiel 10.1

Abbildung 10.1: Das Bild zu Beispiel 10.1 Analysis 3, Woche Mannigfaltigkeiten I. Definition einer Mannigfaltigkeit Die Definition einer Mannigfaltigkeit braucht den Begriff Diffeomorphismus, den wir in Definition 9.5 festgelegt haben. Seien U,

Mehr

Natürliche, ganze und rationale Zahlen

Natürliche, ganze und rationale Zahlen Natürliche, ganze und rationale Zahlen Zunächst haben die zum Zählen verwendeten natürlichen Zahlen 0, 1, 2, 3,... nichts mit dem reellen Zahlen zu tun. Durch die ausgezeichnete reelle Zahl 1 (Maßeinheit!)

Mehr

Punktschätzer Optimalitätskonzepte

Punktschätzer Optimalitätskonzepte Kapitel 1 Punktschätzer Optimalitätskonzepte Sei ein statistisches Modell gegeben: M, A, P ϑ Sei eine Funktion des Parameters ϑ gegeben, γ : Θ G, mit irgendeiner Menge G, und sei noch eine Sigma-Algebra

Mehr

D-MATH Funktionalanalysis II FS 2014 Prof. M. Struwe. Lösung 2

D-MATH Funktionalanalysis II FS 2014 Prof. M. Struwe. Lösung 2 D-MATH Funktionalanalysis FS 214 Prof. M. Struwe Lösung 2 1. a) Wir unterscheiden zwei Fälle. Fall 1: 1 < p < : Seien u L p () und (u k ) W 1,p () eine beschränkte Folge, so dass u k u in L p () für k.

Mehr

01. Gruppen, Ringe, Körper

01. Gruppen, Ringe, Körper 01. Gruppen, Ringe, Körper Gruppen, Ringe bzw. Körper sind wichtige abstrakte algebraische Strukturen. Sie entstehen dadurch, dass auf einer Menge M eine oder mehrere sogenannte Verknüpfungen definiert

Mehr

Monotone Funktionen. Definition Es sei D R. Eine Funktion f : D R heißt. (ii) monoton fallend, wenn für alle x, x D gilt. x < x f (x) f (x ).

Monotone Funktionen. Definition Es sei D R. Eine Funktion f : D R heißt. (ii) monoton fallend, wenn für alle x, x D gilt. x < x f (x) f (x ). Monotone Funktionen Definition 4.36 Es sei D R. Eine Funktion f : D R heißt (i) monoton wachsend, wenn für alle x, x D gilt x < x f (x) f (x ). Wenn sogar die strikte Ungleichung f (x) < f (x ) folgt,

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/39 Biostatistik, Sommer 2017 Wahrscheinlichkeitstheorie: Gesetz der großen Zahl, Zentraler Grenzwertsatz Schließende Statistik: Grundlagen Prof. Dr. Achim Klenke http://www.aklenke.de 9. Vorlesung: 16.06.2017

Mehr

Das Banach-Tarski-Paradox

Das Banach-Tarski-Paradox Das Banach-Tarski-Paradox Thomas Neukirchner Nicht-messbare Mengen verdeutlichen auf eindrucksvolle Weise, dass es keinen additiven - geschweige denn σ-additiven Volumenbegriff auf der Potenzmenge P(R

Mehr

Beispiel 6 (Einige Aufgaben zur Gleichverteilung)

Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Aufgabe (Anwendung der Chebyshev-Ungleichung) Sei X eine Zufallsvariable mit E(X) = µ und var(x) = σ a) Schätzen Sie die Wahrscheinlichkeit dafür, daß

Mehr

Kapitel 2: Multiplikative Funktionen. 3 Multiplikative Funktionen. Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion)

Kapitel 2: Multiplikative Funktionen. 3 Multiplikative Funktionen. Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion) Kapitel 2: Multiplikative Funktionen 3 Multiplikative Funktionen Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion) (a) Eine Funktion α : Z >0 C heißt arithmetisch (oder zahlentheoretisch).

