Lineare Algebra I (WS 12/13)
|
|
|
- Carl Geiger
- vor 7 Jahren
- Abrufe
Transkript
1 Lineare Algebra I (WS 12/13) Bernhard Hanke Universität Augsburg Bernhard Hanke 1 / 13
2 Ablauf der Lehrveranstaltung Vorlesungen (B. Hanke): Dienstag 10:30-11:30 und Mittwoch 8:15-9:45 in 1001/T. Globalübung (J. Bowden): Donnerstag 15:45-17:15 in 1002/T. Tutorübungen. Offener Matheraum (R. Gelb) Klausur: Mi , 14:00-15:30 (90 Minuten). Ein aktuelles Vorlesungsskript finden Sie auf der Webseite der Lehrveranstaltung. Dieses Skript sollten Sie intensiv durcharbeiten und versuchen, jedes Detail genau zu verstehen. Sie finden im Netz auch die aktuellen Tutoriumsaufgaben und Übungsblätter. Bernhard Hanke 2 / 13
3 Übungsbetrieb In den Tutorübungen rechnen Sie in kleinen Gruppen Präsenzaufgaben unter Anleitung eines Tutors. Bitte melden Sie sich im Digicampus in den nächsten Tagen zu einer Tutorübung an. Jede Woche wird ein Übungsblatt online gestellt. Die Lösungen (verfasst von bis zu drei Studierenden) geben Sie bei Ihrem Tutor ab, der sie Ihnen eine Woche später korrigiert zurückgibt. Eine Musterlösung des Übungsblattes wird anschließend ins Netz gestellt. Die aktive, selbständige Auseinandersetzung mit den Übungsblättern ist unerlässlich für Ihren Studienerfolg. Diskutieren Sie mögliche Lösungsansätze mit Ihren Kommilitonen und investieren Sie ausreichend Zeit in die Bearbeitung der Übungsblätter. In der Globalübung können Sie Fragen zum aktuellen Vorlesungsstoff stellen. Es werden außerdem besonders wichtige Übungsaufgaben gesondert besprochen. Im Offenen Matheraum finden Sie regelmäßig Ansprechpartner für Fragen zur Vorlesung. Bernhard Hanke 3 / 13
4 Literatur Gerd Fischer, Lernbuch Lineare Algebra und Analytische Geometrie, Vieweg-Verlag. Dieses Buch ist in der Bibliothek im Semesterapparat mehrfach vorhanden. Sie können auch elektronisch über die Seite unserer Bibliothek darauf zugreifen. Klaus Jänich, Lineare Algebra, Springer-Verlag. Bernhard Hanke 4 / 13
5 Inhalt der Vorlesung Lösung linearer Gleichungssysteme. Dies ist oft durch konkrete Fragestellungen motiviert und hat Anwendungen in allen Wissenschaften, in denen es um die exakte Berechnung von Größen geht. Entwicklung der Theorie der Vektorräume. Hier erarbeiten wir eine algebraische Theorie, die eng mit der Lösungstheorie linearer Gleichungssysteme verbunden ist. Wir werden viele mathematische Sätze beweisen, die für alle Vektorräume gelten und daher in ganz verschiedenen Situationen Anwendung finden. Bernhard Hanke 5 / 13
6 Inhalt der Vorlesung Theorie der linearen Abbildungen Hier geht es um strukturerhaltende Abbildungen zwischen Vektorräumen. Diese sind wichtig, um verschiedene Vektorräume in vernünftiger Weise in Beziehung zu setzen. Matrixrechnung Lineare Abbildungen können vollständig durch sogenannte Matrizen beschrieben werden. In dieser Vorlesung wird der Matrixkalkül einen breiten Raum einnehmen. Analytische Geometrie Aus mathematischer Sicht ist dies einer der attraktivsten und wichtigsten Aspekte der Vorlesung. Untersucht wird die Geometrie von Punkten, Geraden, Ebenen und ihrer höherdimensionalen Verallgemeinerungen. Bernhard Hanke 6 / 13
7 Lineare Gleichungssysteme, der Gauß sche Algorithmus Auf einer Augsburger Semesteranfangsparty soll das Mischgetränk Goaß n Maß zubereitet werden. Die Zutaten sind Weißbier (5% Alkohol), Cola mit Rum (10% Alkohol), Kirschlikör (30% Alkohol), Wir stellen uns folgende Fragen: Welche Menge von jeder Zutat wird benötigt, um ein Liter Getränk ( Maß ) mit einem Alkoholgehalt von 20% zu erhalten? Gibt es mehrere Lösungen dieses Problemes oder nur eine? Wie kann die Gesamtheit der Lösungen beschrieben werden? Bernhard Hanke 7 / 13
