Jupiter und seine Monde

Größe: px
Ab Seite anzeigen:

Download "Jupiter und seine Monde"

Transkript

1 5 Dhbwgungn 1

2 Jupit und sin Mond 1610: Glili ntdckt di i gößtn Jupitond (Gnd, Kllisto, Io und Euop) Dis bduts Entdckung ist stllt dls inn wichtign Hinwis uf di Gültigkit ds Kopniknischn Wltbilds d

3 Bognß Dfinition d Einhit Rdin ( 1 d) l 1d obwohl di Göß Rdin kin Einhit ht (Läng/Läng) wid ds Bognß in d Rgl it nggbn Ein Vschibung ntggn d Uhzigsinn ist positi, in i Uhzigsinn ngti O P l ist di Läng ds Kisbognsgnts l P l 000 Uchnung π wnn l π π d π d 1d 57.3 π 1d d 10 c Ds sind 0.3 Bognskungn (1 Gd 3600 Bognskundn). Zu Vglich: Aug cic 60 Bognskundn Zitt: Ds Shögn on Sdln ist bsonds gut usgbildt: Si knnn us 000 Höh in Mus uf d Bodn. l d d π d 3

4 Glichföig Bwgung uf in Kisbhn 1 Btg on ändt sich nicht. Dggn zigt d Gschwindigkitskto nch in Zit in in nd Richtung. D Dfinition nch ist dis in Bschlunigung! Üblichs Vfhn zu Eittlung d ontnn Bschlunigung 1 0 Δ 0 Wi zichtn uf di Bildung ds Lis (Δ t ggn Null). Sttt dssn btchtt n di Vkton d Gschwindigkit dikt. 4

5 Winklgschwindigkit ω Δ Winklgschwindigkit Einhit d/ s Zusnhng zwischn lin Gschwindigkit und Winklgschwindigkit d gilt l Δl Δ Δl Δ Δ l Δ Δ l, Lin Gschwindigkit ist popotionl zu Rdius Bi konstnt Winklgschwindigkit ω ist di Gschwindigkit uso höh, j göß d Rdius wid Δ ω ω hoch ging 5

6 Fi Fll Einfchst Nchwis d Edottion (Vohsg Glili, Nwton) Bologn Asinlli Epint zu Einfluss d Edottion uf dn fin Fll on Köpn (1790) Gionni Bttist Guglilini ( ) Gisnd Johnn Fidich Bnznbg ( ) Widholung d Vsuch in 180 Egbnis d Fllpint Aus in Höh on 76 : Fllköp schlägt 7.6 stzt in Richtung Ostn uf. 6

7 Zntipdlbschlunigung Δ Δl 1 Dick sind ähnlich! Annh ( 0) Δ, Δl uch klin ist klin o 1 nhzu plll zu d.h. tngntil zu Kis Δ zigt in Richtung ds Kisittlpunkts! 1 Δ Δ 1 c D Vkto d Bschlunigung zigt in Richtung ds Kisittlpunkts 7

8 Zntipdlbschlunigung cnt sking ccltion Aus d Dfinition on o Δ Δl 1 Δ l Δ Δl klin Winkl Δl Δ Δ Δl Δl Annh D Btg ds Gschwindigkitsktos ändt sich nicht, d glichföig Bwgung ² c ω Dis At d Bschlunigung nnnn wi Zntipdlbschlunigung od dil Bschlunigung ω Ein Köp, d sich uf in Kisbhn it Rdius bwgt fäht in Bschlunigung on d Gößnodnung ²/ in Richtung ds Kiszntus 8

9 Konsqunzn Zntipdlbschlunigung hängt o Qudt d Gschwindigkit b c ² Kunfht Ein Ku it d doppltn Gschwindigkit zu fhn, fodt in il höh Zntipdlbschlunigung 9

10 5 Dhbwgungn 10 Vol sung Mittwoch f ällt us

11 11 Richtung d diln Bschlunigung dt d dt d sin ² sin ² dt d dt d cos - sin p p 0 / konst., ( ) ( ) cos sin p p p cos p sin ( ) ( ) ² sin cos ² + + Φ tn cos ² sin ² tn Koponntn d Gschwindigkit Koponntn d Bschlunigung Btg d Bschlunigung Richtung d Bschlunigung Bschlunigungkto zigt in Richtung ds Kisuspungs

12 Fqunz und Piod Δ Δl 1 D Bschlunigungskto zigt in Richtung ds Zntus d Gschwindigkitskto dggn in in Richtung tngntil zu Kis und zw zu jd Zitpunkt und n jd Position uf d Kis. o Bschlunigung und Gschwindigkit zign nicht notwndigwis in dislb Richtung! c Bispil Bll n Schnu Gwicht 1 kg Rdius 0.5 Udhungn po Minut ( 0.5 ) π 0.5 s ² 6.8 s 6.8 s s² T c 1 f Zusnhng zwischn Fqunz f und Piod T Fü in konstnt Gschwindigkit gilt c π T T ( π ) 1 π T Zntipdlbschlunigung ls Funktion d Ulufzit Sbol d Zntipdlbschlunigung c u si on d gdlinign Bschlunigung zu untschidn 1

13 Zntipdlbschlunigung ds Monds Bwgung ds Monds u di Ed Ulufzit 7.3 Tg k c c c 4π T 4π EM Mond ( s) 3 s² 8 Bchnung d Zntipdlbschlunigung us d Ulufzit g Mond Vogiff uf di Nwtonsch Mchnik G M Ed Mond Ds knn kin Zufll sin g g Mond Mond s² N² kg² kg 8 ( ) 13

14 Zntipdlbschlunigung ds Elktons Bwgung ds Elktons u dn Atokn Ulufzit s Bohsch Rdius (53 p) c c c 4π T 4π EM Elkton ( s) s² 11 Bchnung d Zntipdlbschlunigung us d Ulufzit Ds knn uch kin Zufll sin Elkton 4π Elkton 1 Elkton Vogiff uf di Elktodnik 1 ² 4π ε 0 1 F/ Boh -31 s² kg -19 ( C) -11 ( ) 14

15 Zntipdlbschlunigung Äquto hogufn duch di Edottion 1 Tg s c π ( s) s² D Ed 6370 k 15

16 Zntipdlbschlunigung Äquto hogufn duch di Edottion 1 Tg s c π s s² D Ed 6370 k c g U soil wigt in Pson wnig Äquto i Vglich zu in Pson Nod- od SüdPol. 16

