Aufgabe 1 - Tricks mit linearen Gleichungen

Größe: px
Ab Seite anzeigen:

Download "Aufgabe 1 - Tricks mit linearen Gleichungen"

Transkript

1 Institut für Informatik Visual Computing Prof. Dr. Michael Wand & M.Sc. Sebastian Brodehl Sommersemester 2018 Modellierung I Übungsblatt 4: LGS, Vektorräume und Inverse Probleme Letzte Änderung: 10:20 Uhr, 26 May 2018 Abgabe bis: 7. Juni 2018, 10 Uhr Aufgabe 1 - Tricks mit linearen Gleichungen Betrachten Sie das lineare Gleichungssystem (LGS) A R d d, b R d sowie einer Unbekannten Ax = b x R d mit gegebenen Konstanten. Wir nehmen an, dass sehr groß ist. Wir haben die Aufgabe, dieses Gleichungssystem immer wieder zu lösen. Jedes Mal ändert sich jedoch nur ein einziger Eintrag b i, i = 1 d gegenüber der vorherigen Iteration. 1 Beschreiben Sie einen Algorithmus, der nach einer (eventuell recht aufwendigen) Vorberechnung, dieses Problem sehr schnell löst (im Wesentlichen mit einer Vektorskalierung und Addition).

2 Aufgabe 2 - Abstrakte Vektorräume, Unterräume Ein Unterraum ist eine Teilmenge eines Vektorraums, die auch alle Axiome eines Vektorraums erfüllt. Das einzige, was hier schiefgehen kann, ist die algebraische Abgeschlossenheit (der Rest vererbt sich per Definition). Im Folgenden wollen wir für interessante algebraische Konstrukte beweisen, dass es sich um Unterräume handelt. Hierzu sollen wieder nur die abstrakten Eigenschaften von Vektorräumen und die bekannten Eigenschaften von reellen Zahlen benutzt werden. 0 R n 0 = 0 a) Beweisen Sie, dass jeder Vektorraum den Nullvektor enthalten muss. b) Beweisen Sie, dass die Lösungsmenge eines homogenen linearen Gleichungssystems ein x V = R n, y W = R n A R m n Ax = y y x Unterraum des Bildraums ist. Hier sind die Details: Seien und eine Matrix. Dann ist die Gleichung ein LGS, wenn gegeben und unbekannt ist. Man kann dies auch schreiben als: y i = n j=1 a ij x i, mit A = a 11 a 1n a m1 a mn Vektoren Beweisen Sie nun, dass die Menge aller Lösungen von Vektorraumes V ist. Ax = 0 ein Unterraum des c) Man spricht von einem "affinen" Unterraum wenn wir eine Menge vorliegen haben, die alle Axiome eines Vektorraums erfüllt wenn man von jedem Element einen festen Vektor abzieht. Anders gesagt, ein affiner Vektorraum ist ein Vektorraum, der um einen konstanten Offset verschoben wurde (also nicht durch den Ursprung verläuft). Erklären Sie, warum die Lösung von Ax = y einen affinen Unterraum bildet.

3 Aufgabe 3 - Inverse Probleme Dieses Mal lösen wir unser erstes "richtiges" Problem! Wir rekonstruieren (mit einem zugegebenermaßen recht einfachen Ansatz) ein Modell zu gegebenen verrauschen Messdaten. Als Beispiel schauen wir uns den Klassiker der inversen Probleme an - die Rekonstruktion von tomographischen Daten mittels regularisierter Inversion der Radontransformation (effizientere Varianten dieser Methode werden tatsächlich in der der Praxis oft benutzt, insbesondere für tomographische Verfahren in der Medizin wie z.b. CT/MRI/PET etc.). Sie können natürlich wieder ein Tool Ihrer Wahl nutzen. Erläuterung: Wie funktioniert ein Computertomographiescanner (CT)? Das Gerät macht sehr viele Röntgenbilder eines Patienten, wobei sich der Scanner (also Röntgenquelle und Photodetektor) um den Patienten dreht. In jeder Schicht senkrecht zur Drehachse ergibt sich eine Situation ähnlich wie in Abbildung 1: Jeder Pixel im Röntgenbild misst die integrale Absorption entlang einer Linie (hier als parallel angenommen, zur Vereinfachung). Durch Bilden des Logarithmus, erhält man die Summen der logarithmierten Absorptionsdichten. Diese Transformation - von einer Dichtefunktion zu ihren Linienintegralen entlang aller möglichen Graden nennt man auch Radontransformation. Dies ist eine lineare Abbildung; ihr Inverses ist die inverse Radontransformation (Wer hätte das gedacht?), und die erlaubt uns, aus einem CT Scan Datensatz, die Dichte im Patienten zu rekonstruieren.

