Optoelektronische Detektoren

Größe: px
Ab Seite anzeigen:

Download "Optoelektronische Detektoren"

Transkript

1 Optoelektronische Detektoren Neben der Erzeugung von Licht aus Strom (LED, LD) ist, ist die Detektion von Licht durch Umwandlung von optischer Leistung in ein elektrisches Signal (Strom- oder Spannung) eine der wichtigsten Aufgaben der Optoelektronik Erforderliche Eigenschaften hängen von der Anwendung ab - spektrale Empfindlichkeit - minimal nachweisbare Intensität - Geschwindigkeit - Totzeit - Rauschen - Dunkelzählrate z. B. für Datenübertragung sicherlich sehr schneller Detektor erforderlich 1

2 Optische Absorption Grundlage einer optisch-elektrischen Signalwandlung ist die Absorption der Photonen Für den Absorptionskoeffizient gilt - direkter Halbleiter ( ) - indirekte Halbleiter 2 e 3n cm r p 2m CV r m m 6 r g ( ) [ cm ] 0 dabei sind K 0 und K 1 Konstanten, wobei K 1 temperaturabhängig ist und mit steigender Temperatur zunimmt Typischerweise ist der Absorptionskoeffizient für direkte HL etwa 100x höher als für indirekte HL (z. B. GaAs vs. Si) ( ) ( K K ( T ))( E ) indirekt 0 1 E g 2 E g 2

3 Optische Absorption: Cut-Off-Wellenlänge m m 6 r g 1 ( ) 410 ( ) [ cm ] Fundamentalabsorption, die ein e-h-paar erzeugt, gibt es nur für Photonenenergie oberhalb der Bandlückenenergien!! Damit gibt es eine Cut-Off-Wellenlänge l c oberhalb derer der Detektor nicht empfindlich ist. ( ) ( K K ( T ))( E ) indirekt E g 2 l c hc 1,24 [ µm ] E E ( ev ) g g Damit die Photonen nachgewiesen werden können, müssen sie absorbiert werden. Wie dick muss die absorbierende Schicht sein? 3

4 Optische Absorption: Schichtdickenabhängigkeit Ist L die Dicke des absorbierenden Bereichs so ergibt sich der der Anteil der absorbierten Intensität nach dem Absorptionsgesetz zu: Iabs ( L) I(0) 1e L Für starke Absorption muss also gelten: 1 L ( ) Für typische Detektormaterialien ergeben sich bei 1,5 ev Photonenenergie folgende Mindestschichtdicken: Ge: L ~ 0,1µm GaAs: L ~ 1µm Si: L ~ 10 20µm 4

5 Erzeugungsrate e-h-paare/stromempfindlichkeit Mittels des Absorptionsgesetzes man berechnen, welche Leistung in einer dünnen Schicht (dx) in der Entfernung x von der Oberfläche absorbiert wird P x dx P x P e e ( xdx) x opt ( ) opt ( ) op (0)[ ] x P (0) e dx P ( x) dx Wenn die Strahlung monochromatisch ist und pro Photon ein Elektronen-Loch-Paar erzeugt, dann gilt für die Erzeugungsrate G L : op op G L mit I Popt ( x) Iph Photonenflussdichte in der Tiefe ph x 5

6 Stromempfindlichkeit Ohne Sammlung der Ladungsträger durch eine angelegte Spannung oder ein eingebautes Feld, gibt es kein elektrisches Signal Effektive Sammlung ist wichtig für die Detektorperformance Um dies zu berücksichtigen, definiert man die Stromempfindlichkeit (responsivity) R ph I L P A opt I L ist der erzeugte Photostrom, A die Bauelementfläche und J L die Photostromdichte J P L opt 6

7 Stromempfindlichkeit R ph I L P A opt J P L opt Ideal = ein e-h- Paar pro Photon Jedes e-h-paar trägt zu Strom bei Zahl der Photonen bei konstanter optischer Leistung nimmt linear mit zunehmenden l ab => R nimmt linear ab 7

8 Quanteneffizienz eines Detektors Die Quanteneffizienz gibt an wie viele Ladungsträger man pro einfallendes Photon der Energie ħ bekommt Q P I L opt e R ph e Gesamte Quanteneffizienz Die Quanteneffizienz hängt von mehreren Faktoren ab: - Welcher Anteil der Photonen wird absorbiert? - Wie effektiv werden die Ladungsträger eingesammelt? Die Quanteneffizienz nach der obigen Definition kann für einen Detektor größer 1 sein, wenn interne Verstärkung vorliegt (z. B. Avalanche Photodioden) 8

9 Rauschen und Detektionslimit Eine wichtige Frage ist natürlich, welches schwächste Strahlungssignal kann ein Detektor noch detektieren Rauschen ist in diesem Kontext von großer Bedeutung Es gibt mehrere Rauschquellen, von denen einige diskutiert werden sollen: - Schrotrauschen (Shot Noise) - thermisches Hintergrundrauschen (Schwarzköperstrahlung), welches vor allem bei Infrarotdetektoren wichtig ist; wenn die Bandlücke >> kt ist, ist das thermische Rauschen zu vernachlässigen - thermisches Widerstandsrauschen: Für das mittlere Stromrauschquadrat gilt: 2 4kTf Irth mit R Widerstand und f Bandbreite R - Generations-Rekombinationsrauschen 2 Gf Irg 2 eg mit g Gain ; G Generationsrate ; 1 ( ) g g Ladungsträgerlebensdauer 9

10 Schrotrauschen Schrotrauschen lässt sich nicht vermeiden Unteres Limit Elektronen (und Photonen) sind diskrete Teilchen; im Schrotrauschen manifestiert sich dies Für die Teilchenzahl im Zeitintervall t ergibt sich folgende Verteilung: P( N, t) 1 e 2 N mit und N N 2 N 2N Mittelwert der Teilchenzahl Fluktuation um den Mittelwert Für RMS- (root mean square) Abweichung gilt: N 2 N Für das Signal-zu-Rausch-Verhältnis schrotrauschlimitierter Detektoren gilt: SNR N N N 10

11 Schrotrauschen Für den Schrotrauschstrom ergibt sich: ISH 2eIf Steigt mit zunehmender Bandbreite NEP (noise equivalent power) ist die Leistung, die am Ausgang ein Signal in der Höhe der rms des Rauschens erzeugt (wichtige Kenngröße) Die optische Leistung erzeugt auf einem Detektor folgenden Photostrom P op I L e Wenn der Detektor schrotrauschlimitiert ist können wir für die NEP I L = I SH setzen. Damit gilt: I 2 e( I I ) f L L D mit I D = Dunkelstrom 11

12 Schrotrauschen Je nach dem, wie groß der Dunkelstrom ist, ergeben sich zwei Fälle: a) I D << I L, Dann erhält man für die NEP NEP P ( I ) opt SH 2 f Q b) ) I L << I D, Dann erhält man für die NEP NEP P ( I ) opt SH 2eI Die NEP steigt mit der Bandbereite! NEP steigt mit der Photonenenergie <=> Es zählen eigentlich die Teilchenzahlen (!) und daher braucht man bei höheren Photonenenergie höhere optische Leistungen D e f Q 12

13 Nachweisgrenze/Detektivität Die Detektivität D wird allgemein wie folgt definiert: 1 D NEP Diese Größe hängt von der Bandbreite und der Detektorfläche ab, so dass man eine davon unabhängige Größe definiert, die spezifische Detektivität D Af NEP mit der Einheit cm Hz W Bei der Wahl eines Detektors wählt man einen, der ausreichend Bandbreite hat (Muss!) und dann den mit der höchsten Detektivität 13

