Exercise Sheet No. 12 Exercises with Solutions

Größe: px
Ab Seite anzeigen:

Download "Exercise Sheet No. 12 Exercises with Solutions"

Transkript

1 Eercise Sheet No. Eercises with Solutions Eercise 5: Find all global etrema of the following function on the interval [, ] f() ln( + ) +. Solution 5: Die Funktion f ist stetig und das Intervall [, ] kompakt. Damit nimmt f sein Maimum und Minimum an, und diese liegen entweder am Rand, oder im Innern des Intervalls. Die Werte am Rand können wir bestimmen: f() f() ln Etrema im Innern können nur Punkte mit waagerechter Tangente sein, für diese gilt f (), wir bestimmen also die Nullstellen der Ableitung f : f () + ( + ) () 4( + ) ( + ) ( + ) )( + ) + 4 4( + ) ( + ) ( ( + ) Im fraglichen Intervall liegt nur der Punkt und dort erhalten wir f( ) ln( + ) +. Der Vergleich der Funktionswerte liefert: in ist ein globales Maimum und in ein globales Minimum. Eercise 57: (a) Calculate the following anti-derivatives on (, ) using integration by substitution: d () ln, () d. (b) Calculate the following integral using integration by substitution first and integration by parts afterwards 4 ( ) arctan d. Hint: The derivative of arctan was calculated in Eercise 49. (c) Calculate the following integrals using integration by parts () (cos(t)) cos(t) dt, () (sin()) d, () ln()d. Solution 57:

2 (a) ) Wir betrachen das Integral ln d ln d. Es fällt auf, dass der Bruch ln mit der Ableitung des Nenners (nämlich ) multipliziert wird. Es bietet sich daher die Substitution u ln an. Dann ist du d und es folgt ln d u du du ln u + C ln(ln()) + C. u Achtung: Rücksubstitution im letzten Schritt nicht vergessen! ) Wir substituieren u, du. (Achtung: Die Substitution sin u geht hier nicht! Das liegt daran, dass das nicht aus (, ), sondern (, ) ist.) Somit folgt d u du du u / u / + C u + C. ) Die Substitution u() (u + ) liefert d 4u(u + ) du. Wenn ist u und wenn 4 ist u 4 also erhält man 4 arctan d 4u(u + ) arctan u du. d Partielle Integration mit f (u) 4u(u +), f(u) (u +) und g(u) arctan u, g (u) +u liefert [(u + ) arctan u] (b) ) Mit partieller Integration und sin (t) + cos (t) ergibt sich (u + ) du 4 arctan [ u + u] cos t cos t dt cos t sin t Nun gilt cos(4t) 8 cos 4 (t) 8 cos (t) +, also ist cos t dt + cos t dt cos 4 (t) dt 8 ) Wir setzen u ln() und v, also u ln()d ln() / cos t sin t dt cos 4 t dt ( cos(4t) dt. und v. Dann folgt d Hier führt also das Ableiten vom Logarithmus zum Ergebnis. ln() 9 + C ) Hier setzen wir u sin() und v sin(), also u cos() und v cos(). Dann gilt sin ()d sin() cos() + cos ()d sin() cos() + ( sin ())d sin() cos() + sin ()d Es funktioniert nicht beim cos ()d erneut partielle Integration zu versuchen, sondern muss die trigonometrische Identität sin ()+cos () nutzen. Insgesamt hat man nun: sin ()d sin() cos() sin () d. Bringt man nun die beiden Integrale auf eine Seite und dividiert durch zwei so erhält man das Endergebnis: sin ()d sin() cos() + C.

3 Eercise 58: Find the derivative F of the following function F F : [, ] R, F () : ln() sin(cos(t)) dt. Solution 58: Wir können F schreiben als: F () ln sin(cos t) dt + Wir definieren G: [, ] R durch: sin(cos t) dt G() : ln sin(cos t) dt. sin(cos t) dt + sin(cos t) dt. also F () G(ln ) + G( ). Aus den ersten Hauptsatz der Differential- und Integralrechnung (Skript Satz., Seite 99) folgt: Jetzt haben wir nach der Kettenregel: G () sin(cos ). F () G (ln ) + G ( sin(cos(ln )) ) + sin(cos( )). Eercise 59: Consider the value J of the integral J Prove the following lower and upper bounds on J / / sin() d. (a) ln < J < ln, (b) < J <. Solution 59: a) z (, ): J sin z Auf dem Intervall [, ] sind, sin >. d sin z(ln ln ) sin z ln streng wächst, folgt J < sin ln ln, J > sin ln ln ln. b) z (, ): J z sin d z (cos cos ) z sin z ln. Da die Sinusfunktion auf [, ]. Also J > bzw. J <. Eercise : For each of the following functions, find all anti-derivatives (a) f : (, ) R, f() (c) h: R R, h() earctan(). ( + ), (b) g : (, ) R, g() ln() ln(ln ) ( ) ln(), Solution : (a) d ln ln(ln ) u ln du d du u ln u du u ln u t ln u dt du u ln t + C ln ln u + C ln ln(ln ) + C udt dt ut t