4 Abbildung 1: Die Radontransformation - für jeden möglichen Winkel Integration entlang von (hier parallelen) Linien (Parameter f : [ 1, 1] 2 [0, 1] α wird eine 1D Projektion durch ) erzeugt. Eingabe ist ein 2D "Graustufen" Bild. Die Radontransformation liefert ein neues 2D Bild, dass für x α [0, π] x [ 2, 2] RT(f) jeden Winkel und Längsparameter das entsprechende Linienintegral liefert. Aufgabe Die Radontransformation a) Überlegen Sie sich, wie die Radontransformation genau funktioniert, und wie man diese (für Pixelbilder) mit Hilfe von numerischer Integration diskretisieren kann. b) Implementieren Sie eine 2D Radontransformation. Erzeugen Sie hierzu ein neues GeoX Experiment oder Tool, dass es erlaubt, ein Bild (Graustufen reichen) zu laden und dessen Radontransformation zu berechnen und Visualisieren. Das Prinzip der Transformation ist in Abbildung 1 dargestellt. c) Berechnen Sie nun die Matrix, die die Radontransformation (Abbildung von Pixeln auf die Werte der Linienintegrale) darstellt. Aufgabe Die Inverse Radontransformation a) Untersuchen Sie die Eigenschaften der Transformation indem Sie sich die SVD der Transformationsmatrix ansehen. Insbesondere ist es sehr aufschlussreich, sich das Singulärwertspektrum anzusehen (Plotten Sie das Spektrum mit Excel, GNUPlot, oder GeoX, je nach Mut...). Man stellt fest, dass die Radontransformation schlecht gestellt ("ill-posed") ist - die

5 Spreizung der Singulärwerte ist relativ stark, was eine naive Invertierung schwierig macht (unmöglich mit echten, verrauschten Messdaten). Historisch ist dies eines der Probleme, die zur Entwicklung der Theorie schlecht gestellter Probleme geführt hat. b) Visualisieren Sie den Kern der Radontransformation: Zeigen Sie einige Beispiel von Eingabebildern, die fast vollständig auf null abgebildet werden. Im Gegenzug, finden Sie Eingabebilder die kaum durch die Transformation abgeschwächt werden. Hinweis: Schauen Sie sich die Singulärvektoren (auf der richtigen Seite der Matrix) an. c) Berechnen Sie nun die inverse Radontransformation mit Hilfe einer (entsprechend angepassten) Pseudoinversen (also eine SVD-basierte Matrixinversion bei der kleine Singulärwerte passend abgeschnitten werden). Wenden Sie diese auf verschiedene Eingabebilder an, bei denen unterschiedlich viel Rauschen künstlich hinzugefügt wurde (um einen realen Messprozess zu simulieren). Anmerkungen: Die Invertierung via SVD ist sehr teuer (in der Praxis wird das daher auch in der Regel anders implementiert, mittels schneller Fouriertransformation o.ä.). Bildgrößen von ca Pixel ließen sich in meinen Experimenten noch mit halbwegs vertretbarem Aufwand invertieren. Beispiele (alle leicht vergrößtert):

6 Eingabebild Radontransformation Nach Invertierung σ (Schwellwert, kein zusätzliches Rauschen) [1] So etwas passiert zum Beispiel, wenn wir in der Computergraphik ein 3D Modell interaktiv dadurch verformen, dass einige Punkte des 3D Meshes festgehalten werden und der Rest sich (linearisiert) elastisch verformen soll. Wenn wir mit der Maus immer nur einen Endpunkt des Meshes verschieben, ist diese Optimierung möglich.