14 D 1 NEP Nachweisgrenze/ Detektivität Bei der Wahl eines Detektors wählt man einen, der ausreichend Bandbreite hat (Muss!) und dann den mit der höchsten Detektivität 14

15 Photoleitungsdetektor Durch Erhöhung der Ladungsträgerdichte durch Lichteinstrahlung wird die Leitfähigkeit erhöht! 15

16 Photoleitungsdetektor Durch die Lichteinstrahlung ändert sich die Ladungsträgerkonzentration n p G mit G = Generationsrate und = Lebensdauer L p L Dies führt zu einer Änderung der Leitfähigkeit nach: e( n p) und e( ( n n) ( p p)) e p e p e( n p) e( n p) e( n p) e p e p e p e( n p) => en( ) e p e p Die Strom ändert sich durch Beleuchtung wie folgt: I I I ( ) AE Dark L I en( ) AE eg ( ) AE L e p L p e p mit A Querschnittsfläche p 16

17 Photoleitungsdetektor Die Transitzeit für einen Elektron im Detektor ist gegeben durch wobei das zweite Gleichheitszeichen nur für kleine Felder gilt Damit lässt sich der Strom schreiben als: t tr L v Wenn jedes Photon genau eine Ladung zum Kontakt bringt ergäbe sich ein Strom von I eg AL Lp L Die Verstärkung des Photoleitungsdetektors wird wie folgt definiert: D L µ E e p p I L egl (1 ) AL t tr e G ph I p L p (1 ) I t Lp tr n 17

18 Photoleitungsdetektor: Bemerkungen G ph I p L p (1 ) I t Lp tr n Verstärkung wir große für großes p und kleines t tr in indirekten HL können sehr hohe Verstärkungsfaktoren erreicht werden (z. B. Si > 1000), Dies ist durch die lange Ladungsträgerlebensdauer bedingt. Nachteil ist, dass aufgrund der langen Ladungsträgerrekombinationszeit der Detektor dann recht langsam ist Im Prinzip sind direkte HL viele schneller, aber die Erhöhung der Leitfähigkeit, die man erreichen kann, ist zu klein Ein Phototransistor ist auch eine Art Photoleitungsdetektor: Kein Licht = nicht leitfähig Beleuchtet = leitfähig 18

19 Photodioden Licht erzeugt e-h-paare, die im eingebauten Feld des p-n-übergangs getrennt werden Für einfache p-n-übergänge kann man zeigen, dass die e-h-paare die im Bereich der Diffusionslängen von Elektronen bzw. Löchern erzeugt werden zum Strom beitragen ; In Kombination mit einer kleinen Verarmungslänge ist die Responsivity relativ schwach p-i-n-struktur bietet bessere Responsivity Verschiedene Betriebsmodi möglich - Solarzelle (keine äußere Spannung) - schwach in Sperrrichtung vorgespannt - Lawinendetektor (stark in Sperrrichtung vorgespannt) 19

20 Photodioden: einfacher p-n-übergang Photostrom ist proportional zur optischen Leistung die auffällt Diffusion ist langsam => u. U. langsame Photorespons Kapazität relativ groß, so dass Geschwindigkeit auch durch RC begrenzt sein kann 20

21 Photodioden: einfacher p-n-übergang Photostrom ist proportional zur optischen Leistung die auffällt 21

22 Photodioden: p-i-n-struktur Diode in Sperrrichtung Moderate Sperrspannung (keine Stoßionisation) Bei dicker i-schicht dominieren die dort erzeugten Ladungsträger Ladungsträger werden im Feld beschleunigt => schnelle Photorespons 22

23 Photodioden: p-i-n-struktur Für den im i-bereich generierten Photostrom gilt: W I ea G ( x) dx L 0 L Für die Generationsrate als Funktion von x gilt: G ( x) J (0) e L ph Damit ergibt sich für den Photostrom W I eaj (0)[1 e ] L ph x Unter Berücksichtigung einer Reflexion an der Detektoroberfläche ergibt sich: W I eaj (0)(1 R)[1 e ] L ph 23

24 Photodioden: p-i-n-struktur W I eaj (0)(1 R)[1 e ] L ph Für die Detektoreffizienz (Photostrom/einfallenden Photonenstrom) ergibt sich: I L e W (1 R)[1 e ] AJ (0) ph Für eine hohe Detektoreffizienz muss W groß sein und R klein: - Antireflexbeschichtung!! - W nicht zu groß, da sonst die Transitzeit das Bauelement langsam macht (bis 10 GHz bei W ~ 1µm) 24

25 Photodioden: p-i-n-struktur Relativ dicker i-bereich wegen kleinem Je schneller, je weniger empfindlich 25

26 Photodioden: p-i-n-struktur Relativ dünner i-bereich, um zu hohem f gehen zu können Je schneller, je weniger empfindlich 26

27 Photodioden: Lawinendetektor Lawinendetektor = Avalanche Photodiode (APD) In Sperrrichtung betriebener pn- oder pin-übergang: - hohe Sperrspannung, so dass hohes elektrisches Feld in der Verarmungszone bzw. im i-bereich - durch Lawineneffekt ergibt sich Ladungsträgermultiplikation - Ladungsträgermultiplikation führt zu innerer Verstärkung Multiplikationsvorgang ist statistisch => APD relativ stark rauschbehaftet Verschiedene Betriebsmodi möglich: - normal = ohne Licht kein Signal - Geiger-Modus = sehr hohe Sperrspannung, so dass Licht einen Durchbruch auslöst, der auch nach Abschalten der Beleuchtung bleibt => Löschen erforderlich 27

28 Lawinendetektor: Funktionsprinzip 28

29 Lawinendetektor: Aufbau In der Regel Trennung von Absorption und Ladungsträgermultiplikation 29

30 Sättigungsdriftgeschwindigkeit 30

31 Lawinendetektor: mathematische Beschreibung Das Feld in der Verarmungszone ist bei einem APD so hoch, dass sich die Ladungsträger mit Sättigungsdriftgeschwindigkeit bewegen. Dann gilt für die Stromänderung pro zurückgelegter Wegstrecke: di I dx I dx mit ( ) Ionisationsraten e imp e imp h imp imp für Stoßionisation durch Elektronen (Löcher) Diese führt auf folgende DGL für den Elektronenstrom: die dx I I imp e imp h Für den Löcherstrom erhält man eine analoge DGL. Beachte: Obwohl Elektronen- und Löcherstrom beide mit x variieren, ist der Gesamtstrom für jedes x konstant. I I ( x) I (x) e h 31

32 Lawinendetektor: mathematische Beschreibung Damit kann man die DGL in folgender Form schreiben: die( x) dx ( ) I ( x) I imp imp e imp Es sollen folgende Randbedingungen gelten: - Multiplikationsregion von X=0 bis x=w - bei x=0 werden nur Elektronen injiziert - konstantes Feld in der Multiplikationsregion Man definiert dann den Verstärkungs- oder Multiplikationsfaktor wie folgt: I Ie( W) M e I (0) I (0) e Nach Lösen der DGL erhält man: M e imp e 1 imp ( imp imp ) W 1 [1 e ] imp 32