4 (b) (c) ( ) t ln t ln t ln t e d dt d dt t e t u t dt dv e t dt t e t + te t u t du dt dt dv e t dt v e t t e t + e arctan d ( + ) t e t te t e t + C ln I t arctan dt d + sin t cos t et cos t+sin t cos t u sin t dv e t dt dt e t sin t e t cos t I I (et sin t e t cos t) + C du cos t v e t ln + C e t tan t ( + )dt ( + ) sin t cos t et dt sin t e t dt cos t :I e t sin t e t cos tdt du tdt v e t ( te t + tan t e t sin t tan t cos t + tan t dt u cos t dv e t dt Rücksubstitution: e arctan d ( e arctan sin(arctan ) e arctan cos(arctan ) ) + C ( + ) ) e t dt du sin t v e t ( )e arctan(). + sin t cos tet + sin t cos t dt. Tutorial Eercises with Solutions Eercise T4: Prove the following inequalities for all [, ]: (a) + > 4, (b) arcsin() +. Solution T4: (a) Wir betrachten die Funktion f : [, ] R der Differenz der beiden Terme: f() : + 4 +! > und wollen zeigen, dass sie strikt positiv ist. Diese stetige Funktion nimmt auf dem kompakten Intervall [, ] sein Minimum an; und zwar entweder am Rand ± oder im Innern (, ). Wenn die Aussage für das Minimum gilt, dann gilt sie auch für alle [, ]. Wir prüfen die Funktion am Rand: Wir berechnen f( ) > und f() >. Da hier die Aussage erfüllt ist, untersuchen wir nun etwaige Etrema im Inneren. f ist differenzierbar! Wir berechnen die Ableitung f () ( + 9 ) 8(( + ) 9 ) 8(( + ) 9 ) und bestimmen deren Nullstellen: (+ ) 4 ±, also und +. Etrema von f im Intervall (-,) sind nur an diesen Stellen möglich. Wir untersuchen f an diesen Stellen: f( ) > f( ) > Das Minimum von f auf [, ] liegt also bei, und da hier die geforderte Ungleichung erfüllt ist, haben wir die Ungleichung auf [, ] nachgewiesen.

5 (b) Wir betrachten wieder die Funktion f : [, ] R der Differenz der beiden Terme: f() : arcsin()! und wollen zeigen, dass sie nicht positiv ist. f ist stetig und nimmt auf dem kompakten Intervall [, ] sein Maimum an. Entweder auf dem Rand ± oder im Innern (, ). Wenn die Aussgae für das Maimum gilt, so gilt sie auch für alle [, ]. Wir prüfen die Funktion am Rand: Wir berechnen f( ) < und f(). Da hier die Aussage erfüllt ist, untersuchen wir nun etwaige Etrema im Inneren. Wieder ist f differenzierbar auf (, )! Wir berechnen die Nullstellen der Ableitung f in (, ): arcsin () f () sin (arcsin()) cos(arcsin() sin (arcsin()) ( 4 ) 4( )( + ) Somit sind Etrema in ± möglich, wir untersuchen f an diesen Stellen: Für ± ist arcsin(± ) ± und damit f( ) + 4 < + <, f( ) 4 < <. Das Maimum von f auf [, ] liegt also bei, und da hier die geforderte Ungleichung erfüllt ist, haben wir die Ungleichung auf [, ] nachgewiesen. Eercise T5: Calculate the following anti-derivatives using integration by parts ( ) (a) sin()d, (b) arctan d, (c) (ln y) dy. (d) Show that the following equation holds (cos()) d (sin()) d. Solution T5: (a) Wir integrieren zweimal partiell, wobei jeweils die -Potenz differenziert wird, [ ] sin d ( cos )+ cos d cos + sin sin d cos + sin + cos +C. (b) Wir schreiben arctan(/( )) arctan(/( )) und integrieren partiell, wobei wir die Konstante integrieren und arctan(/( )) ableiten, arctan d arctan ( ) ( ) + d arctan + ( ) + d. Wir bemerken, dass im letzten Integral im Zähler fast die Ableitung des Nenners steht, es fehlt nur eine Konstante. Die beschaffen wir uns folgendermaßen: Wir ergänzen im Zähler des Integrals geschickt den Term /, ziehen ihn durch ein neues Integral wieder ab, und klammern / aus, damit wir aufleiten können, arctan + ( ) + d arctan + arctan ( ) ( ) + d + d ( ) + + ln ( ) + + arctan( ) + C.

6 (c) Wegen ln ydy y ln y y+c integrieren wir partiell, wobei wir ln y einmal integrieren und einmal ableiten, (ln y) dy (y ln y y) ln y (y ln y y) y dy y(ln y ) ln y (ln y )dy y(ln y ) ln y [y ln y y y] + C y ln y y ln y + y + C y(ln y ) + y + C. (d) Mit einer partiellen Integration erhalten wir Außerdem gilt cos d [sin cos ] + sin sin d sin d. cos d ( sin ) d sin d Deshalb gilt (Integral auf der rechten Seite nach links bringen... ) cos d. cos d Eercise T: Calculate the following integrals using integration by substitution (a) cos() e sin() d, (b) d, cos(ln()) (c) d, (d) + ln() ln() d. Solution T: zsin() dz d cos() dzcos()d ez dz [e z ] e e e (a) / cos() e sin() d Hier ist das zu Substituierende leicht zu entdecken, die Ableitung ist auch schon in der richtigen Form vorhanden. (b) d z +7+ dz d +7 dz(+7)d Rücksubst. z dz ln z + C ln C Der Zusatz +C soll ausdrücken, dass die gesuchte Stammfunktion nur bis auf Addition einer Konstante C R eindeutig ist. Natürlich hat man auch ohne diese Konstante bereits eine Stammfunktion gefunden, das Integral also korrekt gelöst. Manchmal interessiert man sich jedoch für alle möglichen Stammfunktionen (zum Beispiel um dann später eine spezielle Stammfunktion zu suchen, die zusätzliche Bedingungen erfüllt). In diesem Fall ist es sinnvoll, die Konstante jeweils mit dazu zu schreiben, damit man die Übersicht behält, welche Wahlmöglichkeiten man noch hat. (c) cos(ln()) d zln() dz d dz d cos(z)dz sin(z) + C Rücksubst. sin(ln()) + C (d) z ln() ln() z +ln() ln() d dz d dz d ln() + C + z z dz ( Rücksubst. z )dz ln z +z +C ln ln() + Hier bieten sich viele Substitutionen an, z.b. auch z ln() oder z + ln(), nur muss man dann etwas mehr danach arbeiten. Eine geschicktere Substitution am Anfang erleichtert die weiteren Berechnungen.