Kapitel 15 Lineare Gleichungssysteme

Kapitel 15 Lineare Gleichungssysteme Kapitel 15 Lineare Gleichungssysteme Kapitel 15 Lineare Gleichungssysteme Mathematischer Vorkurs TU Dortmund Seite 1 / 27 Kapitel 15 Lineare Gleichungssysteme Definition 15.1 (Lineares Gleichungssystem

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Mathematik I für Biologen, Geowissenschaftler und Geoökologen 5. Dezember 2007 Definition : Tomographie (Fortsetzung) : Tomographie Definition: Ein lineares Gleichungssystem (LGS) ist ein System von n

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 5. April 2018 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

Lösbarkeit linearer Gleichungssysteme

Lösbarkeit linearer Gleichungssysteme Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Kapitel 6 Lineare Gleichungssysteme 6. Gaußalgorithmus Aufgabe 6. : Untersuchen Sie die folgenden linearen Gleichungssysteme mit dem Gaußalgorithmus auf Lösbarkeit und bestimmen Sie jeweils die Lösungsmenge.

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 25 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 8 Aufgabe 8 Basen für Bild und Kern Gegeben sind die beiden 2 Matrizen:

Mehr

Mathematik I für MB und ME

Mathematik I für MB und ME Mathematik I für MB und ME Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 28/29 Übungsaufgaben Serie 4: Lineare Unabhängigkeit, Matrizen, Determinanten, LGS Prüfen Sie, ob die folgenden

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen.

Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen. 1. Der Vektorraumbegriff...1 2. Unterräume...2. Lineare Abhängigkeit/ Unabhängigkeit... 4. Erzeugendensystem... 5. Dimension...4 6. Austauschlemma...5 7. Linearität von Abbildungen...6 8. Kern und Bild

Mehr

Probeklausur zu Mathematik 2 für Informatik

Probeklausur zu Mathematik 2 für Informatik Gunter Ochs Wintersemester 4/5 Probeklausur zu Mathematik für Informatik Lösungshinweise wie immer ohne Garantie auf Fehlefreiheit. Gegeben sei das Dreieck im R mit den Eckpunkten A a Berechnen Sie die

Mehr

Kapitel 14 Lineare Gleichungssysteme

Kapitel 14 Lineare Gleichungssysteme Kapitel 4 Lineare Gleichungssysteme Kapitel 4 Lineare Gleichungssysteme Mathematischer Vorkurs TU Dortmund Seite 83 / 246 Kapitel 4 Lineare Gleichungssysteme Definition 4. (Lineares Gleichungssystem LGS)

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Mathematik I für MB/ME

Mathematik I für MB/ME Mathematik I für MB/ME Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 25/26 Übungsaufgaben Serie 4: Lineare Unabhängigkeit, Matrizen, Determinanten, LGS Prüfen Sie, ob die folgenden

Mehr

114 Kapitel 6. Lineare Algebra. 6.4 Vektorräume

114 Kapitel 6. Lineare Algebra. 6.4 Vektorräume 114 Kapitel 6 Lineare Algebra 64 Vektorräume Bereits in dem antiken Lehrbuch der Elemente von Euklid sind die Grundbegriffe der ebenen Geometrie festgehalten, die noch heute in der Schule vermittelt werden

Mehr

Lineare Algebra 1. Vorbereitungsaufgaben zur Ersten Teilklausur. Studiengang: B.Sc. Mathematik, B.Ed. Mathematik, B.Sc. Physik

Lineare Algebra 1. Vorbereitungsaufgaben zur Ersten Teilklausur. Studiengang: B.Sc. Mathematik, B.Ed. Mathematik, B.Sc. Physik Prof. Dr. R. Tumulka, Dr. S. Eichmann Mathematisches Institut, Universität Tübingen Sommersemester 2017 2.6.2017 Lineare Algebra 1 Vorbereitungsaufgaben zur Ersten Teilklausur Studiengang: B.Sc. Mathematik,

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Bernhard Hanke Universität Augsburg 17.10.2012 Bernhard Hanke 1 / 9 Wir beschreiben den folgenden Algorithmus zur Lösung linearer Gleichungssysteme, das sogenannte Gaußsche

Mehr

6 Lineare Gleichungssysteme

6 Lineare Gleichungssysteme 6 LINEARE GLEICHUNGSSYSTEME 3 6 Lineare Gleichungssysteme Unter einem linearen Gleichungssystem verstehen wir ein System von Gleichungen α ξ + + α n ξ n = β α m ξ + + α mn ξ n = β m mit Koeffizienten α