33 Lawinendetektor: mathematische Beschreibung M e 1 imp ( imp imp ) W 1 [1 e ] imp imp M e wird groß, wenn möglichst viel größer als ist und (!) wenn insgesamt groß ist => nicht alle Materialien eignen sich gleich gut für Avalanche Photodetektoren Wenn gleich gilt, erhält man M e 1 1 imp W 33

34 Ionisationsraten Stoßionisation Felder entsprechen knapp 100 V auf 1 µm Begrenzt durch Durchbruchfeldstärke III-V- Halbleiter nicht so gut geeignet <111>- Richtung liefert in GaAs besseres M e 34

35 Lawinendetektor: Multiplikationsfaktor M e 1 imp ( imp imp ) W 1 [1 e ] imp imp In realen Bauelementen wird der Multiplikationsfaktor durch zwei Faktoren limitiert: - Serienwiderstand reduziert das Feld in der Multiplikationszone - Strom erhöht die Temperatur und damit sinkt und Die experimentellen Beobachtungen bzgl. des Multiplikationsfaktors kann man mit folgender Beziehung anpassen: M 1 V IR 1 V B mit V =Durchbruchsspannung und R Serienwiderstand B 35

36 Lawinendetektor: Bandbreite Durch die interne Verstärkung eignet sich der APD für die Detektion kleiner Intensitäten aber Einbußen müssen bei der Bandbreite und dem Rauschlevel in Kauf genommen werden. Die Bandbreite wird im Wesentlichen durch drei Faktoren bestimmt: - Die Transitzeit durch die absorbierende Region Wabs ttr ( e) mit Wabs Dicke absorbierende Schicht v und v se, se, Sättigungsdriftgeschwindigkeit Elektronen - Zeit t A für die Entwicklung der Lawinenprozesses - Die Transitzeit für die Löcher durch die absorbierende Region zurück zum p-kontakt Wabs ttr ( h) mit Wabs Dicke absorbierende Schicht v und v sh, sh, Sättigungsdriftgeschwindigkeit Löcher 36

37 Lawinendetektor: Bandbreite Für t A gilt t A mit M W aval imp imp W v s, e aval Dicke der Multiplikationszone Für >> generiert nur ein Durchgang eines Elektrons die gesamte Lawine (siehe nächste Folie) Für die Gesamtresponszeit des Bauelementes gilt imp Wabs M W aval imp Wabs Waval v v s, e s, h Hohe Empfindlichkeit (großes M und großes W abs ) stehen einer großen Bandbreite entgegen 37

38 Lawinenaufbau 38

39 Lawinendetektor: Bandbreite x Verstärkung Für hohe Verstärkungen ist das Produkt aus Bandbreite und Verstärkung konstant. Es gilt also M const. Ein großes Verstärkungs-Bandbreite-Produkt lässt sich für Materialien erzielen, für die gilt: imp 1 imp 39

40 Lawinendetektor: Bandbreite x Verstärkung imp imp 1 Si ist ideal geeignet für APDs 40

41 Materialsysteme für Photodetektoren 41

42 Materialsysteme für Photodetektoren 42

Einführung in die optische Nachrichtentechnik. Photodioden (PH)

Einführung in die optische Nachrichtentechnik. Photodioden (PH) M E F K M PH/1 Photodioden (PH) Zur Detektion des optischen Signals werden in der optischen Nachrichtentechnik vorwiegend Halbleiterphotodioden eingesetzt und zwar insbesondere pin-dioden sowie Lawinenphotodioden.

Mehr

Kapitel 6 Detektoren. 6.1 Einführung

Kapitel 6 Detektoren. 6.1 Einführung Kapitel 6 Detektoren 6. Detektoren 6.1 Einführung 6. pn-photodiode Absorption im Halbleitermaterial Spektrale Charakteristik Kennlinie der Photodiode Zeitliches Verhalten 6.3 pin-photodiode 6.4 Avalanche

Mehr

Physik und Sensorik. Photodetektoren. Chemnitz 8. Oktober 2017 Prof. Dr. Uli Schwarz

Physik und Sensorik. Photodetektoren.  Chemnitz 8. Oktober 2017 Prof. Dr. Uli Schwarz Photodetektoren Optische Sensoren Z.B. Transmission durch Gewebe Lichtquelle Gewebe Photodetektor Verstärker Bildquelle: http://www2.hs-esslingen.de/~johiller/pulsoximetrie/pics/po06.jpg 2 Photodetektoren

Mehr

Halbleiter. pn-übergang Solarzelle Leuchtdiode

Halbleiter. pn-übergang Solarzelle Leuchtdiode Halbleiter pn-übergang Solarzelle Leuchtdiode Energie der Elektronenzustände von Natrium als Funktion des Abstandes a der Natriumatome a 0 ist der Abstand im festen Natrium 3.1a Spezifischer elektrischer

Mehr

1. Wie viele Photonen emittiert ein Laser mit einer Ausgangsleistung von 1 mw bei einer Emissionswellenlänge von 632,8 nm?

1. Wie viele Photonen emittiert ein Laser mit einer Ausgangsleistung von 1 mw bei einer Emissionswellenlänge von 632,8 nm? Teil: Prof. Dr. R. Heilmann Verständnisfragen und Aufgaben zur Optischen Messtechnik Teil: Prof. Dr. R. Heilmann, Seite 1 Grundlagen 1. Wie viele Photonen emittiert ein Laser mit einer Ausgangsleistung

Mehr

3 Halbleiter : pn-übergang, Solarzelle, Leuchtdiode. 3.1 Allgemeines F 3.1

3 Halbleiter : pn-übergang, Solarzelle, Leuchtdiode. 3.1 Allgemeines F 3.1 1 3 Halbleiter : pn-übergang, Solarzelle, Leuchtdiode 3.1 Allgemeines F 3.1 N isolierte Atome werden zum Festkörper (FK) zusammengeführt Wechselwirkung der beteiligten Elektronen Aufspaltung der Energieniveaus

Mehr

Fototransistor. Der Fototransistor. von Philip Jastrzebski. Betreuer: Christian Brose Philip Jastrzebski 1

Fototransistor. Der Fototransistor. von Philip Jastrzebski. Betreuer: Christian Brose Philip Jastrzebski 1 Der Fototransistor von Philip Jastrzebski Betreuer: Christian Brose 17.11.2008 Philip Jastrzebski 1 Gliederung: I. Aufbau & Funktionsweise Fotodiode Fototransistor V. Vor- und Nachteile VII. Bsp: Reflexkoppler

Mehr

Festkörperelektronik 2008 Übungsblatt 6

Festkörperelektronik 2008 Übungsblatt 6 Lichttechnisches Institut Universität Karlsruhe (TH) Prof. Dr. rer. nat. Uli Lemmer Dipl.-Phys. Alexander Colsmann Engesserstraße 13 76131 Karlsruhe Festkörperelektronik 6. Übungsblatt 10. Juli 2008 Die

Mehr

Versuch 33: Photovoltaik - Optische und elektrische Charakterisierung von Solarzellen Institut für Technische Physik II

Versuch 33: Photovoltaik - Optische und elektrische Charakterisierung von Solarzellen Institut für Technische Physik II Versuch 33: Photovoltaik - Optische und elektrische Charakterisierung von Solarzellen Institut für Technische Physik II Photovoltaik:Direkte Umwandlung von Strahlungsenergie in elektrische Energie Anregung

Mehr

Detektoren in der Kern- und Teilchenphysik Szintillationsdetektoren Ionisationsdetektoren Halbleiterdetektoren