Musterlösungen zu Blatt 14

Musterlösungen zu Blatt 14 Musterlösungen zu Blatt 4 Aufgabe 79 Sei F eine Stammfunktion von f (eistiert, da f stetig ist). Dann ist b() a() f(t)dt = F (b()) F (a()) nach dem Hauptsatz der Differential- und Integralrechnung. Man

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.

Mehr

Analysis I. Arbeitsblatt 25. Übungsaufgaben. π x sin x 2 dx.

Analysis I. Arbeitsblatt 25. Übungsaufgaben. π x sin x 2 dx. Prof. Dr. H. Brenner Osnabrück WS 23/24 Analysis I Arbeitsblatt 25 Übungsaufgaben Aufgabe 25.. Berechne das bestimmte Integral π x sin x 2 dx. In den folgenden Aufgaben, bei denen es um die Bestimmung

Mehr

H. Schmidli Mathematik für Physiker WS 10/11. Lösung der Klausur

H. Schmidli Mathematik für Physiker WS 10/11. Lösung der Klausur H. Schmidli Mathematik für Physiker WS / Lösung der Klausur. a) Zähler und Nenner konvergieren gegen. Somit verwenden wir die Regel von L Hospital e sin x x x e cos x (cos x)e sin x x (sin x)e cos x x

Mehr

Merkblatt zur Integration (1)

Merkblatt zur Integration (1) Als erstes sollte man sich anschauen Merkblatt zur Integration () ) was die Integrationsvariable ist B.: ( y ) d y + C, da y eine KONSTANTE ist y Analog: ( y ) dy + C, da hier eine KONSTANTE ist ) ob es

Mehr

Vortragsübung am 25. April 2014

Vortragsübung am 25. April 2014 Seite von 6 Termin: 5. April 04 Vortragsübung am 5. April 04.. Berechnen Sie den Grenzwert lim n ( n + + n + + + ), n indem Sie ihn als Riemann-Summe eines Integrals auffassen... Bestimmen Sie folgende

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 11. Übungsblatt. { wachsend fallend

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 11. Übungsblatt. { wachsend fallend UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 8/9 Aufgabe Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge

Mehr

8.2. Integrationsregeln

8.2. Integrationsregeln 8.. Integrationsregeln Jeder Differentiationsregel entspricht wegen der Beziehung F ( x ) f( x ) F( x ) + C f( x ) dx eine Integrationsregel. Wir kennen schon die Additionsregel c f( x ) + d g( x )

Mehr

Mathematik I HM I A. SoSe Variante A

Mathematik I HM I A. SoSe Variante A Prof. Dr. E. Triesch Mathematik I SoSe 08 Variante A Hinweise zur Bearbeitung: Benutzen Sie zur Beantwortung aller Aufgaben ausschließlich das in der Klausur ausgeteilte Papier! Es werden nur die Antworten

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

D-CHAB Grundlagen der Mathematik I (Analysis B) FS 2016 Theo Bühler

D-CHAB Grundlagen der Mathematik I (Analysis B) FS 2016 Theo Bühler D-CHAB Grundlagen der Mathematik I Analysis B) FS 6 Theo Bühler Lösung. Finde eine Stammfunktion von a) f : R R, fx) := x cosx 5 ) sinx 5 ) ) = 5 cosx 5 )x, also die Stammfunktion von fx) durch F x) :=

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Berechnen Sie die folgenden unbestimmten Integrale.

Mehr

Serie 12 - Integrationstechniken

Serie 12 - Integrationstechniken Analysis D-BAUG Dr. Meike Akveld HS 5 Serie - Integrationstechniken. Berechnen Sie folgende Integrale: a e x cos(x dx Wir integrieren zwei Mal partiell, bis wir auf der rechten Seite wieder das Integral

Mehr

Analysis I Lösung von Serie 9

Analysis I Lösung von Serie 9 FS 07 9.. MC Fragen: Ableitungen (a) Die Figur zeigt den Graphen einer zweimal differenzierbaren Funktion f. Was lässt sich über f, f und f sagen? Nichts Die Funktion f ist positiv. Die Funktion f ist

Mehr

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils . Aufgabe Punkte a Berechnen Sie den Grenzwert n + n + 3n. b Leiten Sie die folgenden Funktionen ab. Dabei ist a R eine Konstante. fx : lnx e a, gx : x + x + 4 sinx c Berechnen Sie z z und z z in der Form

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 5

Technische Universität München Zentrum Mathematik. Übungsblatt 5 Technische Universität München Zentrum Mathematik Mathematik Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 5 Hausaufgaben Aufgabe 5. Bestimmen Sie folgende Grenzwerte. Benutzen

Mehr

1 Differentialrechnung

1 Differentialrechnung BT/MT SS 6 Mathematik II Klausurvorbereitung www.eah-jena.de/~puhl Thema: Üben, üben und nochmals üben!!! Differentialrechnung Aufgabe Differenzieren Sie folgende Funktionen: a y = ln( b f( = a a + c f(

Mehr

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil April (Voll-) Klausur Analysis I für Ingenieure en Rechenteil Aufgabe 7 Punkte (a) Skizzieren Sie die 4-periodische Funktion mit f() = für und f() = für (b) Berechnen Sie für diese Funktion die Fourierkoeffizienten

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen

Mehr

7 Integralrechnung für Funktionen einer Variablen

7 Integralrechnung für Funktionen einer Variablen 7 Integralrechnung für Funktionen einer Variablen In diesem Kapitel sei stets D R, und I R ein Intervall. 7. Das unbestimmte Integral (Stammfunktion) Es sei f : I R eine Funktion. Eine differenzierbare

Mehr

Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya

Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya Differentialgleichungen Aufgaben mit Lösungen Jörg Gayler, Lubov Vassilevskaya ii Inhaltsverzeichnis. Tabelle unbestimmter Integrale............................... iii.. Integrale mit Eponentialfunktionen........................