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 15. April 2018 1/46 Die Dimension eines Vektorraums Satz 2.27 (Basisergänzungssatz) Sei V ein Vektorraum über einem Körper K. Weiter seien v 1,...,

Mehr

Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag

Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr E Schörner WS / Blatt 6 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag Wir verwenden das Unterraumkriterium,

Mehr

9 Lineare Gleichungssysteme

9 Lineare Gleichungssysteme 9 Lineare Gleichungssysteme Eine der häufigsten mathematischen Aufgaben ist die Lösung linearer Gleichungssysteme In diesem Abschnitt beschäftigen wir uns zunächst mit Lösbarkeitsbedingungen und mit der

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 7 11. Mai 2010 Kapitel 8. Vektoren Definition 76. Betrachten wir eine beliebige endliche Anzahl von Vektoren v 1, v 2,..., v m des R n, so können

Mehr

Grundlegende Definitionen aus HM I

Grundlegende Definitionen aus HM I Grundlegende Definitionen aus HM I Lucas Kunz. März 206 Inhaltsverzeichnis Vektorraum 2 2 Untervektorraum 2 Lineare Abhängigkeit 2 4 Lineare Hülle und Basis 5 Skalarprodukt 6 Norm 7 Lineare Abbildungen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Lineare Algebra 1 WS 2006/07 Lösungen Blatt 13/ Probeklausur. Lösungen zur. Zentrum Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN. Lineare Algebra 1 WS 2006/07 Lösungen Blatt 13/ Probeklausur. Lösungen zur. Zentrum Mathematik TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 26/7 en Blatt 13/2 29.1.27 en zur Probeklausur Aufgabe 1 (ca. 6 Punkte) Sei

Mehr

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 14: Ferienserie

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 14: Ferienserie D-MAVT Lineare Algebra I HS 7 Prof. Dr. N. Hungerbühler Lösungen Serie 4: Ferienserie . Finden Sie ein Erzeugendensystem des Lösungsraums L R 5 des Systems x + x x 3 + 3x 4 x 5 = 3x x + 4x 3 x 4 + 5x 5

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2015 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 7 Fortgeschrittene Datenstrukturen 8 Such-Algorithmen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Mathematik I für Biologen, Geowissenschaftler und Geoökologen 28. November 2011 Definition Beispiel: Wassermengen und Konzentrationen in einem Fluss Beispiel Zeilenstufenform Beispiel (Fortsetzung) Anhang

Mehr

10.2 Linearkombinationen

10.2 Linearkombinationen 147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition

Mehr

Die Lösungsmenge besteht aus allen n-tupeln reeller Zahlen x 1

Die Lösungsmenge besteht aus allen n-tupeln reeller Zahlen x 1 III. Lineare Gleichungssysteme ================================================================= 3. Einführung ---------------------------------------------------------------------------------------------------------------

Mehr

Variante A. Hinweise

Variante A. Hinweise Lehrstuhl C für Mathematik (Analysis Prof Dr Holger Rauhut Aachen, den 373 Wiederholungsklausur zur Höheren Mathematik I SoSe 3 Variante A Hinweise Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind

Mehr

1 Zum Aufwärmen. 1.1 Notationen. 1.2 Lineare Abbildungen und Matrizen. 1.3 Darstellungsmatrizen

1 Zum Aufwärmen. 1.1 Notationen. 1.2 Lineare Abbildungen und Matrizen. 1.3 Darstellungsmatrizen 1 Zum Aufwärmen 1.1 Notationen In diesem Teil der Vorlesung bezeichnen wir Körper mit K, Matrizen mit Buchstaben A,B,..., Vektoren mit u,v,w,... und Skalare mit λ,µ,... Die Menge der m n Matrizen bezeichnen

Mehr

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41. : x i R, 1 i n x n

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41. : x i R, 1 i n x n Kapitel Vektorräume Josef Leydold Mathematik für VW WS 07/8 Vektorräume / 4 Reeller Vektorraum Die Menge aller Vektoren x mit n Komponenten bezeichnen wir mit x R n =. : x i R, i n x n und wird als n-dimensionaler

Mehr

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41 Kapitel 3 Vektorräume Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41 Reeller Vektorraum Die Menge aller Vektoren x mit n Komponenten bezeichnen wir mit R n = x 1. x n : x i R, 1 i n und