8 Wir bezeichnen die Menge von Weißbier (in Litern) mit w, von Kirschlikör mit k und von Cola mit c und erhalten folgendes Gleichungssystem: (I ) w + k + c = 1 (II ) 5w + 30k + 10c = 20. Für unser Problem müssen wir außerdem w, k, c 0 fordern. Subtraktion des Fünffachen der ersten Gleichung von der zweiten und Division durch 5 führt auf 5k + c = 3 und ein Tripel (w, k, c) R 3 = R R R liegt genau dann in der Lösungsmenge des Gleichungssystems, falls (w, k, c) {(4t 2, t, 3 5t) t R}. Hier haben wir k = t R als freien Parameter gewählt und daraus die Werte für k und w aus den vorhergehenden Gleichungen berechnet. Die zusätzliche Bedingung w, k, c 0 führt auf t [ 1 2, 3 5 ]. Bernhard Hanke 8 / 13
9 Wir erhalten also als Lösung des Mischungsproblems die Tripel (w, k, c) aus der Menge {(4t 2, t, 3 5t) t [ 3 5, 2 3 ]} Mögliche Rezepte sehen also wie folgt aus: Man nehme oder 1/2 Liter Kirschlikör. 1/2 Liter Cola mit Rum. 0 Liter Weißbier. 3/5 Liter Kirschlikör. 0 Liter Cola mit Rum. 2/5 Liter Bier. Bernhard Hanke 9 / 13
10 Es ist klar, dass es bei obigem Gleichungssystem nicht auf die Namen der Variablen w, k, c ankommt. Es genügt also, nur die auftretenden Koeffizienten in der sogenannten erweiterten Koeffizientenmatrix ( ) zusammenzufassen. Jede Zeile dieser Matrix steht dabei für eine Gleichung. Bernhard Hanke 10 / 13
11 Wir untersuchen nun allgemeiner Gleichungssysteme der Form a 11 x a 1n x n = b 1 a 21 x a 2n x n = b 2.. a m1 x a mn x n = b m Dies sind m lineare Gleichungen in n Unbekannten x j R mit Koeffizienten a ij R, b i R, wobei 1 i m, 1 j n. Wir sprechen auch von einem linearen Gleichungssystem über R. Dieses Gleichungssystem heißt homogen, falls b 1 = b 2 =... = b m = 0. Folgende Fragen liegen nahe: Unter welchen Voraussetzungen sind derartige Gleichungssysteme lösbar? Falls Lösungen existieren, welche Struktur hat die Lösungsmenge L R n? Wie kann man L effektiv berechnen? Die lineare Algebra gibt auf diese und viele weitere Fragen sehr befriedigende Antworten. Bernhard Hanke 11 / 13
12 Es ist hilfreich, den geometrischen Gehalt obiger Gleichungen zu beleuchten. Zum Beispiel haben wir die Gleichung 2x 1 + x 2 = 1. Die Lösungsmenge ist eine Gerade durch die Punkte ( 1 2, 0) und (0, 1) im R 2. die Gleichung 0x 1 + 0x 2 = 0. Hier ist die Lösungsmenge der ganze R 2. die Gleichung 0x 1 + 0x 2 = 1. Die Lösungsmenge dieser Gleichung ist leer. Bernhard Hanke 12 / 13
13 Wir nennen die Lösungsmenge einer Gleichung a 1 x a n x n = b eine Hyperebene im R n, falls mindestens ein a j 0 (j = 1,..., n). Hyperebenen sind (n 1)-dimensionale Teilräume im R n (d.h. Geraden, falls n = 2, Ebenen, falls n = 3 etc.). Der Begriff der Dimension wird später in der Vorlesung auf eine exakte Grundlage gestellt. Die Lösungsmenge eines Gleichungssystems ist der Schnitt solcher Hyperebenen oder leer. Falls es weniger Gleichungen als Unbekannte gibt, sollte die Dimension dieses Schnittes größer als 0 sein, da (anschaulich gesprochen) mit jeder neuen Gleichung die Dimension der Lösungsmenge um 1 abnimmt, Insbesondere sollte es in diesem Falle mehr als eine Lösung geben. Allgemeiner sollte die Lösungsmenge eines Gleichungssystems aus m Gleichungen und mit n Unbekannten die Dimension n m haben. Die lineare Algebra macht genau diese geometrische Intuition präzise Bernhard Hanke 13 / 13