Mehr

Mathematik I Herbstsemester 2018 Kapitel 5: Integralrechnung

Mathematik I Herbstsemester 2018 Kapitel 5: Integralrechnung Mathematik I Herbstsemester 208 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas / 70 5. Integralrechnung Grundbegriffe Das bestimmte Integral als Flächeninhalt Der Fundamentalsatz Partielle

Mehr

Substitution bei bestimmten Integralen. 1-E1 Ma 1 Lubov Vassilevskaya

Substitution bei bestimmten Integralen. 1-E1 Ma 1 Lubov Vassilevskaya Substitution bei bestimmten Integralen -E Ma Lubov Vassilevskaya -E Ma Lubov Vassilevskaya Substitution bei bestimmten Integralen: Lernziele Was wir wissen: Wann berechnet man Integrale mit Hilfe einer

Mehr

Einführung in die Integralrechnung. Teil 2. Ganzrationale und Gebrochen rationale Funktionen

Einführung in die Integralrechnung. Teil 2. Ganzrationale und Gebrochen rationale Funktionen ANALYSIS Einführung in die Integralrechnung Teil Ganzrationale und Gebrochen rationale Funktionen Unbestimmte Integrale und Stammfunktionen auch mit Substitution Kurze Theorie und viel Prais Datei Nr.

Mehr

b) Kettenregel anwenden 1 8x + 3sin(x) f '(x) = ( 8x 3( sin(x) )) 2 4x 3cos(x) 2 4x 3cos(x) b) [2P]

b) Kettenregel anwenden 1 8x + 3sin(x) f '(x) = ( 8x 3( sin(x) )) 2 4x 3cos(x) 2 4x 3cos(x) b) [2P] Mathematik Name: Lösungen Nr. K Punkte: /3 Note: Schnitt: 7..3 Pflichtteil (etwa 40 min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der GTR und die

Mehr

D-ITET Analysis II FS 13 Prof. Horst Knörrer. Musterlösung 1. 3xy 2 = 2 x 2. y y. 3 y y. 3 x v x + v = 2 3 v v.

D-ITET Analysis II FS 13 Prof. Horst Knörrer. Musterlösung 1. 3xy 2 = 2 x 2. y y. 3 y y. 3 x v x + v = 2 3 v v. D-ITET Analysis II FS 3 Prof. Horst Knörrer Musterlösung. a) Es gilt: dy d 3 + y 3 3y 3 y + y 3. Dies ist eine homogene Differentialgleichung, das heisst y hängt nur von y ab. Setze v : y y() v() y v +

Mehr

VERTIEFUNGSKURS MATHEMATIK. Es gibt drei ganz einfache Techniken zum Integrieren von etwas komplizierteren

VERTIEFUNGSKURS MATHEMATIK. Es gibt drei ganz einfache Techniken zum Integrieren von etwas komplizierteren VERTIEFUNGSKURS MATHEMATIK ÜBUNGEN Es gibt drei ganz einfache Techniken zum Integrieren von etwas komplizierteren Funktionen: () Mit der Partialbruchzerlegung lässt sich jede gebrochen-rationale Funktion

Mehr

ANALYSIS I FÜR TPH WS 2018/19 7. Übung Übersicht

ANALYSIS I FÜR TPH WS 2018/19 7. Übung Übersicht 7. Übung Übersicht Aufgaben zu Kapitel 1, 11 und (ein wenig) 12 Aufgabe 1: Kurvendiskussion (i) Aufgabe 2: Kurvendiskussion (ii) Aufgabe 3: ( ) Kurvendiskussion (iii) Aufgabe 4: ( ) Beweis einer Ungleichung

Mehr

Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 2017/18, am

Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 2017/18, am Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 07/8, am 9.3.08 Aufgabe : Zeigen Sie, dass für alle n N gilt: n n+ n ( ) (8 Punte) Beweis mittels vollständiger Indution n : ( )

Mehr

Trigonometrische Substitutionen

Trigonometrische Substitutionen Trigonometrische Substitutionen Mit Hilfe der folgenden Substitutionen lassen sich eine Reihe von elementaren algebraischen Integranden explizit berechnen: x = a sin t : x = a tan t : x = a/ cos t : =

Mehr

Übung 13. Die Lösungen a) Wir schreiben den Tangens als das Verhältnis von Sinus und Cosinus. tan(x)dx =

Übung 13. Die Lösungen a) Wir schreiben den Tangens als das Verhältnis von Sinus und Cosinus. tan(x)dx = Übung 3 Aufgabe 48) Integrieren Sie die folgenden Funktionen a) tan(x)dx b) e x cos(x)dx c) +ax dx Die Lösungen a) Wir schreiben den Tangens als das Verhältnis von Sinus und Cosinus. tan(x)dx = sin(x)

Mehr

Vereinfachen Sie folgende Brüche auf einen ganzzahligen, teilerfremden Bruch oder eine endliche Dezimalzahl. 0,033 = 6 14 = 8 0,3 : 4