Mehr

Der Kern einer Matrix

Der Kern einer Matrix Die elementaren Zeilenoperationen p. 1 Der Kern einer Matrix Multipliziert man eine Matrix mit den Spaltenvektoren s 1,..., s m von rechts mit einem Spaltenvektor v := (λ 1,..., λ m ) T, dann ist das Ergebnis

Mehr

Lineare Abbildungen L : R 2 R 2

Lineare Abbildungen L : R 2 R 2 Lineare Abbildungen Lineare Abbildungen L : R 2 R 2 Eine Abbildung Eine Abbildung ordnet jedem Element aus einer Menge A Eine Abbildung ordnet jedem Element aus einer Menge A ein Element aus einer Menge

Mehr

Ausgewählte Lösungen zu den Übungsblättern 4-5

Ausgewählte Lösungen zu den Übungsblättern 4-5 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Ausgewählte en zu den Übungsblättern -5 Aufgabe, Lineare Unabhängigkeit

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmann W Wu Herbstsemester 26 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 2 Aufgabe 2 Welche der folgenden Aussagen sind korrekt? (i) Jedes

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2017 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München Programm heute 7 Fortgeschrittene Datenstrukturen 8

Mehr

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw.

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw. Kapitel 5 Lineare Algebra 51 Lineare Gleichungssysteme und Matrizen Man begegnet Systemen von linearen Gleichungen in sehr vielen verschiedenen Zusammenhängen, etwa bei Mischungsverhältnissen von Substanzen

Mehr

3. Übungsblatt Aufgaben mit Lösungen

3. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sind zwei Teilmengen von R : E := {x R : x x = }, und F ist eine Ebene durch die Punkte A = ( ), B = ( ) und C = ( ). (a) Stellen Sie diese Mengen

Mehr

Mathematischer Vorkurs

Mathematischer Vorkurs Mathematischer Vorkurs Dr. Agnes Lamacz Mathematischer Vorkurs TU Dortmund Seite 1 / 170 Vollständige Induktion Kapitel 13 Vollständige Induktion Mathematischer Vorkurs TU Dortmund Seite 117 / 170 Vollständige

Mehr

$Id: matrix.tex,v /12/02 21:08:55 hk Exp $ $Id: vektor.tex,v /12/05 11:27:45 hk Exp hk $

$Id: matrix.tex,v /12/02 21:08:55 hk Exp $ $Id: vektor.tex,v /12/05 11:27:45 hk Exp hk $ $Id: matrixtex,v 14 2008/12/02 21:08:55 hk Exp $ $Id: vektortex,v 12 2008/12/05 11:27:45 hk Exp hk $ II Lineare Algebra 6 Die Matrixmultiplikation 63 Inverse Matrizen und reguläre lineare Gleichungssysteme

Mehr

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Lineare : Einführung Beispiele linearer a) b) c) 2x 1 3x 2 = 1 x 1 +

Mehr

Lineares Gleichungssystem

Lineares Gleichungssystem Lineares Gleichungssystem Ein lineares Gleichungssystem hat die Form a 1,1 x 1 + + a 1,n x n = b 1...... Ax = b a m,1 x 1 + + a m,n x n = b m mit einer Koeffizientenmatrix A = (a i,j ), zu bestimmenden

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 29.11.2013 Alexander Lytchak 1 / 13 Wiederholung Der Rang einer linearen Abbildung ist gleich dem Spaltenrang der darstellenden

Mehr

Für die Matrikelnummer M = Dann sind durch A =

Für die Matrikelnummer M = Dann sind durch A = Musterlösung zum. Blatt 9. Aufgabe: Gegeben seien m 3 + 2 m m 3 m 2 m 4 + m 7 m 3 A := m m 2 m 2 + 2 m 2 m 4 + m 5 und b := m 6 m 4 + a) Finden Sie eine Lösung x R 7 für die Gleichung Ax =. b) Finden Sie

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Heimarbeitsblatt 14

Mathematik für Informatiker 1 Wintersemester 2013/14 Heimarbeitsblatt 14 Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker Wintersemester 3/4 Heimarbeitsblatt 4 Die Lösungshinweise dienen

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 18.10.2012 Alexander Lytchak 1 / 12 Lineare Gleichungssysteme Wir untersuchen nun allgemeiner Gleichungssysteme der

Mehr

Richie Gottschalk Lineare Algebra I Seite 1. a) Welche der folgenden Ringe sind kommutativ? Es gibt genau einen Unterraum W von V mit dim(w ) = n.