Lineare Algebra I (WS 12/13)
Lineare Algebra I (WS 12/13) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke, Universität Augsburg 15.10.2013 Alexander Lytchak 1 / 14 Organisation Alle wichtigen organisatorischen Information
Klausurenkurs zum Staatsexamen (WS 2014/15): Lineare Algebra und analytische Geometrie 1
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Lineare Algebra und analytische Geometrie. (Herbst 2005, Thema, Aufgabe ) Bestimmen Sie alle reellen Lösungen des folgenden linearen Gleichungssystems:.2
Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 1
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Lineare Algebra und analytische Geometrie. (Herbst 2005, Thema, Aufgabe ) Bestimmen Sie alle reellen Lösungen des folgenden linearen Gleichungssystems:.2
Lineare Algebra I (WS 12/13)
Lineare Algebra I (WS 12/13) Bernhard Hanke Universität Augsburg 17.10.2012 Bernhard Hanke 1 / 9 Wir beschreiben den folgenden Algorithmus zur Lösung linearer Gleichungssysteme, das sogenannte Gaußsche
Lineare Algebra I (WS 12/13)
Lineare Algebra I (WS 12/13) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 18.10.2012 Alexander Lytchak 1 / 12 Lineare Gleichungssysteme Wir untersuchen nun allgemeiner Gleichungssysteme der
2 Lineare Gleichungssysteme
2 Lineare Gleichungssysteme Betrachte ein beliebiges System von m linearen Gleichungen in den n Unbekannten x,,x n : a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n = b 2 () a m x + a m2 x
Lineare Algebra I (WS 13/14)
Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 03.12.2013 Alexander Lytchak 1 / 16 Wiederholung und Beispiele Der Spaltenrang einer Matrix ist gleich ihrem Zeilenrang.
Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 1
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 1 1.1 (Herbst 2005, Thema 1, Aufgabe 1) Bestimmen Sie alle reellen Lösungen des folgenden linearen
Lineare Algebra I (WS 13/14)
Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 29.11.2013 Alexander Lytchak 1 / 13 Wiederholung Der Rang einer linearen Abbildung ist gleich dem Spaltenrang der darstellenden
Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018
(Analysis und lineare Algebra) im Sommersemester 2018 15. April 2018 1/46 Die Dimension eines Vektorraums Satz 2.27 (Basisergänzungssatz) Sei V ein Vektorraum über einem Körper K. Weiter seien v 1,...,
Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018
(Analysis und lineare Algebra) im Sommersemester 2018 5. April 2018 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html
Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag
MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr E Schörner WS / Blatt 6 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag Wir verwenden das Unterraumkriterium,
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Algebra: Lineare Gleichungssysteme und Matrizen
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lineare Algebra: Lineare Gleichungssysteme und Matrizen Das komplette Material finden Sie hier: School-Scout.de Thema: Lineare Algebra:
Lineare Gleichungssysteme (LGS)
Prof Dr M Helbig LA Vorlesung Lineare Gleichungssysteme (LGS) Fragen? LGS - Begriffe Definition a) Ein lineares Gleichungssystem (LGS) in den Unbekannten x 1,, x n mit Koeffizienten a ij R ( 1 i m, 1 j
Lineare Gleichungssysteme
Lineare Gleichungssysteme Lineare Gleichungssysteme Das System a x + a x +... + a n x n = b a x + a x +... + a n x n = b. +. +... +. =. a m x + a m x +... + a mn x n = b m heißt lineares Gleichungssystem