17 Zntipdlbschlunigung Äquto hogufn duch di Edottion 100 Spint Rkod, Plätz Wltkod 9.74 s Asf Powll(JAM) Riti (Kt) 9. Sptb 007 Wltkod wdn dshlb oft in nidign Bitngdn ufgstllt Zu Bispil Bob Bon Witspung 8,90 Olpisch Spil Miko Cit 1968 Zusätzlich günstig Bdingungn: Ttnbnd, dünn Luft, Rücknwind 17

18 Zusnfssung Dfinition Rdin (Eind 1 d) Ein Köp, d sich uf in Kisbhn it konstnt Bhngschwindigkit bwgt, fäht in Bschlunigung o Btg ²/. Di Richtung d Bschlunigungsktos zigt dbi stts in in Richtung ds Kisittlpunkts. Mn nnnt dis At d Bschlunigung Zntipdlbschlunigung. Di Zit, di in Tilchn fü inn koplttn Uluf bnötigt hißt Piod und btägt Tπ/. 18

9. Bewegungen geladener Teilchen im homogenen Magnetfeld

9. Bewegungen geladener Teilchen im homogenen Magnetfeld 9. wgungn gladn ilchn i hoognn Magntfld Elkton F = (allgin: = Q ) F F F F ist Zntiptalkaft, das Elkton (allgin: ilchn) bwgt sich i auf in Kisbahn! ( blibt i glich) Magntfld wgn sich Ladungn snkcht zu Magntfld,

Mehr

Aufgabe 1. Aufgabe 2. Übungsblatt 2. Woche. Ein zweiter Punkt erfährt die Beschleunigung. Zum Zeitpunkt 0 hat. Gesucht ist:

Aufgabe 1. Aufgabe 2. Übungsblatt 2. Woche. Ein zweiter Punkt erfährt die Beschleunigung. Zum Zeitpunkt 0 hat. Gesucht ist: Aufgab 1 Ein unkt 1 fäht in Bschlunigung ω. Zum Zitpunkt hat di Gschwindigkit 2 und bfindt sich am Ot. Ein zwit unkt fäht di Bschlunigung. Zum Zitpunkt hat di Gschwindigkit und bfindt sich am Ot. Gsucht

Mehr

Fakultät 08 Fahrzeugsysteme und Produktion. Dipl. Phys. Ait Tahar. 1. Einführung

Fakultät 08 Fahrzeugsysteme und Produktion. Dipl. Phys. Ait Tahar. 1. Einführung Fkultät 08 Fhugsstm und Poduktion Dipl. Phs. Ait Th 1. Einfühung 1 Fkultät 08 Fhugsstm und Poduktion Dipl. Phs. Ait Th 1.1 Phsiklisch Gößn 1.1.1 Dfinition 1.1. Skl und vktoill Gößn 1.1.3 SI Einhitssstm

Mehr

Die Addition von Vektoren gilt das Kommutativgesetz und das Distributivgesetz: a 0 a und 0 0

Die Addition von Vektoren gilt das Kommutativgesetz und das Distributivgesetz: a 0 a und 0 0 Vktohnung Vkton, sind Gößn, u dn vollständig Chktisiung sowohl in Mßhl, d Btg, ls uh in Rihtung im Rum fodlih sind. Bispil: Kft, Gshwindigkit, Bshlunigung, Winklgshwindigkit, Winklshlunigung sowi lktish

Mehr

5 Bewegte Koordinatensysteme

5 Bewegte Koordinatensysteme 5 Bewegte Koodintenssteme 1 Zusmmenfssung Eine phsiklische Göße, bei de nu die Gößenodnung (Betg) wichtig ist wid duch einen Skl beschieben (Tempetu). Sie sind gekennzeichnet duch eine Zhl und eine Einheit,

Mehr

Ausgewählte Beispiele zu BIST

Ausgewählte Beispiele zu BIST usgwält ispil zu IST Vkszin Ds nnstnd Vkszin dutt, dss in Stß i 100 m wgt Entfnung um 12 m nstigt. Pt uptt: Ein Stigung von 100% wüd dutn, dss di Stß snkt wi in Flswnd nstigt! Wl zwi d folgndn gündungn

Mehr

( ) 2. Musterlösung Seite 1. Musterlösung Seite 2. 2 Wellenformen 9. 1 Elektrodynamik, Strahlungsfeld 11. a) 0 0. rot H

( ) 2. Musterlösung Seite 1. Musterlösung Seite 2. 2 Wellenformen 9. 1 Elektrodynamik, Strahlungsfeld 11. a) 0 0. rot H Mustlösung it Mustlösung it lktdnamik, tahlungsld A = jωµ ε Φ = Φ = a) H = t A µ IF jk jk H = + cs 3 π H H φ = IF jk k jk = + + sin 3 4π t H µ =, k =ω µε, Z = j ωε ε IF jk k jk ϕ = Z sin 4π = = d) Pnting

Mehr

Aufgabe 1. Magnetische Kraft (2+4)

Aufgabe 1. Magnetische Kraft (2+4) Übungn zu Physik II Elktoynaik SS 5 Lösungn zu Übungsblatt 65 Bspchung a Mi 965 ufgab Magntisch Kaft a Mssung s agntischn Fls Ein chtckig Litschlif hängt vtikal i Zntu ins goßn Magntn, so ass as agntisch

Mehr

Wenn mindestens eine Bedingung verletzt ist, dann liegt Biegezustand vor (s. u.)

Wenn mindestens eine Bedingung verletzt ist, dann liegt Biegezustand vor (s. u.) Tgwksbcnung l. Doz. D.-Ing. bil. G. Gogi. (Rottions-)Scln Scl gkümmts Fläcntgwk mit blibig Blstung Rottionsscl Midinkuv (Ezugnd) ist von Dwinkl um fst Acs unbängig Vousstzungn: sinngmäß di glicn wi bi

Mehr

Abschlussprüfung Berufliche Oberschule 2013 Physik 12 Technik - Aufgabe III - Lösung

Abschlussprüfung Berufliche Oberschule 2013 Physik 12 Technik - Aufgabe III - Lösung athphys-onlin Abschlusspüfung uflich Obschul 03 Physik Tchnik - Aufgab III - Lösung Tilaufgab.0 In d untn sthndn Skizz ist in Fadnstahloh dagstllt, it d d tag d spzifischn Ladung von Ektonn bstit wdn kann.