Detektoren in der Kern- und Teilchenphysik Szintillationsdetektoren Ionisationsdetektoren Halbleiterdetektoren Wechselwirkung geladener Teilchen in Materie Physik VI Sommersemester 2008 Detektoren in der Kern- und Teilchenphysik Szintillationsdetektoren Ionisationsdetektoren Halbleiterdetektoren Szintillationsdetektoren

Mehr

Auswertung. D07: Photoeffekt

Auswertung. D07: Photoeffekt Auswertung zum Versuch D07: Photoeffekt Alexander Fufaev Partner: Jule Heier Gruppe 434 1 Einleitung In diesem Versuch geht es darum, den Photoeffekt auf verschiedene Weisen zu untersuchen. In Versuchsteil

Mehr

NANO III. Operationen-Verstärker 1. Eigenschaften Schaltungen verstehen Anwendungen

NANO III. Operationen-Verstärker 1. Eigenschaften Schaltungen verstehen Anwendungen NANO III Operationen-Verstärker Eigenschaften Schaltungen verstehen Anwendungen Verwendete Gesetze Gesetz von Ohm = R I Knotenregel Σ ( I ) = 0 Maschenregel Σ ( ) = 0 Ersatzquellen Überlagerungsprinzip

Mehr

Der pn-übergang. Bardeen - Shockley - Brattain (Bell Labs.)

Der pn-übergang. Bardeen - Shockley - Brattain (Bell Labs.) Der Bardeen - Shockley - Brattain (Bell Labs.) Übersicht Generation und Rekombination Direkte Rekombination Kontinuitätsgleichung Haynes Shockley Experiment Elektrisches Feld im Halbleiter Aufbau Ladungsträgertransport

Mehr

Halbleiter- Optoelektronik

Halbleiter- Optoelektronik Wolfgang Bludau Halbleiter- Optoelektronik Die physikalischen Grundlagen der LED's, Diodenlaser und pn-photodioden mit 114 Bildern Carl Hanser Verlag München Wien Inhaltsverzeichnis 1. Wellen- und Quantennatur

Mehr

Hausaufgaben zum Praktikum Halbleiterbauelemente der Hochleistungselektronik

Hausaufgaben zum Praktikum Halbleiterbauelemente der Hochleistungselektronik Hausaufgaben zum Praktikum Halbleiterbauelemente der Hochleistungselektronik Die folgenden Aufgaben dienen der Vorbereitung auf das Praktikum Halbleiterbauelemente der Hochleistungselektronik. Bitte bearbeiten

Mehr

1. Diode und Transistor

1. Diode und Transistor 1. Diode und Transistor Vergleichen Sie Diode und Transistor aus Bild 1. a) Wie groß sind jeweils die Elektronenströme? b) Wie groß sind jeweils die Löcherströme? E B C 18-3 N = A 17-3 10 cm 16-3 Basislänge

Mehr

Abb. 1 Solarzellen PHOTOVOLTAIK. Stefan Hartmann

Abb. 1 Solarzellen PHOTOVOLTAIK. Stefan Hartmann Abb. 1 Solarzellen PHOTOVOLTAIK Stefan Hartmann 1 Gliederung Einführung Grundlegendes zu Halbleitern Generation und Rekombination pn-übergang Zusammenfassung: Was läuft ab? Technisches 2 Einführung Abb.

Mehr

Leistungsbauelemente

Leistungsbauelemente I (Kurs-Nr. 21645), apl. Prof. Dr. rer. nat. Fakultät für Mathematik und Informatik Fachgebiet Elektrotechnik und Informationstechnik ( ) D-58084 Hagen 1 Gliederung Einleitung Physikalische Grundlagen

Mehr

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2013 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 10. Vorlesung, 27. 6. 2013 Halbleiter, Halbleiter-Bauelemente Diode, Solarzelle,

Mehr

Das große. Halbleiterlaser. Clicker-Quiz

Das große. Halbleiterlaser. Clicker-Quiz Das große Halbleiterlaser Clicker-Quiz Aufbau eines Lasers Was wird bei der Separate Confinement Heterostructure separat eingeschlossen? a) Elektronen und Löcher b) Ladungsträger und Photonen c) Dotieratome

Mehr

Z-Diode u.a. Roland Küng, 2010

Z-Diode u.a. Roland Küng, 2010 Z-Diode u.a. Roland Küng, 2010 Diode Review Überlegen in 2 Schritten: v I negativ: Ersatzbild vo v I positiv: Ersatzbild vo L: Zweiweggleichrichter v 0 = v i Diode Review Wechselspannungswiderstand LED

Mehr

Halbleiter, Dioden. wyrs, Halbleiter, 1

Halbleiter, Dioden. wyrs, Halbleiter, 1 Halbleiter, Dioden Halbleiter, 1 Inhaltsverzeichnis Aufbau & physikalische Eigenschaften von Halbleitern Veränderung der Eigenschaften mittels Dotierung Vorgänge am Übergang von dotierten Materialen Verhalten

Mehr

Versuch 42: Photovoltaik

Versuch 42: Photovoltaik Martin-Luther-Universität Halle-Wittenberg Institut für Physik Fortgeschrittenen- Praktikum Versuch 42: Photovoltaik An einer Silizium-Solarzelle sind folgende Messungen durchzuführen: 1) Messen Sie die

Mehr

Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002

Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002 Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002 30. Juli 2002 Gruppe 17 Christoph Moder 2234849 Michael Wack 2234088 Sebastian Mühlbauer 2218723

Mehr

Widerstände. Schulversuchspraktikum WS 2000/2001 Redl Günther und 7.Klasse. Inhaltsverzeichnis:

Widerstände. Schulversuchspraktikum WS 2000/2001 Redl Günther und 7.Klasse. Inhaltsverzeichnis: Schulversuchspraktikum WS 2000/2001 Redl Günther 9655337 Widerstände 3. und 7.Klasse Inhaltsverzeichnis: 1) Vorraussetzungen 2) Lernziele 3) Verwendete Quellen 4) Ohmsches Gesetz 5) Spezifischer Widerstand

Mehr

TRANSISTORKENNLINIEN 1 (TRA 1) DANIEL DOLINSKY UND JOHANNES VRANA

TRANSISTORKENNLINIEN 1 (TRA 1) DANIEL DOLINSKY UND JOHANNES VRANA TRANSISTORKENNLINIEN 1 (TRA 1) DANIEL DOLINSKY UND JOHANNES VRANA Inhaltsverzeichnis 1. Einleitung... 1 2. Messverfahren... 1 3. Bemerkung zur Fehlerrechnung... 1 4. Stromverstärkungsfaktor... 2 5. Eingangskennlinie...