Lineare Algebra I (WS 13/14)
Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 22.10.2013 Alexander Lytchak 1 / 16 Wiederholung des Beispiels 3x 6 + x 7 = 2 2x 2 + 4x 4 + 6x 5 + 5x 7 = 3 2x 2 + x
6 Lineare Gleichungssysteme
6 LINEARE GLEICHUNGSSYSTEME 3 6 Lineare Gleichungssysteme Unter einem linearen Gleichungssystem verstehen wir ein System von Gleichungen α ξ + + α n ξ n = β α m ξ + + α mn ξ n = β m mit Koeffizienten α
Lineare Gleichungssysteme. 1-E Ma 1 Lubov Vassilevskaya
Lineare Gleichungssysteme 1-E Ma 1 Lubov Vassilevskaya Systeme linearer Funktionen und Gleichungen y = a 1 a 2... a n lineare Funktion Funktion ersten Grades,,..., unabhängige Variablen y abhängige Variable
Lineare Algebra 1. Roger Burkhardt
Lineare Algebra 1 Roger Burkhardt [email protected] Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 1 Einführung Lineare Gleichungen Definition
1 Einführung Gleichungen und 2 Unbekannte Gleichungen und 3 Unbekannte... 4
Wirtschaftswissenschaftliches Zentrum 3 Universität Basel Mathematik 2 Dr Thomas Zehrt Lineare Gleichungssysteme Inhaltsverzeichnis Einführung 2 2 Gleichungen und 2 Unbekannte 2 2 3 Gleichungen und 3 Unbekannte
Das inhomogene System. A x = b
Ein homogenes lineares Gleichungssystem A x = 0 mit m Gleichungen und n Unbestimmten hat immer mindestens die Lösung 0. Ist r der Rang von A, so hat das System n r Freiheitsgrade. Insbesondere gilt: Ist
$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $
Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit
05. Lineare Gleichungssysteme
05 Lineare Gleichungssysteme Wir betrachten ein System von m Gleichungen in n Unbestimmten (Unbekannten) x 1,, x n von der Form a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + a
Das Spatprodukt 25. Insbesondere ist das Spatprodukt in jedem Faktor linear. a 1 = aa 2 + ba 3
Das Spatprodukt 25 (Sp 4) (aa, b, c) a(a, b, c) Insbesondere ist das Spatprodukt in jedem Faktor linear Montag,3 November 23 Satz 92 Drei Vektoren,, Spatprodukt (,, ) ist sind genau dann linear abhängig,
1 Lineare Gleichungssysteme und Matrizen
1 Lineare Gleichungssysteme und Matrizen Das Studium linearer Gleichungssysteme und ihrer Lösungen ist eines der wichtigsten Themen der linearen Algebra. Wir werden zunächst einige grundlegende Begriffe
2.2 Lineare Gleichungssysteme (LGS)
2.2 Lineare Gleichungssysteme (LGS) Definition 2.2.. Ein LGS über einem Körper K von m Gleichungen in n Unbekannten x,..., x n ist ein Gleichungssystem der Form a x + a 2 x 2 +... + a n x n = b a 2 x +
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,
β 1 x :=., und b :=. K n β m
44 Lineare Gleichungssysteme, Notations Betrachte das lineare Gleichungssystem ( ) Sei A = (α ij ) i=,,m j=,n α x + α x + + α n x n = β α x + α x + + α n x n = β α m x + α m x + + α mn x n = β m die Koeffizientenmatrix
3 Lineare Gleichungen
Aufgabe 3. Man löse die lineare Gleichung a 2 x b 2 a a(b ax) b + b2 a = a, a b nach der Unbekannten x auf und diskutiere die möglichen Fälle. a 2 x b 2 a a(b ax) b + b2 a = a a b a 2 bx b 3 a 2 b + a
Kapitel 15 Lineare Gleichungssysteme
Kapitel 15 Lineare Gleichungssysteme Kapitel 15 Lineare Gleichungssysteme Mathematischer Vorkurs TU Dortmund Seite 1 / 27 Kapitel 15 Lineare Gleichungssysteme Definition 15.1 (Lineares Gleichungssystem
Aufgabe 1 (a) Bestimmen Sie die Schnittgerade der beiden Ebenen gegeben durch 3x y 2z 5 = 0 und x y 4z 3 = 0.