Mehr

Aus Kapitel 9. Technische Mechanik. Aufgaben. = αi 1 + βk 2 + γk 3. = r sin ϕ + l 1 sin 2 ψ. = tan ϕ. und damit

Aus Kapitel 9. Technische Mechanik. Aufgaben. = αi 1 + βk 2 + γk 3. = r sin ϕ + l 1 sin 2 ψ. = tan ϕ. und damit Aufgabn Kap 9 55 Aus Kapit 9 Aufgabn 9 Ggbn ist d abgbidt Schubkubmchanismus x P = cos ϕ + tan ϕ cos ϕ y 9 Bi Kadanwinkn wid in Köp zunächst um di -Achs, dann um di nu -Achs und zum Schuss um di -Achs

Mehr

e aus der Parameterform (*). Die Ebene E, in b c > a 1 = 0, so dass: a a

e aus der Parameterform (*). Die Ebene E, in b c > a 1 = 0, so dass: a a Mihl Buhlm Mthmtik > Vktohug > Kis Pmtfom Eilitug Im didimsiol ll Vktoum kö Gd ud E uh Kis mit Hilf vo Pmtfom dgstllt wd. Gg si im Folgd i Kis k mit Kismittlpukt Mm m m 3 ud Kisdius, >. Sid ud zwi Eihitsvkto,

Mehr

5.4. Aufgaben zur Kurvenuntersuchung zusammengesetzter Funktionen

5.4. Aufgaben zur Kurvenuntersuchung zusammengesetzter Funktionen 5.. Aufgbn zu Kuvnunsuchung zusmmngsz Funkionn Aufgb : Kuvndiskussion von Eponnilfunkionn Unsuch ds Schubild d Funkion f uf Symmi, Achsnschnipunk, Vhln fü ±, Em- und Wndpunk. Skizzi ds Schubild im wsnlichn

Mehr

Satellitengeodäsie. Bahnenergie. Torsten Mayer-Gürr

Satellitengeodäsie. Bahnenergie. Torsten Mayer-Gürr 508.535 Sllingodäsi Bhnngi Tosn My-Gü Tosn My-Gü Zusmmnfssung Kpl Tosn My-Gü 7.03.05 Bwgungsglichung ds Kplpoblms Bwgungsglichung ds Kplpoblms: Diffnilglichung. Odnung 3 Bsimm bis uf 6 Ingionskonsnn =>

Mehr

Exponentialfunktionen Musteraufgaben

Exponentialfunktionen Musteraufgaben Eponntialfunktionn Mustaufgabn Typ u() f = k± AUFGABEN bis 5 mit alln Lösungn D Aiusduck ist nu von d Mathmatik-CD aus möglich Kuvndiskussionn auf Gundkusnivau mit Intgationsaufgabn Dati N. 45 Apil Fidich

Mehr

Grundlagen der Energietechnik. Netze und Betriebsmittel. Netzformen

Grundlagen der Energietechnik. Netze und Betriebsmittel. Netzformen Pof. D. n. Post tz und Btibsitt Gundn d Enitchnik tz und Btibsitt tzfon EEG. Sp. 7 unächst so noch in duf hinwisn wdn, dß Vsounsntz Dhstontz (Ausnh HGÜ) sind. Di Ausnhn sind in. Aus nitchnisch Sicht intssit

Mehr

2.2 Multiplizieren von Brüchen

2.2 Multiplizieren von Brüchen ! 2.2 Multiplizin von Büchn Ein Rzpt fü Hftig fodt 1 Lit Milch. Man nimmt di halb Rzptmng. Wi vil Lit Milch 1 l 1000 sind fodlich? 1 / 2 w 1 / 2 w 3 / 4 l 1 / 2 l 1 / 4 l 750 500 250 w 1 / 2 l Ein Hftigzpt

Mehr

Master E/BMT/DFHI Höhere Mathematik I

Master E/BMT/DFHI Höhere Mathematik I Mas E/BM/DFHI Höh Mahmaik I Lösungn zu Übung Vkoanalysis Pof D B Gabowski gabowski@hw-saalandd Zu Aufgab Bchnn Si fü di Bahnku cos M ins ilchns zu Zi a Gschwindigki b Bschlunigung c Glichung d angnn an

Mehr

Auswertung P2-60 Transistor- und Operationsverstärker

Auswertung P2-60 Transistor- und Operationsverstärker Auswrtung P2-60 Trnsistor- und Oprtionsrstärkr Michl Prim & Tobis Volknndt 26. Juni 2006 Aufgb 1.1 Einstufigr Trnsistorrstärkr Wir butn di Schltung gmäß Bild 1 uf, wobi wir dn 4,7µ F Kondnstor, sttt ds

Mehr

Elektromagnetische Felder eines bewegten geladenen Drahtes

Elektromagnetische Felder eines bewegten geladenen Drahtes lktomagntisch Wlln Kapitl 16 lktomagntisch Wlln Figu 1. Das adial lktisch Fld, das on inm unndlich langn, gadn, positi gladnn Daht zugt wid. 16.1 Fld ins bwgtn gladnn Dahts Wi habn in Kap. 15.5.1 das lktisch

Mehr

Volumen von Rotationskörpern, Bogenlänge und Mantelfläche

Volumen von Rotationskörpern, Bogenlänge und Mantelfläche Modul Integle 3 Volumen von Rottionsköpen, Bogenlänge und Mntelfläche In diesem Modul geht es um einige spezielle Anwendungen de Integlechnung, und Volumin, Längen und Flächen zu estimmen. Fngen wi mit

Mehr

f(x + iy) = u(x, y) + iv(x, y), f(z)dz := Re [f(γ(t)) γ(t)] dt + i

f(x + iy) = u(x, y) + iv(x, y), f(z)dz := Re [f(γ(t)) γ(t)] dt + i Funktionentheorie Komplexe Kurvenintegrle Themen des Tutoriums m 24.6.25: Jede komplexe Funktion f : D C knn mn drstellen ls f(x + iy) = u(x, y) + iv(x, y), wobei u und v reellwertige Funktionen uf R 2

Mehr

Blatt 6, Aufgabe 1: Beugung am Einzelspalt

Blatt 6, Aufgabe 1: Beugung am Einzelspalt Aua a, Blatt 6, Aua : Buun am Einzlspalt a Bdinunn ü Faunho-Buun: Sowohl di Lichtqull als auch d Boachtunsschim müssn lativ zum Spalt unndlich ntnt sin. s Di Intnsitätsvtilun wid duch di c-funtion schin:

Mehr

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i,

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i, Präsenz-Aufgben 1. 1. Schreiben Sie z in der Form z α + βi mit α,β R. Aus der Vorlesung ist beknnt: i i i 1, i 1 1 i i i i i 1 i. () i 15 i 1 i (i ) 7 i ( 1) 7 i i i 15 + ( 1)i, (b) i 15 1 i 15 () 1 i