Richie Gottschalk Lineare Algebra I Seite 1. a) Welche der folgenden Ringe sind kommutativ? Es gibt genau einen Unterraum W von V mit dim(w ) = n. Richie Gottschalk Lineare Algebra I Seite Aufgabe Im Folgenden sind K immer ein Körper und V ein K-Vektorraum. a) Welche der folgenden Ringe sind kommutativ? K[x] K[x] ist per se ein kommutativer Polynomring.

Mehr

Lineare Abbildungen und Orthonormalsysteme

Lineare Abbildungen und Orthonormalsysteme KAPITEL Lineare Abbildungen und Orthonormalsysteme. Lineare Abbildungen und Koordinatendarstellungen.. Lineare Abbildungen und ihre Basisdarstellung. Seien V, W Vektorraume uber R. Mit einer Abbildung

Mehr

β 1 x :=., und b :=. K n β m

β 1 x :=., und b :=. K n β m 44 Lineare Gleichungssysteme, Notations Betrachte das lineare Gleichungssystem ( ) Sei A = (α ij ) i=,,m j=,n α x + α x + + α n x n = β α x + α x + + α n x n = β α m x + α m x + + α mn x n = β m die Koeffizientenmatrix

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 4

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 4 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 25): Lineare Algebra und analytische Geometrie 4 4. (Frühjahr 27, Thema, Aufgabe ) Zeigen Sie, dass die beiden folgenden Unterräume des R 3 übereinstimmen:

Mehr

Prüfung EM1 28. Jänner 2008 A :=

Prüfung EM1 28. Jänner 2008 A := 1. Die Menge der Eigenwerte der Matrix ist Prüfung EM1 28. Jänner 2008 A := ( 0 1 ) 0 1 A. {1, 0} B. { 1} C. {0} D. {0, 1, 1} E. {0, 1} 2. Es seien V ein n-dimensionaler reeller Vektorraum, ein Skalarprodukt

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Christian Serpé Universität Münster 14. September 2011 Christian Serpé (Universität Münster) 14. September 2011 1 / 56 Gliederung 1 Motivation Beispiele Allgemeines Vorgehen 2 Der Vektorraum R n 3 Lineare

Mehr

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }.

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }. 154 e Gegeben sind die Vektoren v 1 = ( 10 1, v = ( 10 1. Sei V 1 = v 1 der von v 1 aufgespannte Vektorraum in R 3. 1 Dann besteht V 1 aus allen Vielfachen von v 1, V 1 = { c v 1 c R }. ( 0 ( 01, v 3 =

Mehr

D-CHAB Frühlingssemester 2018

D-CHAB Frühlingssemester 2018 D-CHAB Frühlingssemester 2018 Grundlagen der Mathematik II Dr Marcel Dettling Lösung 4 1) Nur für die folgenden Wahlen kann man das Produkt bilden: A A mit Dimension (2, 2) (2, 2) (2, 2): 1 2 A Y mit Dimension

Mehr

2.2 Kern und Bild; Basiswechsel

2.2 Kern und Bild; Basiswechsel 22 Kern und Bild; Basiswechsel 22 Kern und Bild; Basiswechsel 35 Jede lineare Abbildung definiert charakteristische Unterräume, sowohl im Ausgangsraum als auch im Bildraum 22 Satz Sei L: V W eine lineare

Mehr

HM II Tutorium 5. Lucas Kunz. 22. Mai 2018

HM II Tutorium 5. Lucas Kunz. 22. Mai 2018 HM II Tutorium 5 Lucas Kunz 22. Mai 2018 Inhaltsverzeichnis 1 Theorie 2 1.1 Wiederholung Lineare Gleichungsysteme................... 2 1.2 Wiederholung: Kern einer Abbildung..................... 3 1.3

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 Unterschrift der Kandidatin/des Kandidaten 3 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $ Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit

Mehr

Eigenwerte (Teschl/Teschl 14.2)

Eigenwerte (Teschl/Teschl 14.2) Eigenwerte Teschl/Teschl 4. Ein Eigenvektor einer quadratischen n nmatrix A ist ein Vektor x R n mit x 0, für den Ax ein skalares Vielfaches von x ist, es also einen Skalar λ gibt mit Ax = λ x Ax λ x =