Mehr

Statistik. Andrej Depperschmidt. Sommersemester 2016

Statistik. Andrej Depperschmidt. Sommersemester 2016 Statistik Andrej Depperschmidt Sommersemester 2016 Schätzen der Varianz mit Stichprobenmittel Sei X = (X 1,..., X n ) eine Stichprobe u.i.v. ZV mit E[X i ] = µ R, Var[X i ] = σ 2 (0, ) und µ 4 = E[(X i

Mehr

σ-algebren, Definition des Maßraums

σ-algebren, Definition des Maßraums σ-algebren, Definition des Maßraums Ziel der Maßtheorie ist es, Teilmengen einer Grundmenge X auf sinnvolle Weise einen Inhalt zuzuordnen. Diese Zuordnung soll so beschaffen sein, dass dabei die intuitiven

Mehr

KAPITEL 1: ENDLICHE KÖRPER 1 ALLGEMEINES 2 GLEICHUNGEN ÜBER EINEM ENDLICHEN KÖRPER

KAPITEL 1: ENDLICHE KÖRPER 1 ALLGEMEINES 2 GLEICHUNGEN ÜBER EINEM ENDLICHEN KÖRPER RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG MATHEMATISCHES INSTITUT SEMINAR: QUADRATISCHE FORMEN ÜBER DEN RATIONALEN ZAHLEN SOMMERSEMESTER 2007 DOZENT: PROF. DR. KAY WINGBERG ASSISTENT: JOHANNES BARTELS KAPITEL

Mehr

Analysis I Marburg, Wintersemester 1999/2000

Analysis I Marburg, Wintersemester 1999/2000 Skript zur Vorlesung Analysis I Marburg, Wintersemester 1999/2000 Friedrich W. Knöller Literaturverzeichnis [1] Barner, Martin und Flohr, Friedrich: Analysis I. de Gruyter. 19XX [2] Forster, Otto: Analysis

Mehr

Musterlösung zur Klausur im Fach Fortgeschrittene Statistik am Gesamtpunktzahl: 60

Musterlösung zur Klausur im Fach Fortgeschrittene Statistik am Gesamtpunktzahl: 60 WESTFÄLISCHE WILHELMS - UNIVERSITÄT MÜNSTER Wirtschaftswissenschaftliche Faktultät Prof. Dr. Bernd Wilfling Professur für VWL, insbesondere Empirische Wirtschaftsforschung Musterlösung zur Klausur im Fach

Mehr

Errata für: Methoden der statistischen Inferenz: Likelihood und Bayes

Errata für: Methoden der statistischen Inferenz: Likelihood und Bayes Errata für: Methoden der statistischen Inferenz: Likelihood und Bayes Leonhard Held 9. Juli 2009 2 Einführung 1. Auf Seite 9, muss es in Abschnitt 1.2.8, Zeile 6-7 richtig heissen: Wir werden nur die

Mehr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen Wir betrachten nun ein Verfahren zur Konstruktion von Schätzvariablen für Parameter von Verteilungen. Sei X = (X 1,..., X n ). Bei X

Mehr

Seminarvortrag. Spinoren der Lorentzgruppe

Seminarvortrag. Spinoren der Lorentzgruppe Seminarvortrag Spinoren der Lorentzgruppe Juli 2003 Inhaltsverzeichnis 1 Grundbegriffe 3 1.1 Tensoren und Spinoren........................ 3 1.2 Lorentzgruppe............................ 3 2 Spinoren 4

Mehr

Das Lebesgue-Maß im R p

Das Lebesgue-Maß im R p Das Lebesgue-Maß im R p Wir werden nun im R p ein metrisches äußeres Maß definieren, welches schließlich zum Lebesgue-Maß führen wird. Als erstes definieren wir das Volumen von Intervallen des R p. Seien

Mehr

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung Kapitel 3 Lineare Abbildungen Lineare Abbildungen sind eine natürliche Klasse von Abbildungen zwischen zwei Vektorräumen, denn sie vertragen sich per definitionem mit der Struktur linearer Räume Viele

Mehr

Spline-Räume - B-Spline-Basen

Spline-Räume - B-Spline-Basen Spline-Räume - B-Spline-Basen René Janssens 4. November 2009 René Janssens () Spline-Räume - B-Spline-Basen 4. November 2009 1 / 56 Übersicht 1 Erster Abschnitt: Räume von Splinefunktionen Grundlegende