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber SS 7 ostn Schib 7 D Eukliisch Vktoaum wi uch i i gbilt. Dis sthn fü i i Achsn s Raums un biln in, a si um Einn aufinan sthn un um Ann i Läng ist. Wnn in Ga uch wi Punkt finit wi so hält man im Bich Vkton

Mehr

1. Bestimmen Sie Radius und Mittelpunkt des Krümmungskreises an die Parabel y = x 2 in ihrem Scheitelpunkt.

1. Bestimmen Sie Radius und Mittelpunkt des Krümmungskreises an die Parabel y = x 2 in ihrem Scheitelpunkt. Mathmatik I Übungsaufgabn Lösungsvoschläg von T. My Eta-Mathmatik-Übung: 5--. Bstimmn Si Radius und Mittlpunkt ds Kümmungskiss an di Paabl y in ihm Schitlpunkt. Allgmin Glichung d Schitlpunktfom in Paabl

Mehr

Uneigentliche Riemann-Integrale

Uneigentliche Riemann-Integrale Uneigentliche iemnn-integrle Zweck dieses Abschnitts ist es, die Vorussetzungen zu lockern, die wir n die Funktion f : [, b] bei der Einführung des iemnn-integrls gestellt hben. Diese Vorussetzungen wren:

Mehr

Staatlich geprüfter Techniker

Staatlich geprüfter Techniker uszug aus dm Lnmatial Fotbildungslhgang Staatlich gpüft Tchnik uszug aus dm Lnmatial sstchnik (uszüg) D-Tchnikum ssn /.daa-tchnikum.d, Infolin: 0201 83 16 510 Gundlagn zu ustung u. Intptation von sstn

Mehr

C t S f. E r F g. H u C s. U p H q. L b A j. S x T n. j c g s. n v R H. r f T a. e a I o. y g W i o o L e c a B i o n e n. v I u m b M x H c x z

C t S f. E r F g. H u C s. U p H q. L b A j. S x T n. j c g s. n v R H. r f T a. e a I o. y g W i o o L e c a B i o n e n. v I u m b M x H c x z y g W i o o L c a B i o n n a I o E a f i E s l t f n v R H v I u m b M x H c x z S x T n T w Z E h V n u i C t S f p F o E R K o y a l H u C s t A V U K g K U p H q h D x G f U s q f y g L b A j w E u

Mehr

Gegeben sei eine elektromagnetische Welle mit Ausbreitung in z-richtung und einer Amplitude in x-richtung:

Gegeben sei eine elektromagnetische Welle mit Ausbreitung in z-richtung und einer Amplitude in x-richtung: 38. Polaisation 38.1. Einfühung Ggbn si in lktomagntisch Wll mit Ausbitung in z-richtung und in Amplitud in x-richtung: E = E 0 i 0 i... Einhitsvkto in x-richtung Di vollständig mathmatisch Bschibung unt

Mehr

Was ist der richtige Servoantrieb für die Anwendung?

Was ist der richtige Servoantrieb für die Anwendung? Ws is dr richig Srvnrib ür di Anwndung? Ws is dr richig Srvnrib ür di Anwndung? Pr. Dr.-Ing. Crsn Frägr 8.0.013 1 Ws is dr richig Srvnrib ür di Anwndung? Srvnrib in Prdukinsschinn, Aubu vn Srvnribn Lisungsuslgung,

Mehr

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 2 Wintersemester 2011/2012

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 2 Wintersemester 2011/2012 Prof. Dr. O. Junge, A. Bittrcher Zentrum Mthemtik - M3 Technische Universität München MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT Wintersemester / Tutorübungsufgben (3..-4..) Aufgbe T Seien R und α positiv. Die

Mehr

Unabhängige Beratung zu Ihrer Heizungsanlage. Die Heizungsvisite ist ein geförderter Kurz-Check für Bremer Haushalte

Unabhängige Beratung zu Ihrer Heizungsanlage. Die Heizungsvisite ist ein geförderter Kurz-Check für Bremer Haushalte Unbhängig Btung zu Ih Hizungsnlg Di Hizungsvisit ist in gfödt Kuz-Chck fü Bm Hushlt 80 Poznt d Hizungn in Dutschlnd bitn Optimiungspotnzil. Lssn Si dh Ih Hizung jtzt bi in Hizungsvisit übpüfn od sich zu

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (4)

Einführung in die Physik I. Dynamik des Massenpunkts (4) Einfühung in die Physik I Dynmik des Mssenpunkts (4) O. von de Lühe und U. Lndgf Gvittion Die Gvittionswechselwikung ist eine de fundmentlen Käfte in de Physik m 1 m Sie wikt zwischen zwei Mssen m 1 und

Mehr

Anpassung einer Funktion an Messwerte

Anpassung einer Funktion an Messwerte Anpssung inr Funktion n Msswrt Di Mthod dr klinstn Fhlrqudrt Crl Fridrich Guß (777-855 Brnd Hitznn Msswrt inr Größ wurdn bstit! 8 6 4 8 6 4 3 4 5 6 7 Zit [in] Msswrt t t t 3 3 t 4 4 t n n Funktion zur

Mehr

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2)

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2) . Stmmfunktion Definition Stmmfunktion: Gegeen sei eine Funktion f(). Gesucht ist eine Funktion F (), so dss d = f(). Die Funktion F() heisst Stmmfunktion. Schreiweise: F () = f()d. Mn spricht uch vom

Mehr

1.Klausur LK Physik Sporenberg Q1 Schuljahr 2012/

1.Klausur LK Physik Sporenberg Q1 Schuljahr 2012/ .Klausu LK Phsik Spnbg Q Schuljah /3...ufgab: a) Litn Si i Bahnglichung fü n waagchtn Wuf i Plattnknnsat h. Lgn Si n Eintitt s Elktns in i Mitt s Plattnknnsats. (Vsuchsskizz!) b) Estzn Si i nfangsgschwinigkit

Mehr

Wie in der letzten Vorlesung besprochen, ergibt die Differenz zwischen den Standardbildungsenthalpien

Wie in der letzten Vorlesung besprochen, ergibt die Differenz zwischen den Standardbildungsenthalpien Vorlsung 0 Spnnungsnrgi dr Cyclolkn Wi in dr ltztn Vorlsung bsprochn, rgibt di Diffrnz zwischn dn Stndrdbildungsnthlpin dr Cyclolkn C n n und dm n-fchn Bitrg für di C - Gruppn [n (-0.) kj mol - ] di Ringspnnung.