Mehr

Detektortypen. D * in cm Hz ½ W -1. Thermosäule , s 0, Thermisch

Detektortypen. D * in cm Hz ½ W -1. Thermosäule , s 0, Thermisch Detektortypen Typ Physikalischer Effekt Bauart D * in cm Hz ½ W -1 Ansprechzeit Wellenlängenbereich in µm Art des Rauschens Äußerer Photoeffekt Photomultiplier 5 10 15 < 15 ns 0,16... 0,7 Impuls Photonendetektoren

Mehr

Halbleiter und Transistoren - Prinzip und Funktionsweise

Halbleiter und Transistoren - Prinzip und Funktionsweise Halbleiter und Transistoren - Prinzip und Funktionsweise Reine Halbleitermaterialien, wie Silizium (Si) oder Germanium (Ge) sind bei Zimmertemperatur fast Isolatoren: bzw. bei sinkender Temperatur HL Isolator

Mehr

Ü ersicht üb ü e b r di d e Vo V r o lesun u g g Sol o arene n rgi g e Third Generation Photovoltaics

Ü ersicht üb ü e b r di d e Vo V r o lesun u g g Sol o arene n rgi g e Third Generation Photovoltaics Übersicht über die Vorlesung Solarenergie 9.1 1. Einleitung 2. Die Sonne als Energiequelle 3. Halbleiterphysikalische Grundlagen 4. Kristalline pn-solarzellen 5. Elektrische Eigenschaften 6. Optimierung

Mehr

Auswertung. oberhalb der Laserschwelle unterhalb der Laserschwelle Spannung U in V. Abbildung 1: Kennlinie der Laserdiode

Auswertung. oberhalb der Laserschwelle unterhalb der Laserschwelle Spannung U in V. Abbildung 1: Kennlinie der Laserdiode Physikalisches Fortgeschrittenenpraktikum Lumineszenz Auswertung Armin Burgmeier Robert Schittny 1 Laserdiode 1.1 Kennlinie Wir haben die Kennlinie der Laserdiode aufgenommen, zunächst überhalb der Laserschwelle

Mehr

low cost Photon counting wir zählen das Licht

low cost Photon counting wir zählen das Licht low cost Photon counting wir zählen das Licht Auszüge aus einer Jugend-forscht Arbeit im Januar 2002 Zielsetzung: - Registrierung von Photonen als Einzelobjekte - Ausmessen eines Interferenzmusters als

Mehr

Photodetektoren für Stehende-Welle-Interferometer.

Photodetektoren für Stehende-Welle-Interferometer. Photodetektoren für Stehende-Welle-Interferometer 1 Inhalt 1. Einleitung und Motivation 2. Anforderungen an Photodetektoren für ein SWI 3. Epitaxie von GaN- und InGaN-Nanoschichten 4. GaN- & InGaN-basierende

Mehr

Schaltzeichen. Schaltzeichen

Schaltzeichen. Schaltzeichen Die Eigenschaften des pn-übergangs werden in Halbleiterdioden genutzt. Halbleiterdioden bestehen aus einer p- und einer n-leitenden Schicht. Die Schichten sind in einem Gehäuse miteinander verbunden und

Mehr

Infrarotsensoren. B. Bilgrim O. Seibertz Gruppe B - 3

Infrarotsensoren. B. Bilgrim O. Seibertz Gruppe B - 3 Infrarotsensoren B. Bilgrim O. Seibertz Gruppe B - 3 Inhalt 1. Infrarotstrahlung 2. Erzeugung und Anwendung der IR-Strahlung 3. Für Hinderniserkennung geeignete IR-Sensoren 3.1 Überblick der Möglichkeiten

Mehr

Strom und Spannungsmessung, Addition von Widerständen, Kirchhoffsche Regeln, Halbleiter, p-n-übergang, Dioden, fotovoltaischer Effekt

Strom und Spannungsmessung, Addition von Widerständen, Kirchhoffsche Regeln, Halbleiter, p-n-übergang, Dioden, fotovoltaischer Effekt Versuch 27: Solarzellen Seite 1 Aufgaben: Vorkenntnisse: Lehrinhalt: Literatur: Messung von Kurzschlussstrom und Leerlaufspannung von Solarzellen, Messung der I-U-Kennlinien von Solarzellen, Bestimmung

Mehr

Potential und Spannung

Potential und Spannung Potential und Spannung Arbeit bei Ladungsverschiebung: Beim Verschieben einer Ladung q im elektrischen Feld E( r) entlang dem Weg C wird Arbeit geleistet: W el = F C d s = q E d s Vorzeichen: W el > 0

Mehr

Freie Elektronen bilden ein Elektronengas. Feste positive Aluminiumionen. Abb. 1.1: Metallbindung: Feste Atomrümpfe und freie Valenzelektronen

Freie Elektronen bilden ein Elektronengas. Feste positive Aluminiumionen. Abb. 1.1: Metallbindung: Feste Atomrümpfe und freie Valenzelektronen 1 Grundlagen 1.1 Leiter Nichtleiter Halbleiter 1.1.1 Leiter Leiter sind generell Stoffe, die die Eigenschaft haben verschiedene arten weiterzuleiten. Im Folgenden steht dabei die Leitfähigkeit des elektrischen

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung 4 Quantenphänomene Aufgabe 1: Photoeffekt 1 Ein monochromatischer Lichtstrahl trifft auf eine Kalium-Kathode

Mehr

Beispielklausur 3 - Halbleiterbauelemente. Aufgabe 1: Halbleiterphysik I Punkte

Beispielklausur 3 - Halbleiterbauelemente. Aufgabe 1: Halbleiterphysik I Punkte Aufgabe 1: Halbleiterphysik I Punkte 1.1) Skizzieren Sie das Bändermodell eines mit Bor (dritte Hauptgruppe) dotierten Halbleiters. Zeichnen Sie das Störstellenniveau (ca. 100meV oberhalb der Valenzbandenergie),

Mehr

Originaldokument enthält an dieser Stelle eine Grafik! Original document contains a graphic at this position!

Originaldokument enthält an dieser Stelle eine Grafik! Original document contains a graphic at this position! FUNKTIONSWEISE Thema : HALBLEITERDIODEN Die Eigenschaften des PN-Überganges werden in Halbleiterdioden genutzt. Die p- und n- Schicht befinden sich einem verschlossenen Gehäuse mit zwei Anschlussbeinen.

Mehr

Fachbereich Elektrotechnik und Informationstechnik Laborpraktikum Elektronische Bauelemente Prof. M. Hoffmann

Fachbereich Elektrotechnik und Informationstechnik Laborpraktikum Elektronische Bauelemente Prof. M. Hoffmann Fachbereich Elektrotechnik und Informationstechnik Laborpraktikum Elektronische Bauelemente Prof. M. Hoffmann Photoleitung in Halbleitern Studiengang: Set: Teilnehmer: Platz: Datum: Zielstellung Ermittlung

Mehr

11. Elektronen im Festkörper

11. Elektronen im Festkörper 11. Elektronen im Festkörper 11.1 Elektrische Leitung in Festkörpern 11.2 Freies Elektronengas im Sommerfeld- Modell 11.3 Bändermodell des Festkörpers 11.4 Metalle, Isolatoren und Halbleiter 1 11.4 Metalle,

Mehr

5. Photoelektrochemische Solarzellen Beispiel: n-halbleiter als Elektrode. Verbiegung des elektrischen Potentials im Halbleiter hin zur Oberfläche

5. Photoelektrochemische Solarzellen Beispiel: n-halbleiter als Elektrode. Verbiegung des elektrischen Potentials im Halbleiter hin zur Oberfläche 5. Photoelektrochemische Solarzellen Beispiel: n-halbleiter als Elektrode Ausbildung einer Raumladungszone und einer Bandverbiegung: Verbiegung des elektrischen Potentials im Halbleiter hin zur Oberfläche

Mehr

An eine n-typ Halbleiterprobe mit (n >> p) wird an zwei Kontakten eine Spannung U Bat angelegt und somit ein Stromfluss I durch die Probe erzeugt.