Vereinfachen Sie folgende Brüche auf einen ganzzahligen, teilerfremden Bruch oder eine endliche Dezimalzahl. 0,033 = 6 14 = 8 0,3 : 4 Aufgabe : Probe Vereinfachen Sie folgende Brüche auf einen ganzzahligen, teilerfremden Bruch oder eine endliche Dezimalzahl. 0,9 0, = 0, 0, =, 0,0 =,, = : 0,7 = 8 0, : 0, = 7 0, 0, = 0, = 0,7 0,8 0 =,

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Serie 13: Online Test Einsendeschluss: 31. Januar 214 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Vorkurs Mathematik Übungen zu Ableitungen und Kurvendiskussion

Vorkurs Mathematik Übungen zu Ableitungen und Kurvendiskussion Vorkurs Mathematik Übungen zu Ableitungen und Kurvendiskussion Als bekannt setzen wir die folgenden 5 Ableitungen und 3 Regeln voraus: cos) = sin) n ) = n n für alle n 0 e ) =e sin) = cos) ln) = f) g))

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Lösung - Serie 10. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) 1. Berechnen Sie die Partialbruchzerlegung von

Lösung - Serie 10. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) 1. Berechnen Sie die Partialbruchzerlegung von D-MAVT/D-MATL Analysis I HS 8 Dr. Andreas Steiger Lösung - Serie MC-Aufgaben (Online-Abgabe). Berechnen Sie die Partialbruchzerlegung von + +. (a) + + + ( ). (b) + + + + ( ). (c) + + + + ( ). (d) + + +

Mehr

ARBEITSUNTERLAGEN. zum STARTERKURS an der UNIVERSITÄT DES SAARLANDES

ARBEITSUNTERLAGEN. zum STARTERKURS an der UNIVERSITÄT DES SAARLANDES ARBEITSUNTERLAGEN zum STARTERKURS an der UNIVERSITÄT DES SAARLANDES Vorbemerkung Ziel des Propädeutikums ist es, die Schulmathematik wieder ins Gedächtnis zu rufen und eine gemeinsame Grundlage für die

Mehr

Einführung in die Integralrechnung. Teil 1. Verwendung der Potenzregel. zur Berechnung von DEMO. Stammfunktionen. Datei Nr Stand 12.

Einführung in die Integralrechnung. Teil 1. Verwendung der Potenzregel. zur Berechnung von DEMO. Stammfunktionen. Datei Nr Stand 12. ANALYSIS Einführung in die Integralrechnung Teil Verwendung der Potenzregel zur Berechnung von Stammfunktionen Datei Nr. 80 Stand. Juni 07 Friedrich W. Buckel INTERNETBIBLIOTHEK FÜR SHULMATHEMATIK www.mathe-cd.schule

Mehr

Tutorium Mathematik I M WM Lösungen

Tutorium Mathematik I M WM Lösungen Tutorium Mathematik I M WM Lösungen 3... Durch mehrmaliges Anwenden der Regel von de l Hospital ergibt sich: e e sin() e cos()e sin() sin() cos() e + sin()e sin() cos ()e sin() sin() e + cos()e sin() +

Mehr

Kapitel 12. Aufgaben. Verständnisfragen. Rechenaufgaben

Kapitel 12. Aufgaben. Verständnisfragen. Rechenaufgaben Kapitel Aufgaben Verständnisfragen Aufgabe. Als Umkehrung welcher Rechenregeln ergeben sich Substitution und partielle Integration? Aufgabe. Man bestimme das Integral π sinh cos I π + d Aufgabe. Substituieren

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten Mathematik Rechenfertigkeiten Lösungen zu den Übungen Freitag Dominik Tasnady, Mathematik Institut, Universität Zürich Winterthurerstrasse 9, 857 Zürich Erstellt von Dr. Irmgard Bühler 9.August Integration,

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 4. Juni 203 *Aufgabe. Bestimmen Sie die allgemeinen Lösungen der Differentialgleichungen (a) y 2y + y2 = (b) y + ( 2 y)y = 0 Lösung: (a) Bei dieser Differentialgleichung

Mehr

Modulprüfung Analysis I für Ingenieurwissenschaften

Modulprüfung Analysis I für Ingenieurwissenschaften Technische Universität Berlin WiSe 4/5 Fakultät II Institut für Mathematik 20. Februar 205 Doz.: Fackeldey, Guillemard, Penn-Karras Ass.: Beßlich, Winkert Modulprüfung Analysis I für Ingenieurwissenschaften

Mehr

Höhere Mathematik II. Variante A

Höhere Mathematik II. Variante A Lehrstuhl II für Mathematik Prof Dr E Triesch Höhere Mathematik II SoSe 5 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

Serie 4: Flächeninhalt und Integration

Serie 4: Flächeninhalt und Integration D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr. Ana Cannas Serie 4: Flächeninhalt und Integration Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom. und 4. Oktober.. Das Bild zeigt

Mehr

Abitur 2010 Mathematik GK Infinitesimalrechnung I

Abitur 2010 Mathematik GK Infinitesimalrechnung I Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 2010 Mathematik GK Infinitesimalrechnung I Teilaufgabe 2 (4 BE) Gegeben ist für k R + die Schar von Funktionen f k : x 1 Definitionsbereich D k. Der

Mehr

Aufgabe 2-1: Berechnen Sie die folgenden unbestimmten / bestimmten Integrale mittels Substitution.