Mehr

Finanzierung und Investition

Finanzierung und Investition Kruschwitz/Husmann (2012) Finanzierung und Investition 1/31 Kruschwitz/Husmann (2012) Finanzierung und Investition 2/31 Finanzierung und Investition Kruschwitz/Husmann (2012) Oldenbourg Verlag München

Mehr

Einführung in die Logik

Einführung in die Logik Einführung in die Logik Klaus Madlener und Roland Meyer 24. April 2013 Inhaltsverzeichnis 1 Aussagenlogik 1 1.1 Syntax................................. 1 1.2 Semantik............................... 3 1.3

Mehr

1.4 Stichproben aus einer Normalverteilung

1.4 Stichproben aus einer Normalverteilung 1.4 Stichproben aus einer Normalverteilung Die Normalverteilung ist wohl das am stärksten verbreitete Modell. Stichproben daraus führen zu nützlichen Eigenschaften der Statistiken und ergeben bekannte

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Bemerkung 3.34: Die hier betrachteten Konfidenzintervalle für unbekannte Erwartungswerte sind umso schmaler, je größer der Stichprobenumfang n ist, je kleiner die (geschätzte) Standardabweichung σ (bzw.

Mehr

2.11 Eigenwerte und Diagonalisierbarkeit

2.11 Eigenwerte und Diagonalisierbarkeit 2.11. EIGENWERTE UND DIAGONALISIERBARKEIT 127 Die Determinante eines Endomorphismus Wir geben uns jetzt einen endlichen erzeugten K-Vektorraum V und einen Endomorphismus ϕ : V V vor. Wir wollen die Determinante

Mehr

Schwartz-Raum (Teil 1)

Schwartz-Raum (Teil 1) Schwartz-Raum (Teil 1) Federico Remonda, Robin Krom 10. Januar 2008 Zusammenfassung Der Schwartz-Raum ist ein Funktionenraum, der besondere Regularitätseigenschaften besitzt, die uns bei der Fouriertransformation

Mehr

FU Berlin: WiSe (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5. Aufgabe 18. Aufgabe 20. (siehe Musterlösung Zettel 4)

FU Berlin: WiSe (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5. Aufgabe 18. Aufgabe 20. (siehe Musterlösung Zettel 4) FU Berlin: WiSe 13-14 (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5 Aufgabe 18 (siehe Musterlösung Zettel 4) Aufgabe 20 In der Menge R der reellen Zahlen sei die Relation 2 R 2 definiert durch: x 2 y :

Mehr

2.3 Lineare Abbildungen und Matrizen

2.3 Lineare Abbildungen und Matrizen 2.3. LINEARE ABBILDUNGEN UND MATRIZEN 89 Bemerkung Wir sehen, dass die Matrix à eindeutig ist, wenn x 1,...,x r eine Basis ist. Allgemeiner kann man zeigen, dass sich jede Matrix mittels elementarer Zeilenumformungen

Mehr

VERTEILUNGEN VON FUNKTIONEN EINER ZUFALLSVARIABLEN

VERTEILUNGEN VON FUNKTIONEN EINER ZUFALLSVARIABLEN KAPITEL 15 VETEILUNGEN VON FUNKTIONEN EINE ZUFALLSVAIABLEN In diesem Kapitel geht es darum, die Verteilungen für gewisse Funktionen von Zufallsvariablen zu bestimmen. Wir werden uns auf den Fall absolut

Mehr

Automaten und Coinduktion

Automaten und Coinduktion Philipps-Univestität Marburg Fachbereich Mathematik und Informatik Seminar: Konzepte von Programmiersprachen Abgabedatum 02.12.03 Betreuer: Prof. Dr. H. P. Gumm Referentin: Olga Andriyenko Automaten und

Mehr

Differentialformen Äußere Ableitung Abbildungen Konverse Poincaré Lemma. Die Äußere Ableitung. Felix Retter

Differentialformen Äußere Ableitung Abbildungen Konverse Poincaré Lemma. Die Äußere Ableitung. Felix Retter 25.06.2008 Inhaltsangabe Differentialformen Äußere Ableitung Abbildungen Konverse Poincaré Lemma Die p-form Sei P ein Punkt in E n. Der n-dimensionale lineare Raum L = L p wird dann gebildet von n a i