An eine n-typ Halbleiterprobe mit (n >> p) wird an zwei Kontakten eine Spannung U Bat angelegt und somit ein Stromfluss I durch die Probe erzeugt. 1. Aufgabe: Halbleitergrundlagen und Halleffekt An eine n-typ Halbleiterprobe mit (n >> p) wird an zwei Kontakten eine Spannung U Bat angelegt und somit ein Stromfluss I durch die Probe erzeugt. U Bat

Mehr

3 Supraleiter Wie äußert sich Supraleitung?

3 Supraleiter Wie äußert sich Supraleitung? 3 upraleiter Wie äußert sich upraleitung? Widerstand des Materials verschwindet unterhalb einer kritischen Temperatur Tc Es dringt kein Magnetfeld (tief) in das Material ein 3 upraleiter Was ist supraleitend?

Mehr

Dotierung. = gezieltes Verunreinigen des Si-Kristalls mit bestimmten Fremdatomen. n-dotierung Einbau. von Atomen mit 3 Valenzelektronen

Dotierung. = gezieltes Verunreinigen des Si-Kristalls mit bestimmten Fremdatomen. n-dotierung Einbau. von Atomen mit 3 Valenzelektronen Halbleiter Dotierung = gezieltes Verunreinigen des Si-Kristalls mit bestimmten Fremdatomen. n-dotierung Einbau von Atomen mit 5 Valenzelektronen = Donatoren Elektronengeber (P, Sb, As) p-dotierung Einbau

Mehr

Sonnenenergie: Photovoltaik. Physik und Technologie der Solarzelle

Sonnenenergie: Photovoltaik. Physik und Technologie der Solarzelle Sonnenenergie: Photovoltaik Physik und Technologie der Solarzelle Von Prof. Dr. rer. nat. Adolf Goetzberger Dipl.-Phys. Bernhard Voß und Dr. rer. nat. Joachim Knobloch Fraunhofer-Institut für Solare Energiesysteme

Mehr

Äußerer lichtelektrischer Effekt

Äußerer lichtelektrischer Effekt Grundexperiment 1 UV-Licht Video: 301-1 Grundexperiment 2 UV-Licht Grundexperiment 3 Rotes Licht Video: 301-2 Grundexperiment 3 UV-Licht Glasplatte Video: 301-2 Herauslösung von Elektronen aus Metallplatte

Mehr

Übersicht über die Vorlesung Solarenergie

Übersicht über die Vorlesung Solarenergie Übersicht über die Vorlesung Solarenergie 6.1 1. Einleitung 2. Die Sonne als Energiequelle 3. Halbleiterphysikalische Grundlagen 4. Kristalline pn-solarzellen 5. Elektrische Eigenschaften 6. Optimierung

Mehr

Lineares NMOS Photodiodenarray

Lineares NMOS Photodiodenarray Lineares NMOS Photodiodenarray ν Photodioden: n-diffundierte Streifen im p-substrat Addressschalter: n-kanal MOS-FET; Source verbunden mit Photodiode, Gate mit digitalem Schieberegister und Drain mit der

Mehr

Ein Beitrag zu Dünnschichtsolarzellen auf der Basis von Cu(In, Ga)Se 2

Ein Beitrag zu Dünnschichtsolarzellen auf der Basis von Cu(In, Ga)Se 2 1. Seminarvortrag Graduiertenkolleg 1 Seminarvortrag Graduiertenkolleg Neue Hochleistungswerkstoffe für effiziente Energienutzung Ein Beitrag zu Dünnschichtsolarzellen auf der Basis von Cu(In, Ga)Se 2

Mehr

43. Strahlenschutz und Dosimetrie. 36. Lektion Wechselwirkung und Reichweite von Strahlung

43. Strahlenschutz und Dosimetrie. 36. Lektion Wechselwirkung und Reichweite von Strahlung 43. Strahlenschutz und Dosimetrie 36. Lektion Wechselwirkung und Reichweite von Strahlung Lernziel: Die Wechselwirkung von radioaktiver Strahlung (α,β,γ( α,β,γ) ) ist unterschiedlich. Nur im Fall von α-

Mehr

Dunkelstrom. Leerlaufspannung. Photostrom (Kurzschlussstrom) Detektoren PHOTONIK - Halbleiterdetektoren. Prinzip:

Dunkelstrom. Leerlaufspannung. Photostrom (Kurzschlussstrom) Detektoren PHOTONIK - Halbleiterdetektoren. Prinzip: PHOTONIK - Detektoren Halbleiterdetektoren Prinzip: Halbleiterelemente mit pn-übergang, betrieben in Sperrrichtung Konstruktion erlaubt Lichteinfall auf pn-grenzschicht Durch Absorption von Photonen werden

Mehr

Google-Ergebnis für

Google-Ergebnis für Solarzellen Friedrich-Schiller-Realschule Böblingen Basiswissen Elektronik - Wissen Schaltzeichen einer Solarzelle Geschichte: Wann wurde die erste Solarzelle entwickelt? Der photovoltaische Effekt wurde

Mehr

Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV.

Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV. Physik LK 2, 2. Kursarbeit Magnetismus Lösung 07.2.202 Konstante Wert Konstante Wert Elementarladung e=,602 0 9 C. Masse Elektron m e =9,093 0 3 kg Molmasse Kupfer M Cu =63,55 g mol Dichte Kupfer ρ Cu

Mehr

5) Messung radioaktiver Strahlung (1)

5) Messung radioaktiver Strahlung (1) 5) Messung radioaktiver Strahlung (1) Registrierung von Wechselwirkungen zwischen Strahlung und Materie Universelles Prinzip: Messung der Ionisierungswirkung Messung der Ionisierung Messung der Dosis.

Mehr

Herstellung eines Alpha- Beta- Gamma-empfindlichen Strahlungsdetektors auf Basis einer kostengünstigen PIN-Diode

Herstellung eines Alpha- Beta- Gamma-empfindlichen Strahlungsdetektors auf Basis einer kostengünstigen PIN-Diode Herstellung eines Alpha- Beta- Gamma-empfindlichen Strahlungsdetektors auf Basis einer kostengünstigen PIN-Diode Bernd Laquai, 12.6.2012 Ermutigt durch die Tatsache, dass die Am241 Rauchmelder-Alphaquelle

Mehr

Photonenstatistik und Quantenradierer

Photonenstatistik und Quantenradierer Photonenstatistik und Quantenradierer Antje Bergmann 1 und Günter G Quast 2 1 Institut für f r Theoretische Festkörperphysik, Photonics Group EKP 2 Institut für f r Experimentelle Kernphysik Universität

Mehr

4. Dioden Der pn-übergang

4. Dioden Der pn-übergang 4.1. Der pn-übergang Die Diode ist ein Halbleiterbauelement mit zwei Anschlüssen: Eine Diode besteht aus einem Halbleiterkristall, der auf der einen Seite p- und auf der anderen Seite n-dotiert ist. Die

Mehr

NANO III. Operationen-Verstärker. Eigenschaften Schaltungen verstehen Anwendungen

NANO III. Operationen-Verstärker. Eigenschaften Schaltungen verstehen Anwendungen NANO III Operationen-Verstärker Eigenschaften Schaltungen verstehen Anwendungen Verwendete Gesetze Gesetz von Ohm = R I Knotenregel Σ ( I ) = Maschenregel Σ ( ) = Ersatzquellen Überlagerungsprinzip Voraussetzung:

Mehr

h-bestimmung mit LEDs

h-bestimmung mit LEDs Aufbau und Funktion der 13. März 2006 Inhalt Aufbau und Funktion der 1 Aufbau und Funktion der 2 sbeschreibung Inhalt Aufbau und Funktion der 1 Aufbau und Funktion der 2 sbeschreibung Aufbau und Funktion