Aufgabe 2-1: Berechnen Sie die folgenden unbestimmten / bestimmten Integrale mittels Substitution. . Übung zur Höheren Mathemati Abgabe: 6..8, 8: Uhr Aufgabe -: Berechnen Sie die folgenden unbestimmten / bestimmten Integrale mittels Substitution. sin d cos d tan tan 4 sinh 7 sinh 5 e) f) 8 d 4 ln()

Mehr

Nachklausur Analysis 2

Nachklausur Analysis 2 Nachklausur Analysis 2. a) Wie ist der Grenzwert einer Folge in einem metrischen Raum definiert? Antwort: Se (a n ) n N eine Folge in dem metrischen Raum (M, d). Diese Folge besitzt den Grenzwert g M,

Mehr

Klausur Höhere Mathematik I für die Fachrichtung Physik

Klausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 4.3.3 Klausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((4+3+3 Punkte a Welche

Mehr

1 elementare Integration mit Vereinfachung

1 elementare Integration mit Vereinfachung Um einen Ausdruck integrieren zu können, bedarf es ein wenig Scharfblick, um die richtige Methode wählen zu können. Diese werden (in der Schule) grob in die vier unten beschriebenen Methoden unterteilt.

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Grundkurs Höhere Mathematik I (für naturwissenschaftliche. Studiengänge) Beispiele

Grundkurs Höhere Mathematik I (für naturwissenschaftliche. Studiengänge) Beispiele Grundkurs Höhere Mathematik I (für naturwissenschaftliche Studiengänge) Beispiele Prof. Dr. Udo Hebisch Diese Beispielsammlung ergänzt das Vorlesungsskript und wird ständig erweitert. 1 DETERMINANTEN 1

Mehr

Differentialrechnung

Differentialrechnung Kapitel 7 Differentialrechnung Josef Leydold Auffrischungskurs Mathematik WS 2017/18 7 Differentialrechnung 1 / 75 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f = f ( 0 + ) f ( 0 ) = f

Mehr

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient Differenzenquotient Sei f : R R eine Funktion. Der Quotient Kapitel 7 Differentialrechnung f = f 0 + f 0 = f 0 0 heißt Differenzenquotient an der Stelle 0., Sekante 0, f 0 f 0 Josef Leydold Auffrischungskurs

Mehr

13. WEITERE INTEGRATIONSMETHODEN

13. WEITERE INTEGRATIONSMETHODEN 22 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch

Mehr

L Hospitial - Lösungen der Aufgaben

L Hospitial - Lösungen der Aufgaben A ln - (Zähler und Nenner müssen gegen gehen, wenn gegen geht): Für geht der Zähler gegen ln Für geht der Nenner gegen - ( ln ) ' ( )' - L'Hospital darf angewendet werden Zähler und Nenner differenzieren

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Universität Paerborn, en 16.07.2007 Differential- un Integralrechnung Ein Repetitorium vor er Klausur Kai Gehrs 1 Übersicht Inhaltlicher Überblick: I. Differentialrechnung I.1. Differenzierbarkeit un er

Mehr

(1 + z 2j ) = 1 z2n+2. 1 z. (1 + z)(1 z) 1 z. 1 z. (1 + z 2j ) = 1 z. 1 z 1 z

(1 + z 2j ) = 1 z2n+2. 1 z. (1 + z)(1 z) 1 z. 1 z. (1 + z 2j ) = 1 z. 1 z 1 z Aufgabe Zeigen Sie mit vollständiger Induktion: Für alle n N gilt (8 Punkte) n ( + z 2j ) = 2n+, wobei z C, z, eine komplexe Zahl ist Lösung [8 Punkte] Induktionsanfang: n = : ( + z 2j ) = ( + z 2 ) =

Mehr

Extrakapitel für M3. 1. Integration durch Substitution (Umkehrung der Kettenregel)

Extrakapitel für M3. 1. Integration durch Substitution (Umkehrung der Kettenregel) Etrakapitel für M Dr.Manfred Gurtner 005. Integration durch Substitution (Umkehrung der Kettenregel) Beispiel : Berechnen Sie das Integral I 5 5 d a) Da die Wurzel eine innere Funktion hat, substituieren

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1

e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1 Aufgabe a Hier kann man die Regel von de l Hospital zweimal anwenden (jeweils und die Ableitung des Nenners ist für hinreichend große x ungleich. Dies führt auf e x e x e x + e x e x + e x e x e x e x

Mehr

Aufgabensammlung zur Vorklausur (Stand: )

Aufgabensammlung zur Vorklausur (Stand: ) Aufgabensammlung zur Vorklausur (Stand: 7..08) Aufgabe : Vereinfachen Sie folgende Brüche auf einen ganzzahligen, teilerfremden Bruch oder eine endliche Dezimalzahl. Probe 0,9 0, = 0, 0, =, 0,0 =,, = :

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

2.6 Lokale Extrema und Mittelwertsatz

2.6 Lokale Extrema und Mittelwertsatz 2.6. Lokale Etrema und Mittelwertsatz 49 2.6 Lokale Etrema und Mittelwertsatz In diesem Kapitel bezeichne f stets eine reellwertige Funktion, definiert auf einem abgeschlossenen Intervall [a, b]. Unter

Mehr

1. Übungsblatt Aufgaben mit Lösungen

1. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Sei I R ein Intervall. Geben Sie Beispiele für Differentialgleichungen für Funktionen y = y in I mit den folgenden Eigenschaften an: Beispiel separabel, nicht

Mehr

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Es gibt 5 Punkte pro Teilaufgabe, also insgesamt 85 Punkte. Die Klausureinsicht findet am Montag, den 5..8 ab : Uhr im H3 statt. Aufgabe. (a) Lösen Sie

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

Vorkurs Mathematik für Ingenieur Innen WS 2018/2019 Übung 7

Vorkurs Mathematik für Ingenieur Innen WS 2018/2019 Übung 7 Prof. Dr. J. Pannek Dynamics in Logistics Vorkurs Mathematik für Ingenieur Innen WS 018/019 Übung 7 Aufgabe 1 : Etremwerte Der Ellipse + y = 1 ist ein Rechteck mit Seitenlängen p, q, dessen Seiten parallel