Mehr

Übung zur Vorlesung PC II Quantenchemische Modellsysteme, Atom und Molekülspektroskopie B.Sc. Blatt 7

Übung zur Vorlesung PC II Quantenchemische Modellsysteme, Atom und Molekülspektroskopie B.Sc. Blatt 7 Pof.. Nobt pp Wintsst 9/ 7. Novb 9 nil Khlöß Übung zu Volsung PC II Quntnchisch Mollsyst, Ato un Molkülspktoskopi B.Sc. Bltt 7. i uphys Si ist in Si i Spktu s ton Wssstoffs. Si bginnt bi 6 n un nt bi,

Mehr

Das Röthenbacher Saure-Zipfel-Flatrate-Turnier

Das Röthenbacher Saure-Zipfel-Flatrate-Turnier Ds Röthnbch Su-Zipfl-Fltt-Tuni Lngwil im Jnu? Nicht mit uns! D s R ö t h Bi uns ght s dn Sun Zipfln n dn Kgn! Di Bognschützn d SSG Röthnbch ldn hzlich in zum 4. Röthnbch Su-Zipfl-Fltt-Tuni m Smstg, dn

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 8

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 8 Mthemtik für Wirtschftswissenschftler im WS /3 Lösunen zu den Übunsufben Bltt 8 Aufbe 3 Berechnen Sie die folenden Interle durch prtielle Intertion. ) c) e d. (Hinweis: Interieren Sie zweiml prtiell).

Mehr

$Id: kurven.tex,v /12/03 19:13:57 hk Exp hk $ K ds = F (γ(t)) γ Summation des Vektorfeldes F in Bewegungsrichtung der Kurve γ

$Id: kurven.tex,v /12/03 19:13:57 hk Exp hk $ K ds = F (γ(t)) γ Summation des Vektorfeldes F in Bewegungsrichtung der Kurve γ Mthemtik für Ingenieure III, WS 9/1 Mittwoch.1 $Id: kurven.tex,v 1. 9/1/3 19:13:57 hk Exp hk $ 3 Kurven 3.3 Kurvenintegrle zweiter Art Wir htten ds vektorielle Kurvenintegrl ls K ds F ((t Summtion des

Mehr

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9 D-MAVT/D-MATL Anlysis I HS 26 Dr. Andres Steiger Lösung - Serie 9. MC-Aufgben (Online-Abgbe). Es sei f die Funktion f() = e + 7. Welche der folgenden Funktionen sind Stmmfunktionen von f? () g() = 2 2

Mehr

1 2 1 kin. mit der Pendellänge l. Die maximale kinetische Energie ist

1 2 1 kin. mit der Pendellänge l. Die maximale kinetische Energie ist Physik I TU Doun WS7/8 Guun Hill Shauka Khan Kapil xpin zu ngihalungssaz: Hungspnl: Aufgun halung ngi häng i in n Ukhpunkn s Pnls ich Höh nich von anläng ab. Physikalischs Pnl: Di ass s Pnlsabs si hi vnachlässig,

Mehr

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( )

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( ) 4. Der Huptstz der Infinitesimlrechnung Huptstz (. orm) I. Newton (64-77), G.. Leiniz (646-76) ür jede im Intervll [,] stetige unktion f sei ( ) = f ( t) dt sogennnte Integrlfunktion dnn gilt: Die Integrlfunktion

Mehr

Projektive Geometrie 2

Projektive Geometrie 2 Thnih Univität Münhn Fkultät ü Mthmtik Kluu Pojktiv Gomti 2 Moul MA3204 9. Fu 2015, 10 11 Uh Po. D. D. Jügn Riht-Gt Stn Knih Mutlöung Aug 1. Stz von Pl x y z Stz von Pl:,,,,, lign u inm Kglhnitt x, y,

Mehr

Musterlösungen zur 5. Übung

Musterlösungen zur 5. Übung . Aufg, ritt von Edurd Tsingr Mustrlösungn zur 5. Üung Wlchs dr folgndn Sstm ist zitinvrint odr nicht? Erinnrung ws in zitinvrints Sstm ist:. ] -. -n -n -n- 3. % n] n n 4. n % --> ds Sstm ist zitinvrint

Mehr

Optimale Absicherung. für gesetzlich Versicherte. Betriebliche Krankenversicherung. f ü r M it. Je tz t ex

Optimale Absicherung. für gesetzlich Versicherte. Betriebliche Krankenversicherung. f ü r M it. Je tz t ex Optimal Absichung fü gstzlich Vsicht Btiblich Kanknvsichung o t il g ba V U n s c h l a a b it!! f ü M it s ic h n k lu s iv J tz t x io K o n d it n n Btiblich Kanknvsichung Kanknzusatzvsichungn fü gstzlich

Mehr

12. Multipolstrahlung

12. Multipolstrahlung Langwlln - Nähung Zu witn Bhandlung von Gl. (.3 machn wi di Langwlln - Nähung. Multipolstahlung Wi btachtn jtzt in Ladungs- und Stomvtilung im Gbit x < d. Wi habn in Kap..5 bzw. 5.4 fstgstllt, dass di

Mehr

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen.

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen. Trnsformtionsstz von Sebstin üller Integrtion über Normlgebiete Allgemein knn mn im R n ein Normlgebiet wie folgt definieren: G : { R n 1 b, ϕ 1 ( 1 ) ψ 1 ( 1 ), ϕ ( 1, ) 3 ψ ( 1, ),... ϕ n 1 ( 1,...,

Mehr

Digitaltechnik. TI-Tutorium. 17. Januar 2012. Tutorium von K. Renner für die Vorlesung Digitaltechnik und Entwurfsverfahren am KIT

Digitaltechnik. TI-Tutorium. 17. Januar 2012. Tutorium von K. Renner für die Vorlesung Digitaltechnik und Entwurfsverfahren am KIT Digitltchnik I-utorium 17. Jnur 2012 utorium von K. Rnnr für di Vorlsung Digitltchnik und Entwurfsvrfhrn m KI hmn Orgnistorischs Anmrkungn zum Übungsbltt 9 Korrktur inr Foli von ltztr Woch Schltwrk Divrs

Mehr

Notizen zur Vorlesung Analysis 3

Notizen zur Vorlesung Analysis 3 Notizen zur Vorlesung Anlysis 3 Henrik chumcher TUHH, 26. Jnur 207 2 Integrtion über Oberflächen 2. Oberflächenintegrl einer Funktion Definition 2.37 (Metrische Fundmentlform) ei R 2 ein reguläres Gebiet

Mehr

Kapitel 9 Integralrechnung für Funktionen einer Veränderlichen 9.6 Volumen von Rotationskörpern