Mehr

HERSTELLUNG UND CHARAKTERISIERUNG VON INVERSIONSSCHICHT SOLARZELLEN AUF POLYKRISTALLINEM SILIZIUM

HERSTELLUNG UND CHARAKTERISIERUNG VON INVERSIONSSCHICHT SOLARZELLEN AUF POLYKRISTALLINEM SILIZIUM Schriftenreihe zur Energieforschung Herausgegeben von der Alfried Krupp von Bohlen und Halbach-Stiftung Edmund Paul Burte HERSTELLUNG UND CHARAKTERISIERUNG VON INVERSIONSSCHICHT SOLARZELLEN AUF POLYKRISTALLINEM

Mehr

Bildgebung mit Röntgenstrahlen. Wechselwirkung mit Materie

Bildgebung mit Röntgenstrahlen. Wechselwirkung mit Materie Wechselwirkung mit Materie Scanogramm Röntgen- Quelle Detektor ntwicklung Verarbeitung Tomogramm Bohrsches Atommodell M (18e - ) L (8e - ) K (2e - ) Wechselwirkung mit Materie Kohärente Streuung Röntgenquant

Mehr

Strahlenschäden bei Silizium-Halbleiterdetektoren

Strahlenschäden bei Silizium-Halbleiterdetektoren Unai Fischer Abaigar Betreuer: Markus Gabrysch, Michael Moll Strahlenschäden bei lizium-halbleiterdetektoren Projektwochen Netzwerk Teilchenwelt CERN 7. - 19. Oktober 2012 LHC : Beispiel CMS CMS Innerer

Mehr

Studieneinheit V Rasterelektronenmikroskopie, REM

Studieneinheit V Rasterelektronenmikroskopie, REM .04.008 Studieneinheit V.. Rasterelektronenmikroskopie, REM... Funktionsweise eines Rasterelektronenmikroskops... Wechselwirkung von Elektronen mit Festkörpern... Detektoren..4. Kontrastarten..5. Probenpräparation...

Mehr

Theoretische Modellierung von experimentell ermittelten Infrarot-Spektren

Theoretische Modellierung von experimentell ermittelten Infrarot-Spektren Sitzung des AK-Thermophysik am 24./25. März 211 Theoretische Modellierung von experimentell ermittelten Infrarot-Spektren M. Manara, M. Arduini-Schuster, N. Wolf, M.H. Keller, M. Rydzek Bayerisches Zentrum

Mehr

Welche Zustände sind denn eigentlich besetzt?

Welche Zustände sind denn eigentlich besetzt? elche Zustände sind denn eigentlich besetzt? elche Zustände sind denn eigentlich besetzt? ( 0 ) 12 9 -im Prinzip sollte das Ganze ähnlich wie beim Atom erfolgen 6 - Besetzung von unten nach oben 3 -...wie

Mehr

1 Leitfähigkeit in Festkörpern

1 Leitfähigkeit in Festkörpern 1 Leitfähigkeit in Festkörpern Elektrische Leitfähigkeit ist eine physikalische Größe, die die Fähigkeit eines Stoffes angibt, elektrischen Strom zu leiten. Bändermodell Die Leitfähigkeit verschiedener

Mehr

-Q 1 Nach Aufladen C 1

-Q 1 Nach Aufladen C 1 Verschaltung von Kondensatoren a) Parallelschaltung C 2 Knotensatz: Q 2 -Q 2 Q 1 -Q 1 Nach Aufladen C 1 U Die Kapazitäten addieren sich b) Reihenschaltung C 1 C 2 Q -Q Q -Q Maschenregel: U Die reziproken

Mehr

Stand: 05.07.2001 Seite 2-1

Stand: 05.07.2001 Seite 2-1 Inhaltsverzeichnis: Thema Bereiche Seite Grundlagen der Optik Wellenlänge des Lichts 2-2 Wellenbereiche der elektromagnetischen Stra. 2-2 Unterscheidung optischer Größen Physikalische Größen (Radiometrisch)

Mehr

2. Der Temperaturkoeffizient des spezifischen Widerstands α. Die SI-Einheit K -1 ρ = ρ

2. Der Temperaturkoeffizient des spezifischen Widerstands α. Die SI-Einheit K -1 ρ = ρ 7. Elektrische Leitfähigkeit von estkörpern 7.1 Die elektrischen Eigenschaften von Kristallen Die grundlegende Eigenschaften kennzeichnen das elektrische Verhalten von estkörpern: 1. Der spezifische Widerstand

Mehr

6.2.6 Ohmsches Gesetz ******

6.2.6 Ohmsches Gesetz ****** 6..6 ****** Motivation Das Ohmsche Gesetz wird mithilfe von verschiedenen Anordnungen von leitenden Drähten untersucht. Experiment 6 7 8 9 0 Abbildung : Versuchsaufbau. Die Ziffern bezeichnen die zehn

Mehr

Einführung in die Astronomie I

Einführung in die Astronomie I Einführung in die Astronomie I Teil 6 Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 20. Juni 2017 1 / 30 Übersicht Teil 6 Sternatmosphären Strahlungstransport

Mehr

Radiologie Modul I. Teil 1 Grundlagen Röntgen

Radiologie Modul I. Teil 1 Grundlagen Röntgen Radiologie Modul I Teil 1 Grundlagen Röntgen Teil 1 Inhalt Physikalische Grundlagen Röntgen Strahlenbiologie Technische Grundlagen Röntgen ROENTGENTECHNIK STRAHLENPHYSIK GRUNDLAGEN RADIOLOGIE STRAHLENBIOLOGIE

Mehr

Aufgabe 1 ( 5 Punkte) Aufgabe 2 ( 6 Punkte) Aufgabe 3 ( 12 Punkte) Lösung. Lösung. Elektromagnetische Felder und Wellen: Lösung zur Klausur

Aufgabe 1 ( 5 Punkte) Aufgabe 2 ( 6 Punkte) Aufgabe 3 ( 12 Punkte) Lösung. Lösung. Elektromagnetische Felder und Wellen: Lösung zur Klausur Elektromagnetische Felder und Wellen: zur Klausur 2015-1 1 Aufgabe 1 ( 5 Punkte) Ein Elektronenstrahl ist entlang der z-achse gerichtet. Bei z = 0 und bei z = L befindet sich jeweils eine Lochblende, welche

Mehr

Lösung zu Aufgabe 3.1

Lösung zu Aufgabe 3.1 Lösung zu Aufgabe 3.1 (a) Die an der Anordnung anliegende Spannung ist groß im Vergleich zur Schleusenspannung der Diode. Für eine Abschätzung des Diodenstroms wird zunächst die Näherung V = 0.7 V verwendet,

Mehr

Silizium-Detektoren der Zukunft

Silizium-Detektoren der Zukunft Verschiedene Typen von Detektoren ermöglichen ein breites Spektrum von Anwendungen in Forschung und Industrie. Winfried Reeb, Werner-von-Sie-mens-Str. 15, 82140 Olching In der Spektroskopie spielt die

Mehr

Physik 4 Praktikum Auswertung Hall-Effekt

Physik 4 Praktikum Auswertung Hall-Effekt Physik 4 Praktikum Auswertung Hall-Effekt Von J.W., I.G. 2014 Seite 1. Kurzfassung......... 2 2. Theorie.......... 2 2.1. Elektrischer Strom in Halbleitern..... 2 2.2. Hall-Effekt......... 3 3. Durchführung.........