Mehr

Vorkurs Mathematik für Ingenieure WS 2015/2016 Übung 6

Vorkurs Mathematik für Ingenieure WS 2015/2016 Übung 6 Prof. Dr. J. Pannek Dynamics in Logistics Vorkurs Mathematik für Ingenieure WS 015/016 Übung 6 Aufgabe 1 : Differentialrechnung (a Berechnen Sie die Ableitung nachstehender Funktionen an der Stelle 0 und

Mehr

Tutorium zur Vorlesung Differential und Integralrechnung II Bearbeitungsvorschlag

Tutorium zur Vorlesung Differential und Integralrechnung II Bearbeitungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 4 Blatt 5.6.4 Tutorium zur Vorlesung Differential und Integralrechnung II Bearbeitungsvorschlag 37. Wir bestimmen zunächst die Schnittpunkte

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik WS /4 P. Bank, A. Gündel-vom-Hofe, G. Penn-Karras 9.4.4 April Klausur Analsis II für Ingenieure Lösungsskizze. Aufgabe 6 Punkte Es seien

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Kapitel 6. Integralrechnung 6.2 Die Stammfunktion und das unbestimmte Integral 6.3 Zusammenhang zwischen bestimmten Integralen und Stammfunktionen Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion

Mehr

Musterlösung zur Klausur zur Vorlesung Mathematik für Wirtschaftswissenschaftler II. am , Zeit: 120 Minuten

Musterlösung zur Klausur zur Vorlesung Mathematik für Wirtschaftswissenschaftler II. am , Zeit: 120 Minuten Musterlösung zur Klausur zur Vorlesung Mathematik für Wirtschaftswissenschaftler II am 5.8.25, Zeit: 2 Minuten Aufgabe (3 Punkte Eine Bakterienkultur hat eine stetige Wachstumsrate von % pro Stunde. Wie

Mehr

Partielle Integration

Partielle Integration Partielle Integration 1 Motivation Eine der wichtigsten Methoden der Integralrechnung ist die partielle Integration. Mit ihr lassen sich Funktionen integrieren, die ein Produkt zweier Funktionen sind.

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Sommersemester 0 Mathematik 3 für Informatik Hausaufgabenblatt Lösungshinweise ohne Garantie auf Fehlerfeiheit). Seien f ) = { {, falls, falls und f ) =. ln, falls a) Skizzieren

Mehr

Abitur 2011 G8 Musterabitur Mathematik Infinitesimalrechnung

Abitur 2011 G8 Musterabitur Mathematik Infinitesimalrechnung Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 211 G8 Musterabitur Mathematik Infinitesimalrechnung I Teilaufgabe 1 (3 BE) Bestimmen Sie die Nullstellen der Funktion f : x (e x 2) (x 3 2x ) mit Definitionsbereich

Mehr

für Pharmazeuten und Lehramtskandidaten WS 2016/2017

für Pharmazeuten und Lehramtskandidaten WS 2016/2017 für Pharmazeuten und Lehramtskandidaten WS 2016/2017 Alexander Riegel riegel@uni-bonn.de 2 3 4 Ordinatenachse ( -Achse ) Gerade Ordinatenabschnitt Ursprungsgerade Nullstelle 0 Ursprung (0 0) Abszissenachse

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 5. MC-Aufgaben Online-Abgabe. Durch zweifache Anwendung der Regel von Bernoulli-de l Hôpital folgt Stimmt diese Überlegung? lim x x 3 +

Mehr

100 und (a) Wie gross ist die Konzentration des Medikaments zu Beginn des Experiments (für t = 0), bzw. nach 5 Stunden (für t = 5)?

100 und (a) Wie gross ist die Konzentration des Medikaments zu Beginn des Experiments (für t = 0), bzw. nach 5 Stunden (für t = 5)? Mathematik I für Naturwissenschaften Dr. Christine Zehrt 18.10.18 Übung 5 (für Pharma/Geo/Bio) Uni Basel Besprechung der Lösungen: 22. Oktober 2018 in den Übungsstunden Sei f() = 1 f(1+h) f(1) und g(h)

Mehr

Übungsaufgaben zur Analysis

Übungsaufgaben zur Analysis Serie Übungsaufgaben zur Analysis. Multiplizieren Sie folgende Klammern aus: ( + 3y)( + 4a + 4b) (a b )( + 3y 4) (3 + )(7 + y) + (a + b)(3 + ). Multiplizieren Sie folgende Klammern aus: 6a( 3a + 5b c)

Mehr

24 Partialbruchzerlegung und elementare Stammfunktionen

24 Partialbruchzerlegung und elementare Stammfunktionen 4 Partialbruchzerlegung und elementare Stammfunktionen 4 Partialbruchzerlegung und elementare Stammfunktionen Aufgabe: Versuchen Sie, 0 d und 4 0 d 6 und zu berechnen. 4. Rationale Funktionen. a) uotienten

Mehr

Abgabe: KW 11. Aufgabe 2-0a: Berechnen Sie die Grenzwerte der Funktionen. x 2 x. lim. lim

Abgabe: KW 11. Aufgabe 2-0a: Berechnen Sie die Grenzwerte der Funktionen. x 2 x. lim. lim . Übung zur Höheren Mathemati Abgabe: KW Aufgabe -a: Berechnen Sie die Grenzwerte der Funtionen 5 4 lim ln ln lim e lim sin lim (sin ) Aufgabe -b: Bestimmen Sie Definitionsbereich, Nullstellen, Polstellen,

Mehr

Oberstufenmathematik leicht gemacht

Oberstufenmathematik leicht gemacht Peter Dörsam Oberstufenmathematik leicht gemacht Band 1: Differential- und Integralrechnung 5. überarbeitete Auflage mit zahlreichen Abbildungen und Beispielaufgaben PD-Verlag Heidenau Inhaltsverzeichnis