Mathematik I für Naturwissenschaften Dr. Christine Zehrt 22.11.18 Übung 10 (für Pharma/Geo/Bio) Uni Basel Besprechung der Lösungen: 26. November 2018 in den Übungsstunden Aufgabe 1 (a) Bestimmen Sie die
Lineare Gleichungssysteme und Matrizen
Kapitel 11 Lineare Gleichungssysteme und Matrizen Ein lineares Gleichungssystem (lgs) mit m linearen Gleichungen in den n Unbekannten x 1, x 2,..., x n hat die Gestalt: Mit a 11 x 1 + a 12 x 2 + a 13 x
Mathematik IT 2 (Lineare Algebra)
Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof Dr L Cromme Mathematik IT (Lineare Algebra für die Studiengänge Informatik, IMT und ebusiness im Sommersemester 3 Lineare Gleichungssysteme
Lineare Gleichungssysteme
KAPITEL 2 Lineare Gleichungssysteme. Beispiele Wir betrachten zunächst vier Gleichungssysteme und bestimmen ihre Lösungsmenge. Dabei geht es uns noch nicht darum, ein Lösungsverfahren für lineare Gleichungssysteme
3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit
3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53
Lineare Algebra und Numerische Mathematik für D-BAUG
R Käppeli L Herrmann W Wu Herbstsemester 26 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 2 Aufgabe 2 Welche der folgenden Aussagen sind korrekt? (i) Jedes
2.2 Lineare Gleichungssysteme
Lineare Algebra I WS 2015/16 c Rudolf Scharlau 55 22 Lineare Gleichungssysteme Das Lösen von Gleichungen (ganz unterschiedlichen Typs und unterschiedlichen Schwierigkeitsgrades) gehört zu den Grundproblemen
10 Lineare Gleichungssysteme
ChrNelius : Lineare Algebra I (WS 2004/05) 1 10 Lineare Gleichungssysteme (101) Bezeichnungen: Ein System a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 ( ) a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern
Ausgewählte Lösungen zu den Übungsblättern 4-5
Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Ausgewählte en zu den Übungsblättern -5 Aufgabe, Lineare Unabhängigkeit
Kapitel 9: Lineare Gleichungssysteme
Kapitel 9: Lineare Gleichungssysteme Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) Kapitel 9: Lineare Gleichungssysteme 1 / 15 Gliederung 1 Grundbegriffe
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html
Kapitel V. Affine Geometrie
Kapitel V Affine Geometrie 1 Affine Räume Betrachte ein lineares Gleichungssystem Γ : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 + + a mn x n = b
Lineare Gleichungssysteme
Poelchau-Oberschule Berlin A. Mentzendorff September 2007 Lineare Gleichungssysteme Inhaltsverzeichnis 1 Grundlagen 2 2 Das Lösungsverfahren von Gauß 4 3 Kurzschreibweise und Zeilensummenkontrolle 6 4
Übungen zur Linearen Algebra 1 Probeklausur Musterlösung: Aufgabe A
Musterlösung: Aufgabe A Wir betrachten die Matrix A = 1 4 1 1 3 1 4 5 2 M(3 3, Q) und die dazugehörige Abbildung f : Q 3 Q 3 ; v A v. Für j = 1, 2, 3 bezeichne v j Q 3 die j-te Spalte von A. Teilaufgabe
Allgemeine Informationen zur Vorlesung
Allgemeine Informationen zur Vorlesung Lineare Algebra Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 11. April 2016 Stefan Ruzika Informationen 11. April 2016 1 / 9 Wenden
Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik
Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik Lineare Algebra Analytische Geometrie I* Übungsaufgaben, Blatt Musterlösungen Aufgabe. Es seien A, B, C Teilmengen einer Menge X. Zeige: i A B C =
Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte.