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Matrizen und Vektoren, LGS, Gruppen, Vektorräume 1.1 Multiplikation von Matrizen Gegeben seien die Matrizen A := 1 1 2 0 5 1 8 7 Berechnen Sie alle möglichen

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 1

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Lineare Algebra und analytische Geometrie. (Herbst 2005, Thema, Aufgabe ) Bestimmen Sie alle reellen Lösungen des folgenden linearen Gleichungssystems:.2

Mehr

Lineare Gleichungssysteme mit Dünnheitsrestriktionen

Lineare Gleichungssysteme mit Dünnheitsrestriktionen Lineare Gleichungssysteme mit Dünnheitsrestriktionen Institut für Mathematik Johannes Gutenberg-Universität Mainz Studienorientierung BISS Mainz, 7. November 2011 Motivierendes Beispiel: Decodierung Betrachten

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom Übungsaufgaben 11. Übung: Woche vom 9. 1.-13. 1. 2017 (Numerik): Heft Ü 1: 12.28.a,b; 12.29.b,c (jeweils mit Fehlerabschätzung); 6.26; 6.27.a (auch mit Lagrange-Interpolationspolynom); 6.25; 6.28 (auch

Mehr

WS 2012/2013. Hinweise

WS 2012/2013. Hinweise Lehrstuhl C für Mathematik (Analysis Prof. Dr. Y. Guo Aachen, den.. Trainingsklausur zur Höheren Mathematik I WS / Hinweise Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind handschriftliche Aufzeichnungen

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 12 Aufgabe 121 Matrixpotenzen und Eigenwerte Diese Aufgabe ist

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg Lineare : Einführung Beispiele linearer a) b) c) 2x 1 3x 2 = 1 x 1 + x 2 =

Mehr

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok Kurs über Lineare Gleichungssysteme PD Dr. Karin Halupczok Mathematisches Institut Albert-Ludwigs-Universität Freiburg http://home.mathematik.unifreiburg.de/halupczok/diverses.html karin.halupczok@math.uni-freiburg.de

Mehr

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung Kapitel 3 Lineare Abbildungen Lineare Abbildungen sind eine natürliche Klasse von Abbildungen zwischen zwei Vektorräumen, denn sie vertragen sich per definitionem mit der Struktur linearer Räume Viele

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 4

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 4 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 26/7): Lineare Algebra und analytische Geometrie 4 4. (Frühjahr 27, Thema, Aufgabe ) Zeigen Sie, dass die beiden folgenden Unterräume des R 3 übereinstimmen:

Mehr

2.5 Gauß-Jordan-Verfahren

2.5 Gauß-Jordan-Verfahren 2.5 Gauß-Jordan-Verfahren Definition 2.5.1 Sei A K (m,n). Dann heißt A in zeilenreduzierter Normalform, wenn gilt: [Z1] Der erste Eintrag 0 in jeder Zeile 0 ist 1. [Z2] Jede Spalte, die eine 1 nach [Z1]

Mehr

Lineare Gleichungssysteme (Teschl/Teschl 11.1)

Lineare Gleichungssysteme (Teschl/Teschl 11.1) Lineare Gleichungssysteme (Teschl/Teschl.) Ein Lineares Gleichungssystem (LGS) besteht aus m Gleichungen mit n Unbekannten x,...,x n und hat die Form a x + a 2 x 2 +... + a n x n = b a 2 x + a 22 x 2 +...

Mehr

18. Matrizen 2: Gleichungssysteme, Gauß-Algorithmus

18. Matrizen 2: Gleichungssysteme, Gauß-Algorithmus 18. Matrizen 2: Gleichungssysteme, Gauß-Algorithmus Conrad Donau 8. Oktober 2010 Conrad Donau 18. Matrizen 2: Gleichungssysteme, Gauß-Algorithmus 8. Oktober 2010 1 / 7 18.1 Wiederholung: Ebenen in R 3

Mehr

H. Stichtenoth WS 2005/06

H. Stichtenoth WS 2005/06 H. Stichtenoth WS 25/6 Lösungsvorschlag für das. Übungsblatt Aufgabe : Der gesuchte Unterraum U ist die lineare Hülle von v und v 2 (siehe Def. 5. und Bsp. 5.5b), d. h. U : Spanv,v 2 } v R : v λ v + λ