Mehr

Norbert Koch. Polymer gegen Silizium: Wer wird in der Elektronik gewinnen?

Norbert Koch. Polymer gegen Silizium: Wer wird in der Elektronik gewinnen? Polymer gegen Silizium: Wer wird in der Elektronik gewinnen? Norbert Koch Humboldt Universität zu Berlin, Institut für Physik & IRIS Adlershof Helmholtz Zentrum Berlin für Materialien und Energie GmbH

Mehr

Elektrizitätsleitung in Halbleitern

Elektrizitätsleitung in Halbleitern Elektrizitätsleitung in Halbleitern Halbleiter sind chemische Elemente, die elektrischen Strom schlecht leiten. Germanium, Silicium und Selen sind die technisch wichtigsten Halbleiterelemente; aber auch

Mehr

Fortgeschrittene Photonik Technische Nutzung von Licht

Fortgeschrittene Photonik Technische Nutzung von Licht Fortgeschrittene Photonik Technische Nutzung von Licht Fresnel Formeln Fresnel sche Formeln Anschaulich Fresnel sche Formeln Formeln Fresnel schen Formeln R k = r 2 k = R? = r 2? = Energieerhaltung:

Mehr

Klausurtermin: Nächster Klausurtermin: September :15-11:15

Klausurtermin: Nächster Klausurtermin: September :15-11:15 Klausurtermin: 10.02.2017 Gruppe 1: 9:15 11:15 Uhr Gruppe 2: 11:45-13:45 Uhr Nächster Klausurtermin: September 2017 9:15-11:15 Fragen bitte an: Antworten: t.giesen@uni-kassel.de direkt oder im Tutorium

Mehr

Opto-elektronische. Materialeigenschaften VL # 4

Opto-elektronische. Materialeigenschaften VL # 4 Opto-elektronische Materialeigenschaften VL # 4 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Experimental Physics VI, Julius-Maximilians-University of Würzburg und Bayerisches Zentrum für Angewandte

Mehr

3.4. Leitungsmechanismen

3.4. Leitungsmechanismen a) Metalle 3.4. Leitungsmechanismen - Metall besteht aus positiv geladenen Metallionen und frei beweglichen Leitungselektronen (freie Elektronengas), Bsp.: Cu 2+ + 2e - - elektrische Leitung durch freie

Mehr

Grundlagen der Quantentheorie

Grundlagen der Quantentheorie Grundlagen der Quantentheorie Ein Schwarzer Körper (Schwarzer Strahler, planckscher Strahler, idealer schwarzer Körper) ist eine idealisierte thermische Strahlungsquelle: Alle auftreffende elektromagnetische

Mehr

Transistor BJT I. Roland Küng, 2009

Transistor BJT I. Roland Küng, 2009 Transistor BJT I Roland Küng, 2009 Aufbau-Bezeichnungen Typ NPN Typ PNP Aufbau Praktisch Typ NPN B Schicht dünn E Schicht hoch dotiert (viel Phosphor bei n, Bor bei p) B E C Funktionsweise I E hoch dotiert

Mehr

Atomic Force Microscopy

Atomic Force Microscopy 1 Gruppe Nummer 103 29.4.2009 Peter Jaschke Gerd Meisl Atomic Force Microscopy Inhaltsverzeichnis 1. Einleitung... 2 2. Theorie... 2 3. Ergebnisse und Fazit... 4 2 1. Einleitung Die Atomic Force Microscopy

Mehr

Komponenten, Aufbau und Funktionsweise einer. Glasfaserdatenübertragung

Komponenten, Aufbau und Funktionsweise einer. Glasfaserdatenübertragung Komponenten, Aufbau und Funktionsweise einer Folie 1 Folie Optische Kommunikation (1) 1880 Photophon (Graham Bell) Sonnenlicht Spiegel Halbleiter Lautsprecher Änderung der Lichtstärke Übertragung von der

Mehr

Äußerer lichtelektrischer Effekt Übungsaufgaben

Äußerer lichtelektrischer Effekt Übungsaufgaben Aufgabe: LB S.66/9 Durch eine Natriumdampflampe wird Licht der Wellenlänge 589 nm (gelbe Natriumlinien) mit einer Leistung von 75 mw ausgesendet. a) Berechnen Sie die Energie der betreffenden Photonen!

Mehr

Die Diode. Roland Küng, 2009

Die Diode. Roland Küng, 2009 Die Diode Roland Küng, 2009 Halbleiter Siliziumgitter Halbleiter Eine aufgebrochene kovalente Bindung (Elektronenpaar) produziert ein Elektron und ein Loch Halbleiter Typ n z.b. Phosphor Siliziumgitter

Mehr

3. Halbleiter und Elektronik

3. Halbleiter und Elektronik 3. Halbleiter und Elektronik Halbleiter sind Stoe, welche die Eigenschaften von Leitern sowie Nichtleitern miteinander vereinen. Prinzipiell sind die Elektronen in einem Kristallgitter fest eingebunden

Mehr

Optische Methoden in der Messtechnik. welcome back!

Optische Methoden in der Messtechnik. welcome back! Optische Methoden in der Messtechnik Gert Holler (OM_2 OM_7), Axel Pinz (OM_1) welcome back! 1 Übersicht Allgemeine Übersicht, Wellen- vs. Teilchenmodell, thermische Strahler, strahlungsoptische (radiometrische)

Mehr

CMB Echo des Urknalls. Max Camenzind Februar 2015

CMB Echo des Urknalls. Max Camenzind Februar 2015 CMB Echo des Urknalls Max Camenzind Februar 2015 Lemaître 1931: Big Bang des expandierenden Universums Big Bang : Photonenhintergrund + Neutrinohintergrund 3-Raum expandiert: dx a(t) dx ; Wellenlängen

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? Dielektrika - auf atomarem Niveau lektrischer Strom Stromdichte Driftgeschwindigkeit i i = dq dt = JdA J = nev D Widerstand

Mehr

Basiskenntnistest - Physik

Basiskenntnistest - Physik Basiskenntnistest - Physik 1.) Welche der folgenden Einheiten ist keine Basiseinheit des Internationalen Einheitensystems? a. ) Kilogramm b. ) Sekunde c. ) Kelvin d. ) Volt e. ) Candela 2.) Die Schallgeschwindigkeit

Mehr

Im folgenden Kapitel soll nun die Teilcheneigenschaften des Lichts untersucht werden.

Im folgenden Kapitel soll nun die Teilcheneigenschaften des Lichts untersucht werden. 9. Quantenphysik Albert Einstein entwickelte Anfang des 20. Jahrhunderts seine spezielle und allgemeine Relativitätstheorie für die er bis heute bekannt ist. Zur gleichen Zeit leistete Einstein jedoch

Mehr

Dotierung und Sättigungssperrströme an pn Übergängen

Dotierung und Sättigungssperrströme an pn Übergängen Fachbereich 1 Laborpraktikum Physikalische Messtechnik/ Werkstofftechnik Dotierung und Sättigungssperrströme an pn Übergängen Bearbeitet von Herrn M. Sc. Christof Schultz christof.schultz@htw berlin.de

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Übung Qi Li, Bernhard Loitsch, Hannes Schmeiduch Donnerstag, 08.03.2012 1 Schwarzer Körper Außerhalb der Erdatmosphäre misst man das Maximum des Sonnenspektrums bei einer

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007 Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #35 am 28.06.2007 Vladimir Dyakonov Leitungsmechanismen Ladungstransport in Festkörpern Ladungsträger

Mehr