Lineare Gleichungssysteme. Einleitung Lineare Gleichungssysteme sind in der Theorie und in den Anwendungen ein wichtiges Thema. Theoretisch werden sie in der Linearen Algebra untersucht. Die Numerische
Übungen zum Ferienkurs Lineare Algebra WS 14/15
Übungen zum Ferienkurs Lineare Algebra WS 14/15 Matrizen und Vektoren, LGS, Gruppen, Vektorräume 1.1 Multiplikation von Matrizen Gegeben seien die Matrizen A := 1 1 2 0 5 1 8 7 Berechnen Sie alle möglichen
HM II Tutorium 5. Lucas Kunz. 22. Mai 2018
HM II Tutorium 5 Lucas Kunz 22. Mai 2018 Inhaltsverzeichnis 1 Theorie 2 1.1 Wiederholung Lineare Gleichungsysteme................... 2 1.2 Wiederholung: Kern einer Abbildung..................... 3 1.3
a ij i - te Gleichung (Zeile), i = 1,2,3,..., m
I) MATRIZEN Der Start: Lineare Gleichungen y ax+ a2x2 + a3x3 y2 a2x+ a22x2 + a23x3... Koeffizienten a ij i - te Gleichung (Zeile), i,2,3,..., m j - te Variable (Spalte), j,2,3,..., n Definition m x n Matrix
Lineare Gleichungssysteme
Kapitel 6 Lineare Gleichungssysteme 6. Gaußalgorithmus Aufgabe 6. : Untersuchen Sie die folgenden linearen Gleichungssysteme mit dem Gaußalgorithmus auf Lösbarkeit und bestimmen Sie jeweils die Lösungsmenge.
9 Lineare Gleichungssysteme
9 Lineare Gleichungssysteme Eine der häufigsten mathematischen Aufgaben ist die Lösung linearer Gleichungssysteme In diesem Abschnitt beschäftigen wir uns zunächst mit Lösbarkeitsbedingungen und mit der
6. Vorlesung. Rechnen mit Matrizen.
6. Vorlesung. Rechnen mit Matrizen. In dieser Vorlesung betrachten wir lineare Gleichungs System. Wir betrachten lineare Gleichungs Systeme wieder von zwei Gesichtspunkten her: dem angewandten Gesichtspunkt
18. Matrizen 2: Gleichungssysteme, Gauß-Algorithmus
18. Matrizen 2: Gleichungssysteme, Gauß-Algorithmus Conrad Donau 8. Oktober 2010 Conrad Donau 18. Matrizen 2: Gleichungssysteme, Gauß-Algorithmus 8. Oktober 2010 1 / 7 18.1 Wiederholung: Ebenen in R 3
Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok
Kurs über Lineare Gleichungssysteme PD Dr. Karin Halupczok Mathematisches Institut Albert-Ludwigs-Universität Freiburg http://home.mathematik.unifreiburg.de/halupczok/diverses.html [email protected]
5 Eigenwerte und die Jordansche Normalform
Mathematik für Ingenieure II, SS 9 Freitag 6 $Id: jordantex,v 7 9/6/ :8:5 hk Exp $ 5 Eigenwerte und die Jordansche Normalform 5 Die Jordansche Normalform Nachdem wir bisher das Vorgehen zur Berechnung
Übungsblatt 5 : Lineare Algebra
Mathematik I Übungsblatt 5 WS 7/8 Prof.Dr.W. Konen Dr. A. Schmitter Bereiten Sie die Aufgaben parallel zur Vorlesung so vor dass Sie in der Lage sind Ihre Lösungen vorzutragen. Übungsblatt 5 : Lineare
Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw.