Mehr

Aufgabe 1.1. Aufgabe 1.2. Aufgabe 1.3. FernUNI Hagen WS 2002/03. Mathematik II für WiWi s (Kurs 0054) Mentorin: Stephanie Schraml

Aufgabe 1.1. Aufgabe 1.2. Aufgabe 1.3. FernUNI Hagen WS 2002/03. Mathematik II für WiWi s (Kurs 0054) Mentorin: Stephanie Schraml FernUNI Hagen WS 00/0 Aufgabe 1.1 Berechnen Sie jeweils die 1. Ableitung der Funktion f: 1- a) f() = e 1+ e + b) f() = (+) Aufgabe 1. Von einer Funktion f ist bekannt: (1) f ist ein Polynom. Grades ()

Mehr

Spiralen DEMO. Text Nr Stand 9. März 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Spiralen DEMO. Text Nr Stand 9. März 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Spiralen Text Nr. 5435 Stand 9. März 06 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 5435 Spiralen Vorwort Es gibt eine ganze Reihe von spiralähnlichen Kurven. Einige davon habe ich für diesen

Mehr

Mathematik für Sicherheitsingenieure I B

Mathematik für Sicherheitsingenieure I B Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 3.3.8 Dr. T. Pawlaschyk Mathematik für Sicherheitsingenieure I B Aufgabe. (5+8+7 Punkte a Geben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH ist.

Mehr

Jörg Gayler, Lubov Vassilevskaya

Jörg Gayler, Lubov Vassilevskaya Integralrechnung: Aufgaben Jörg Gayler, Lubov Vassilevskaya ii Contents 1. Unbestimmtes Integral: Aufgaben............................. 1 1.1. Grund- oder Stammintegrale (Tabelle 1.....................

Mehr

Bericht zur Mathematischen Zulassungsprüfung im Mai 2010

Bericht zur Mathematischen Zulassungsprüfung im Mai 2010 Bericht zur Mathematischen Zulassungsprüfung im Mai 2 Heinz-Willi Goelden, Wolfgang Lauf, Martin Pohl Am 5. Mai 2 fand die Mathematische Zulassungsprüfung statt. Die Prüfung bestand aus einer 9-minütigen

Mehr

f(x) dx = A 1 A 2 + A 3

f(x) dx = A 1 A 2 + A 3 Was ist anschaulich Integralrechnung? Berechnung von Flächeninhalten zwischen (i. A. krummlinigen) Kurven und der Rechtsachse, wobei Flächen unterhalb der Rechtsachse negativ in die Berechnung eingehen.

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: D. Garmatter C. Apprich, B. Krinn J. Hörner, M. Werth 7. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester M. Künzer M. Stroppel Lösungshinweise zu den Hausaufgaben: Aufgabe H 9. Potential mittels

Mehr

Kapitel 4. Aufgaben. Verständnisfragen. Rechenaufgaben

Kapitel 4. Aufgaben. Verständnisfragen. Rechenaufgaben Kapitel 4 Aufgaben Verständnisfragen Aufgabe 4. Bestimmen Sie ein Polynom vom Grad 3, das die folgenden Werte annimmt 0 p) 3 3 Aufgabe 4. Jede Nullstelle ˆ eines Polynoms p mit p) = a 0 + a +...+ a n n

Mehr

x ln(x) dx x 4 x 2 4x+3 dx Aufgabe 3 Konvergieren die folgenden uneigentlichen Integrale? Wenn ja, berechnen Sie den Wert des Integrals.

x ln(x) dx x 4 x 2 4x+3 dx Aufgabe 3 Konvergieren die folgenden uneigentlichen Integrale? Wenn ja, berechnen Sie den Wert des Integrals. Mathematik I für Naturwissenschaften Dr. Christine Zehrt 8..8 Übung 8 (für Pharma/Geo/Bio) Uni Basel Besprechung der Lösungen: 2. November 28 in den Übungsstunden Aufgabe Berechnen Sie die folgenden bestimmten

Mehr

Serie 6 - Funktionen II + Differentialrechnung

Serie 6 - Funktionen II + Differentialrechnung Analysis D-BAUG Dr. Meike Akvel HS 05 Serie 6 - Funktionen II + Differentialrechnung. a) Sei Lösung 3, falls < 0, f : R R, f) c +, falls 0, + 8, falls >. Bestimmen Sie c R un R, so ass f überall stetig

Mehr

Mathematik IT 3 (Analysis)

Mathematik IT 3 (Analysis) Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof. Dr. L. Cromme Mathematik IT (Analysis) für die Studiengänge Informatik, IMT und ebusiness im Wintersemester 0/04 Geben Sie

Mehr

4.1 Stammfunktionen: das unbestimmte Integral

4.1 Stammfunktionen: das unbestimmte Integral Kapitel 4 Integration 4. Stammfunktionen: das unbestimmte Integral Die Integration ist die Umkehrung der Differentiation: zu einer gegebenen Funktion f(x) sucht man eine Funktion F (x), deren Ableitung

Mehr

Die trigonometrischen Funktionen

Die trigonometrischen Funktionen Die trigonometrischen Funktionen Betrachte die Funktion f(x) = 1 x auf dem Intervall [ 1, 1]. Für x = 1 erhält man den Punkt P 1 = ( 1, ), für x = den Punkt P = (, 1) und für x = 1 den Punkt P 1 = (1,

Mehr

A Differenzialrechnung

A Differenzialrechnung A Differenzialrechnung Seite 1 Stetigkeit und Differenzierbarkeit... 2 Nullstellensatz und Intervallhalbierung... Newton - Verfahren... 8 Funktionsverkettung... 1 5 Kettenregel... 11 Produktregel... 1

Mehr