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2018/2019

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2018/2019 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Lineare Transformationen und Determinanten. 10-E Ma 1 Lubov Vassilevskaya

Lineare Transformationen und Determinanten. 10-E Ma 1 Lubov Vassilevskaya Lineare Transformationen und Determinanten 10-E Ma 1 Lubov Vassilevskaya Lineare Transformation cc Definition: V und W sind zwei Vektorräume. Eine Funktion T nennt man eine lineare Transformation von V

Mehr

10 Lineare Gleichungssysteme

10 Lineare Gleichungssysteme ChrNelius : Lineare Algebra I (WS 2004/05) 1 10 Lineare Gleichungssysteme (101) Bezeichnungen: Ein System a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 ( ) a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a

Mehr

Lineare Algebra I Lösungsvorschlag

Lineare Algebra I Lösungsvorschlag Aufgabe Lineare Algebra I Lösungsvorschlag Wir bezeichnen mit a, a 2, a 3 Q 4 die Spalten der Matrix A. Es ist 7 a + 2a 2 = 7 4 = 7a 3, und wir sehen im l A = a, a 2, a 3 = a, a 2. Da die Vektoren a und

Mehr

Aufgaben zur Vorlesung: Lineare Algebra und analytische Geometrie I

Aufgaben zur Vorlesung: Lineare Algebra und analytische Geometrie I Institut für Mathematik Blatt Prof. Dr. B. Martin, H. Süß Abgabe: 0.4. Aufgaben zur Vorlesung: Lineare Algebra und analytische Geometrie I Aufgabe : 2 Punkte Stellen Sie die Gleichung der Ebene auf, in

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,

Mehr

Prüfung Lineare Algebra , B := ( ), C := 1 1 0

Prüfung Lineare Algebra , B := ( ), C := 1 1 0 1. Es seien 1 0 2 0 0 1 3 0 A :=, B := ( 1 2 3 4 ), C := 1 1 0 0 1 0. 0 0 0 1 0 0 1 0 0 0 0 Welche der folgenden Aussagen ist richtig? A. A und C haben Stufenform, B nicht. B. A und B haben Stufenform,

Mehr

4 Vektorräume. 4.1 Definition. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48. Sei K ein Körper.

4 Vektorräume. 4.1 Definition. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48. Sei K ein Körper. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48 4 Vektorräume 4.1 Definition Sei K ein Körper. Definition: Ein Vektorraum über K, oder kurz ein K-Vektorraum, ist ein Tupel (V,+,, 0 V ) bestehend aus

Mehr

Lösungen der Aufgaben zu Abschnitt 5.4

Lösungen der Aufgaben zu Abschnitt 5.4 A Filler: Elementare Lineare Algebra Lösungen zu Abschnitt 54 Lösungen der Aufgaben zu Abschnitt 54 B ist linear unabhängig, wenn die Vektorgleichung ( ) ( ) ( ) ( ) 456 λ + λ + λ = bzw das LGS λ +4λ +λ

Mehr

Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 2017/18 Übungsblatt 1- Lösung

Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 2017/18 Übungsblatt 1- Lösung Technische Universität München Physik Department Pablo Cova Fariña Claudia Nagel Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 2017/18 Übungsblatt 1- Aufgabe 1: (a) Gegeben seien

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine Vektorräume (Teschl/Teschl 9 Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen: Eine

Mehr

1 Lineare Gleichungssysteme und Matrizen

1 Lineare Gleichungssysteme und Matrizen 1 Lineare Gleichungssysteme und Matrizen Das Studium linearer Gleichungssysteme und ihrer Lösungen ist eines der wichtigsten Themen der linearen Algebra. Wir werden zunächst einige grundlegende Begriffe

Mehr

Mathematische Grundlagen der Computerlinguistik Lineare Algebra

Mathematische Grundlagen der Computerlinguistik Lineare Algebra Mathematische Grundlagen der Computerlinguistik Lineare Algebra Dozentin: Wiebke Petersen 10. Foliensatz Wiebke Petersen math. Grundlagen 30 Einleitung Die lineare Algebra beschäftigt sich mit Vektorräumen

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme 2 Lineare Gleichungssysteme Betrachte ein beliebiges System von m linearen Gleichungen in den n Unbekannten x,,x n : a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n = b 2 () a m x + a m2 x

Mehr