Kapitel 5 Lineare Algebra 51 Lineare Gleichungssysteme und Matrizen Man begegnet Systemen von linearen Gleichungen in sehr vielen verschiedenen Zusammenhängen, etwa bei Mischungsverhältnissen von Substanzen
Das Lösen linearer Gleichungssysteme
Das Lösen linearer Gleichungssysteme Lineare Gleichungen Die Gleichung a 1 x 1 + a 2 x 2 +... + a n x n = b ist eine lineare Gleichung in den n Variablen x 1, x 2,..., x n. Die Zahlen a 1, a 2,..., a n
5 Lineare Gleichungssysteme und Determinanten
5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von
Zeigen Sie, dass der einzige Gruppenhomomorphismus von (G, ) nach (Z 5, +) die Abbildung Φ : G Z 5
Aufgabe I (4 Punkte) Es sei G : {e, g, g, g } eine 4-elementige Gruppe mit neutralem Element e Die Verknüpfung auf G werde mit bezeichnet Außerdem seien in G folgende Gleichungen erfüllt: g g g und g g
Lineare Algebra 1. Vorbereitungsaufgaben zur Ersten Teilklausur. Studiengang: B.Sc. Mathematik, B.Ed. Mathematik, B.Sc. Physik
Prof. Dr. R. Tumulka, Dr. S. Eichmann Mathematisches Institut, Universität Tübingen Sommersemester 2017 2.6.2017 Lineare Algebra 1 Vorbereitungsaufgaben zur Ersten Teilklausur Studiengang: B.Sc. Mathematik,
Lineare Gleichungssysteme
Christian Serpé Universität Münster 14. September 2011 Christian Serpé (Universität Münster) 14. September 2011 1 / 56 Gliederung 1 Motivation Beispiele Allgemeines Vorgehen 2 Der Vektorraum R n 3 Lineare
4 Der Gauß Algorithmus
4 Der Gauß Algorithmus Rechenverfahren zur Lösung homogener linearer Gleichungssysteme Wir betrachten ein GLS (1) a 11 x 1 + a 1 x + + a 1n x n = a 1 x 1 + a x + + a n x n = a m1 x 1 + a m x + + a mn x
Übungsblatt 5 : Lineare Algebra
Mathematik I Übungsblatt 5 WS 6/7 Prof.Dr.W. Konen Dr. A. Schmitter Bereiten Sie die Aufgaben parallel zur Vorlesung so vor dass Sie in der Lage sind Ihre Lösungen vorzutragen. Übungsblatt 5 : Lineare
Mathematik für Naturwissenschaftler II SS 2010
Mathematik für Naturwissenschaftler II SS 2010 Lektion 12 8. Juni 2010 Kapitel 10. Lineare Gleichungssysteme (Fortsetzung) Umformung auf obere Dreiecksgestalt Determinantenberechnung mit dem Gauß-Verfahren
Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }
Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird
Übungsklausur Lineare Algebra
Übungsklausur Lineare Algebra Sommersemester 2010 Johannes Gutenberg-Universität Mainz Diese Übungsklausur ist sehr lang (gut zum Üben). In der richtigen Klausur finden Sie eine Multiple Choice aufgabe
Lineare Algebra I Lösungsvorschlag
Aufgabe Lineare Algebra I Lösungsvorschlag Wir bezeichnen mit a, a 2, a 3 Q 4 die Spalten der Matrix A. Es ist 7 a + 2a 2 = 7 4 = 7a 3, und wir sehen im l A = a, a 2, a 3 = a, a 2. Da die Vektoren a und
2.4 Matrizen und Lineare Abbildungen
Lineare Algebra I WS 2015/16 c Rudolf Scharlau 73 2.4 Matrizen und Lineare Abbildungen Zum Schluss von Abschnitt 2.2 hatten wir Matrizen eingeführt, und zwar im Zusammenhang mit der abgekürzten Schreibweise
Übungsblatt 5 : Lineare Algebra
Aufgabe 5.1 Übungsblatt 5 : Lineare Algebra Gegeben sind die folgenden Vektoren: Bestimmen Sie die Komponenten von Aufgabe 5.2 Gegeben seien die Vektoren Berechnen Sie (a) (b) (c) Aufgabe 5.3, d.h. der
MafI 1 Repetitorium Übungen
MafI 1 Repetitorium Übungen M. Sc. Dawid Kopetzki KW 23 (03.06.2015) M. Sc. Dawid Kopetzki MafI 1 Repetitorium Übungen 1 / 10 Intro Themenübersicht Themen der heutigen Übung (Algebra): Wiederholung: Teilraum
Schulmathematik: Lineare Algebra & Analytische Geometrie. Kapitel 3: Lineare Analytische Geometrie. MAC.05043UB/MAC.05041PH, VU im SS 2017
Schulmathematik: Lineare Algebra & Analytische Geometrie Kapitel 3: Lineare Analytische Geometrie MAC.05043UB/MAC.0504PH, VU im SS 207 http://imsc.uni-graz.at/pfeiffer/207s/linalg.html Christoph GRUBER,
Lineare Algebra 1. Roger Burkhardt
Lineare Algebra 1 Roger Burkhardt [email protected] Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 3 und lineare Gleichungssysteme und