Mehr

Lineare Algebra I. Lösung 3.1:

Lineare Algebra I. Lösung 3.1: Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik Lösungsblatt 3 Prof. Dr. Markus Schweighofer 18.11.2009 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 3.1: (a) Sei

Mehr

Einführung in die Induktive Statistik: Testen von Hypothesen

Einführung in die Induktive Statistik: Testen von Hypothesen Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte

Mehr

1.0 Einleitung. 1 Schätzen von Parametern

1.0 Einleitung. 1 Schätzen von Parametern Schätzen von Parametern 1 1 Schätzen von Parametern 1.0 Einleitung Das vorliegende Kapitel stellt eine Einführung in das Schätzen von Parametern dar, was besagen will, dass es hier nicht um das Schätzen

Mehr

{ id, falls sgn(σ) = 1, τ, falls sgn(σ) = 1,

{ id, falls sgn(σ) = 1, τ, falls sgn(σ) = 1, Aufgabe I1 (4 Punkte) Es seien (G, ) und (H, ) Gruppen a) Wann heißt eine Abbildung Φ : G H ein Gruppenhomomorphismus? b) Es seien Φ, Ψ : G H zwei Gruppenhomomorphismen Zeigen Sie, dass eine Untergruppe

Mehr

Kapitel V. Affine Geometrie

Kapitel V. Affine Geometrie Kapitel V Affine Geometrie 1 Affine Räume Betrachte ein lineares Gleichungssystem Γ : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 + + a mn x n = b

Mehr

2 Aufgaben aus [Teschl, Band 2]

2 Aufgaben aus [Teschl, Band 2] 20 2 Aufgaben aus [Teschl, Band 2] 2.1 Kap. 25: Beschreibende Statistik 25.3 Übungsaufgabe 25.3 a i. Arithmetisches Mittel: 10.5 ii. Median: 10.4 iii. Quartile: x 0.25 Y 4 10.1, x 0.75 Y 12 11.1 iv. Varianz:

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

1 Bedingte Erwartungswerte

1 Bedingte Erwartungswerte Die folgenden Regeln sind das alltägliche Handwerkszeug für den Umgang mit bedingten Erwartungen und werden in diesem Abschnitt, allerdings ohne Beweise, zitiert. Es ist durchaus eine lohnenswerte Übung,

Mehr

Beispiel 85. Satz 86 Eine Unteralgebra (bzgl. ) einer Gruppe ist eine Untergruppe, falls sie unter der Inversenbildung 1 abgeschlossen ist.

Beispiel 85. Satz 86 Eine Unteralgebra (bzgl. ) einer Gruppe ist eine Untergruppe, falls sie unter der Inversenbildung 1 abgeschlossen ist. 5.4 Untergruppen Definition 84 Eine Unteralgebra T,, 1 einer Gruppe G = S,, 1 heißt Untergruppe von G, falls T,, 1 eine Gruppe ist. Bemerkung: Nicht jede Unteralgebra einer Gruppe ist eine Untergruppe!

Mehr

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr

Differentialformen. Lie-Ableitung von Differentialformen und Poincaré-Formel. Differentialform dp dx und ihre Invarianz bzgl. Hamiltonischer Flüsse.

Differentialformen. Lie-Ableitung von Differentialformen und Poincaré-Formel. Differentialform dp dx und ihre Invarianz bzgl. Hamiltonischer Flüsse. Differentialformen Plan Zuerst lineare Algebra: Schiefsymmetrische Formen im R n. Dann Differentialformen: Invarianz bzgl. Diffeomorphismen (und sogar beliebigen glatten Abbildungen). Äußere Ableitung.

Mehr

u(x) = Notation: Bei Mittelungen über die Kugel oder die Sphäre schreiben wir =

u(x) = Notation: Bei Mittelungen über die Kugel oder die Sphäre schreiben wir = 4.2 Eigenschaften harmonischer Funktionen Die Mittelwerteigenschaft: Eine besondere Eigenschaft harmonischer Funktionen ist, dass der Funktionswert an einer Stelle x stets gleich dem Mittelwert von u über

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 09.12.2011 1/58 Inhalt 1 2 Kenngrößen von Lagemaße 2/58 mit Dichte Normalverteilung

Mehr