Kapitel 9 Integralrechnung für Funktionen einer Veränderlichen 9.6 Volumen von Rotationskörpern Wolte/Dhn: Anlsis Individuell c Spinge 75 Kpitel 9 Integlechnung fü Funktionen eine Veändelichen 9.6 Volumen von Rottionsköpen Wi wenden uns jetzt de Bestimmung des Volumens eines sogennnten Rottionsköpes

Mehr

2. Dynamische Lichtstreuung (DLS)

2. Dynamische Lichtstreuung (DLS) . Dynamisch Lichsuun DLS Phoonnkolaionsspkoskopi Di molkula Bwun in d Pob füh zu zilichn Flukuaionn in d nnsiä ds Sulichs. J klin das Suvolumn, dso auspä di Flukuaionn Di Foml fü dn diffnilln Suuschni

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Musterlösungen zum 6. Übungsblatt

Musterlösungen zum 6. Übungsblatt Musterlösungen zum 6 Üungsltt Anlysis ei Dr Rolf Busm WS 6/7 Aufge 6 (Tois Hessenuer) ) 3 ep()d, setze u = ep(), v = 3 dnn gilt: 3 ep()d = ep() 3 = e (3 ep() ) 3 ep() d = e 3e + 6 ep() = 6e 3e + 6e 6e

Mehr

9.6 Parameterabhängige Integrale

9.6 Parameterabhängige Integrale Kpitel 9: Integrtion 9.6 Prmeterbhängige Integrle Beispiel: Die Gmm-Funktion Γ(x) := f(x, t)dt = e t t x 1 dt. Zunächst: Prmeterbhängige eigentliche Integrle. Sei f : I [, b] R, I R, so dss f für festes

Mehr

Analysis II (lehramtsbezogen): Rechnen mit Integralen

Analysis II (lehramtsbezogen): Rechnen mit Integralen Anlysis II (lehrmtsbezogen): Rechnen mit Integrlen A. Ppke. November Substitution Wir wiederholen kurz die grundlegende Methode der Substitution und wenden sie im Beispiel n. Stz. (Integrtion durch Substitution).

Mehr

Vorschlag des Pädagogischen Beirats für IKT Angelegenheiten im SSR für Wien zur Umsetzung der "Digitalen Kompetenzen" am Ende der Grundstufe II

Vorschlag des Pädagogischen Beirats für IKT Angelegenheiten im SSR für Wien zur Umsetzung der Digitalen Kompetenzen am Ende der Grundstufe II Vorschlag ds Pädagogischn Birats für IKT Anglgnhitn im SSR für Win zur Umstzung dr "Digitaln Komptnzn" am End dr Grundstuf II Dis Komptnzlist ntstand untr Vrwndung dr "Digitaln Komptnzn für di 8. Schulstuf"

Mehr

Ein herzliches Grüß Gott in Memmelsdorf! www.drei-kronen.de

Ein herzliches Grüß Gott in Memmelsdorf! www.drei-kronen.de Ein hzlichs Güß Gott in Mmmlsdof! www.di-konn.d Güß Gott! In Fankn stht das bst Witshaus imm ggnüb d Kich. So wi auch uns Bauigasthof: Di Di Konn bfindn sich sit mh als 555 Jahn ggnüb dm Mmmlsdof Gottshaus.

Mehr

Lösen einer Gleichung 3. Grades

Lösen einer Gleichung 3. Grades Lösen eine Gleichung Gdes We sich uf dieses Abenteue einlssen will, bucht einige Kenntnisse übe komlee Zhlen Es eicht be, wenn mn folgende Schvehlte kennt und kochezettig (mn nehme) nwenden knn: Es gibt

Mehr

Stammfunktionen, Hauptsätze, unbestimmtes Integral

Stammfunktionen, Hauptsätze, unbestimmtes Integral Stmmfunktionen, Huptsätze, unbestimmtes Integrl Sei I ein Intervll, f beschränkt uf I und R-integrierbr für jedes [, b] I, und I. Dnn heißt die Funktion F mit D(F ) = I und F () = f(t)dt Integrl von f

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Simone Wrzel Mx Lein Husufgben 1. Flächeninhlte Teil 1 TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik Mthemtik 4 für Physik Anlysis 3 Wintersemester 9/1 Lösungsbltt 1.1.9 Wie gross ist der Flächeninhlt

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Pof. Anes Hez, D. Stefn Häusle emil: heusle@biologie.uni-muenchen.e Deptment Biologie II Telefon: 89-8-748 Goßhenest. Fx: 89-8-7483 85 Plnegg-Mtinsie

Mehr

Übungsaufgaben "Vektorrechnung"

Übungsaufgaben Vektorrechnung stllt vo Olf Gmkow Sit / Übugsufgb "Vktochug" ) Vo i Gd g ist d ukt (; ; ) ud d Richtugsvkto bkt. Bch Si d Abstd ds ukts (; ; ) vo dis Gd. Lösug, dt d g ) Di i d,-b vlufd Gd g schidt di bid Kooditchs jwils

Mehr

Mathematik 1 für Bauwesen 14. Übungsblatt

Mathematik 1 für Bauwesen 14. Übungsblatt Mthemtik für Buwesen Übungsbltt Fchbereich Mthemtik Wintersemester 0/0 Dr Ivn Izmestiev 8/900 Dr Vince Bárány, M Sc Juli Plehnert Gruppenübung Aufgbe G () Berechnen Sie ds Volumen des Rottionskörpers,

Mehr

Lösungsvorschlag zu den Präsenzaufgaben der 13. Übung

Lösungsvorschlag zu den Präsenzaufgaben der 13. Übung FAKULTÄT FÜR MATHEMATIK Prof. Dr. Ptrizio Neff Christin Thiel 07.07.04 Lösungsvorschlg zu den Präsenzufgben der 3. Übung Präsenzufgbe : Wir hben die Determinnte bisher ls Kriterium zur Invertierbrkeit

Mehr

Rollender Zylinder in Zylinder

Rollender Zylinder in Zylinder Übungen zu Theoretische Physik I - echnik im Sommersemester 013 Bltt 10 vom 1.07.13 Abgbe: 08.07. Aufgbe 43 Rollender Zylinder in Zylinder Ein homogener Zylinder (Gesmtmsse, Rdius, Trägheitsmoment bzgl.

Mehr

BÜROZENTRUM FALKENBRUNNEN. Chemnitzer-Str. 48, 48a, 48b, 50 / Würzburger Str. 35 01187 Dresden

BÜROZENTRUM FALKENBRUNNEN. Chemnitzer-Str. 48, 48a, 48b, 50 / Würzburger Str. 35 01187 Dresden BÜROZENTRUM FALKENBRUNNEN Chmnitz-. 48, 48a, 48b, 50 / Wüzbug. 35 01187 Dsdn OBJEKT OBJEKT INDIVIDUELLES UND GROSSZÜGIGES BÜRO- UND EINZELHANDELS-ENSEMBLE Das Büozntum Falknbunnn bitt modn und funk- nn

Mehr

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte)

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte) Aufgben zur Anlytischen Mechnik SS 013 Bltt 10 - en Aufgbe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte Bestimmen Sie Eigenwerte λ 1 und λ sowie die Eigenvektoren v 1 und v der folgenden Mtrix:

Mehr

Triangulierung eines planaren Graphen

Triangulierung eines planaren Graphen Trianglirng ins planarn Graphn Thomas Pajor 1. Fbrar 2007 Das Trianglirn ins Graphn ist in Grndopration, di on iln Algorithmn, di af planarn Graphn oprirn, bnötigt wird. Dr hir orgstllt Algorithms trianglirt

Mehr

3.3.1 Biot-Savart-Gesetz. 3.3 Quellen des magnetischen Feldes Biot-Savart-Gesetz Biot-Savart-Gesetz Biot-Savart-Gesetz

3.3.1 Biot-Savart-Gesetz. 3.3 Quellen des magnetischen Feldes Biot-Savart-Gesetz Biot-Savart-Gesetz Biot-Savart-Gesetz 3.3 Quellen des gnetischen Feldes Biot-Svt-Gesetz Mgnetfeld eines diffeentiell kleinen Stofdens Mgnetfeld eine Spule Mgnetfeld eines geden Leites Apeesches Gesetz dl db 3 R. Giwidz R. Giwidz Mgnetfeld

Mehr

Integration. Kapitel 8: Integration Informationen zur Vorlesung: wengenroth/ J. Wengenroth () 17.

Integration. Kapitel 8: Integration Informationen zur Vorlesung:  wengenroth/ J. Wengenroth () 17. Integrtion Kpitel 8: Integrtion Informtionen zur Vorlesung: http://www.mthemtik.uni-trier.de/ wengenroth/ J. Wengenroth () 17. Juli 2009 1 / 22 8.1 Motivtion Kpitel 8: Integrtion 8.1 Motivtion Ist die

Mehr

Schleswig-Holstein 2009 Leistungskurs Mathematik Thema: Analysis. ( x) . (14 P) g mit ( ) Berechnen Sie die Schnittpunkte der Graphen von f a und

Schleswig-Holstein 2009 Leistungskurs Mathematik Thema: Analysis. ( x) . (14 P) g mit ( ) Berechnen Sie die Schnittpunkte der Graphen von f a und Ministrium für Bildung und Frun Schlsig-Holstin 9 Listungskurs Mthmtik Thm: Anlysis Aufg Ggn ist di Funktionnschr f mit f ( ) = (, IR ) ) Untrsuchn Si di Funktionnschr f uf Nullstlln, ds Vrhltn im Unndlichn,

Mehr

INSTITUT FÜR PLANETARE GEODÄSIE

INSTITUT FÜR PLANETARE GEODÄSIE INSTITUT FÜR PLANETARE GEODÄSIE Übung Thortisch Godäsi Brchnung dr Elmnt ins Straintnsors und dr Strainllips Aufgab Nr.: Godäsi 99 Als rsts wird in Hilfskoordinatnsystm fstglgt, in dm man dn Punkt A in

Mehr

Übungen: Extremwertaufgaben

Übungen: Extremwertaufgaben Übungen: Extemwetufgben.0 Eine Stenwte ht meist die Fom eines Zylindes (Rdius, Höhe h) mit eine oben ufgesetzten Hlbkugel (siehe z. B. die im Bild unten gezeigte Fitz-Weiths-Stenwte in Neumkt). Die gesmte

Mehr

1. Stegreifaufgabe aus der Physik Lösungshinweise

1. Stegreifaufgabe aus der Physik Lösungshinweise . Stegreifufgbe us der Physik Lösungshinweise Gruppe A Aufgbe Ds.Newtonsche Gesetz lässt sich zum Beispiel so formulieren: Wirkt uf einen Körper keine Krft (oder ist die Summe ller Kräfte null) so bleibt

Mehr

Experimentalphysik III TU Dortmund WS2015/16 Shaukat TU - Dortmund. de Kapitel 5. Restkern. Projektil (hier Deuteron) Ejektil (hier Tritium)

Experimentalphysik III TU Dortmund WS2015/16 Shaukat TU - Dortmund. de Kapitel 5. Restkern. Projektil (hier Deuteron) Ejektil (hier Tritium) Expinlphsik III TU Doun WS56 Shuk Khn @ TU - Doun. Kpil 5 5. Supozss - lsisch Suuung - inlsisch Suung Kn wi ngg - ki Suung, Knkionn Kn wi än Schiwis in Bispiln: S, S S, S S, ' S S, ' p P S, ' H P S, S,

Mehr

Vernetztes Laden eine Herausforderung

Vernetztes Laden eine Herausforderung Vntzts Ldn in Husfodun NTT DATA Mobilitätskonfnz 2. Oktob 2014, Win Jün Hiß, Lit Pilotiun & Klinsin EnBW Options Ws ist ds Zilbild in d E-Mobilität? Vntzts Ldn in Husfodun 2 E-Mobilität ist Til ds vntztn

Mehr

Integrationsmethoden

Integrationsmethoden Universität Perborn Dezember 8 Institut für Mthemtik C. Kiser Integrtionsmethoen Prtielle Integrtion (Prouktintegrtion) Unbestimmte Integrtion er Prouktregel (u v) () = u ()v() + u()v () liefert (u v)()

Mehr

Numerische Integration durch Extrapolation

Numerische Integration durch Extrapolation Numerische Integrtion durch Extrpoltion Pblo Thiel Romberg-Verfhren Idee: Im Gegenstz zur numerischen Integrtion mit Hilfe der einfchen bzw. zusmmengesetzten Trpez-, Simpson-, 3/8- oder zum Beispiel der

Mehr

Musterlösung der 1. Klausur zur Vorlesung

Musterlösung der 1. Klausur zur Vorlesung Prof. Dr. M. Röger Dipl.-Mth. C. Zwilling Fkultät für Mthemtik TU Dortmund Musterlösung der. Klusur zur Vorlesung Anlysis I (24.02.206) Wintersemester 205/6 Aufgbe. Sei R mit sin() 0. Der Beweis erfolgt

Mehr

Zeitverhalten eines Hochpass-Messgliedes

Zeitverhalten eines Hochpass-Messgliedes n zur Znrlübung dr Vorlsung Grundlgn dr Msshnik von Prof. Dollingr, niv. dr Bundswhr Münhn, L2 - OHNE GEWÄH - Zivrhln ins Hohpss-Mssglids Ggbn is di Shlung us Abb. mi ) Ermiln Si di Diffrnilglihung für

Mehr

Übungen zu RED / PRED 1 Synchrones Digitaldesign

Übungen zu RED / PRED 1 Synchrones Digitaldesign Üungn zu RED: Snchons Digitlsign Rgnsug, 16.06.2015 Üungn zu RED / PRED 1 Snchons Digitlsign 1.1 Snchons Digitlsign: Enl-Gnto () glol_nl CLOCK_50 ngn (nl-flgs gnto) nl _50MHz 10 MHz 1 MHz 100 KHz 10 KHz

Mehr

Lösungsmethoden für Differentialgleichungen 2. Ordnung

Lösungsmethoden für Differentialgleichungen 2. Ordnung Lösungsmthodn fü Diffntialglichungn. Odnung Bhandlung in Rih von Tn d Dgl.. Odnung, fü di infach Lösungsmöglichkitn istin bzw. di sich auf Dgl. st Odnung zuückfühn lassn.. T =f(,) ( kommt nicht vo) wid

Mehr

Experimentalphysik III TU Dortmund WS2013/14 Shaukat TU - Dortmund. de Kapitel 2

Experimentalphysik III TU Dortmund WS2013/14 Shaukat TU - Dortmund. de Kapitel 2 Expitlpsik III TU Dotu WS Sukt K @ TU - Dotu. Kpitl f) Elktiscs Quupolot o tok Ei gtiscs Dipolot k sic ls uc i Kissto usct ostll. Ei lktiscs Dipolot wü i ustisc Lugstilug fo, ws i Guzust tok ict uftitt

Mehr

5.1 Charakterisierung relativ kompakter und kompakter

5.1 Charakterisierung relativ kompakter und kompakter Kpitel 5 Kompkte Mengen 5.1 Chrkterisierung reltiv kompkter und kompkter Mengen X sei im weiteren ein Bnchrum. Definition 5.1. Eine Menge K X heißt kompkt, wenn us jeder offenen Überdeckung von K eine

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Probleme, SS 013 Donnerstg.5 $Id: trig.tex,v 1.3 013/05/03 10:50:31 hk Exp hk $ Trigonometrische Formeln.1 Die Additionstheoreme In der letzten Sitzung htten wir geometrische Herleitungen der

Mehr

Crash-Course Physik Vorlesung 1

Crash-Course Physik Vorlesung 1 Crsh-Cours Physik Vorlsung 1 Trigonomtri: Lösungn 21. Sptmbr 2016 1. Notir für di folgndn vir rhtwinklign Drik di An- und Ggnktht ds jwils ingtrgnn Winkls: b α d f β Anktht von α ist b, Ggnktht ist. Anktht

Mehr

Versuch 5: Untersuchungen zur Beschleunigung an der Atwoodschen Fallmaschine

Versuch 5: Untersuchungen zur Beschleunigung an der Atwoodschen Fallmaschine Veuch 5: Unteuchunen zu Bechleuniun n de Atwoodchen Fllchine Theoetiche Gundlen: I. Ekläun de Modell Mepunkt : Auedehnte Köpe weden duch einen Punkt detellt, in de n ich die ete Me de Köpe veeinit denkt.

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Krlsruher Institut für Technologie KIT SS 3 Institut für Anlysis 943 Prof Dr Tobis Lmm Dr Ptrick Breuning Höhere Mthemtik II für die Fchrichtung Physik 3 Übungsbltt Aufgbe Sei K ein Kreis im R vom Rdius

Mehr

Schwingungen g und Wellen III Erzwungene und überlagerte Schwingungen

Schwingungen g und Wellen III Erzwungene und überlagerte Schwingungen Physik A VL (9.. Schwingungn g und Wlln III Erzwungn und übrlagrt Schwingungn Nachtrag VL (Foli Erzwungn Schwingungn g Übrlagrt Schwingungn Nachtrag VL (Foli Gdämpft Schwingungn schwach Dämpfung Bt Btrachtung

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 2. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 2. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schogr Hiko Hoffann SS Höh Mathatik II für di Fachrichtung Inforatik Lösungsvorschläg zu. Übungsblatt Aufgab 5 Bwisn Si Til von Satz

Mehr

1 Mathematische Grundlagen 1.1 Feldbegriff

1 Mathematische Grundlagen 1.1 Feldbegriff Mathmatisch Gundlagn. Mathmatisch Gundlagn. Fldbgiff Fld: Skalafld: Vktofld: Raumpunkt, dnn phsikalisch Gößn ugodnt sind. Jdm Punkt im Raum ist in skala Göß ugodnt (Tmpatu, Dicht, Potntial). Dastllung

Mehr

16. Integration über Flächen. Der Gaußsche Integralsatz

16. Integration über Flächen. Der Gaußsche Integralsatz 41 16. Integrtion über Flächen. Der Gußsche Integrlstz Der Gußsche Stz in der Ebene. 16.1. Orientierter Rnd von Normlbereichen. Es sei [, b] ein Intervll, und f 1 und f 2 seien stückweise stetig di erenzierbre

Mehr

Geodäten. Mathias Michaelis. 28. Januar 2004

Geodäten. Mathias Michaelis. 28. Januar 2004 Geodäten Mthis Michelis 28. Jnur 2004 1 Vektorfelder Definition 1.1 Sei S 3 eine reguläre Fläche. Ein Vektorfeld uf S ist eine Abbildung v : S 3 so, dss v(p) T n S für lle p S. Ein Vektorfeld ordnet lso

Mehr

Prof. Dr. Siegfried Echterhoff.. 1 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG

Prof. Dr. Siegfried Echterhoff.. 1 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG Vorlesung SS 29 Anlysis 2 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG Teil : Fortsetzung des Studiums von Funktionen in einer reellen Vriblen (Integrtion und Tylorreihen). Huptstz der Integrl und Differentilrechnung

Mehr

Versiera der Agnesi INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL. Text Nr Stand

Versiera der Agnesi INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.  FRIEDRICH W. BUCKEL. Text Nr Stand Vesie de Agnesi Tet N. 5455 Stnd 5.. FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de 5455 Vesie de Agnesi Vowot Die Vesie de Agnesi ist eine lgebische Kuve. Gdes, die mn uf eine

Mehr