Übungen: Extremwertaufgaben
|
|
|
- Jürgen Langenberg
- vor 9 Jahren
- Abrufe
Transkript
1 Übungen: Extemwetufgben.0 Eine Stenwte ht meist die Fom eines Zylindes (Rdius, Höhe h) mit eine oben ufgesetzten Hlbkugel (siehe z. B. die im Bild unten gezeigte Fitz-Weiths-Stenwte in Neumkt). Die gesmte Obefläche eine neu gebuten Stenwte soll S = 50 π m betgen (wum uch imme...) Einheiten können im Folgenden ignoiet weden. h. Stellen Sie ds Volumen V des zylindefömigen Unteteils ls Funktion des Rdius d. (Egebnis: V() = π (75 ). Emitteln Sie eine im Schzusmmenhng sinnvolle Definitionsmenge D V diese Funktion V.. Beechnen Sie, fü welche Abmessungen und h ds Volumen m gößten wid, und geben Sie dieses gößte Volumen n..0 Ein lte Tum besteht us einem Keiszylinde und eine ufgesetzten Kuppel; sein Queschnitt ist in de Skizze unten dgestellt (dicke Stiche). De Queschnitt de Kuppel ist dbei eine Pbel, die duch die Gleichung p: y = x + mit D p = [ ;] beschieben wid. De Tum ist bufällig und soll innen duch eine ingfömige Mue (Rdius ) und eine keisfömige Zwischendecke (unten gestichelt dgestellt) bgestützt weden; de Punkt P liegt dbei uf de Pbel. y 4 G p P x
2 . Es bleibt ein zylindische Innenum übig. Emitteln Sie dessen Volumen V in Abhängigkeit von. Geben Sie eine im Schzusmmenhng sinnvolle Definitionsmenge de Funktion V n. Einheiten können dbei ignoiet weden. (4 BE) 4 (mögliches Egebnis: V() = ( ) π 9 ). Emitteln Sie so, dss de Innenum ein möglichst goßes Volumen ht. Geben Sie dieses Volumen uch n. Intepetieen Sie Ih Egebnis. (7 BE).0 Aus Dht de Gesmtlänge 90 cm soll ein Kntenmodell eines Pisms gebstelt weden, dessen Gundseite ein egelmäßiges Sechseck mit Seitenlänge ist (Flächeninhlt: G = ); siehe Skizze: h. Zeigen Sie, dss sich fü ds Volumen V dieses Pisms in Abhängigkeit de Länge egibt: V() = (5 ), und geben Sie eine im Zusmmenhng sinnvolle Definitionsmenge D V n. (Einheiten können dbei ignoiet weden). Emitteln Sie echneisch, fü welche Abmessungen und h ds Volumen m gößten ist. 4.0 Bei eine qudtischen Pymide (siehe Skizze unten) sollen die vie Seitenknten jeweils die Länge s = 0 cm hben (Einheiten können im Folgenden ignoiet weden). s h s d 4. Begünden Sie, dss fü ds Volumen V diese Pymide in Abhängigkeit von ihe Höhe h gilt: V(h) = (00h h ), und geben Sie eine im Schzusmmenhng sinnvolle Definitionsmenge D V diese Funktion V n. (Tipp: zwischen de Seitenlänge de qudtischen Gundfläche und de Länge d de Digonlen besteht de Zusmmenhng d = ) Runden Sie Ihe Egebnisse im Folgenden uf zwei Dezimlen. 4. Beechnen Sie, fü welche Abmessungen und h ds Volumen m gößten wid, und geben Sie dieses gößte Volumen n.
3 Lösungen. gesucht: V Zylinde = π h (bechte: es ist nu nch dem Volumen des unteen Teils gefgt!) (V soll in Abhängigkeit von dgestellt weden h muss noch beechnet weden!) gegeben: S = 50π = M Zylinde + O Kugel = πh + π = π ( + h) (bechte: hie vewendet mn nicht die Fomel fü die Obefläche des Zylindes, sonden nu die fü die Mntelfläche, weil j Gund- und Deckfläche des Zylindes nicht zu Obefläche de Stenwte gehöen!) umstellen nch h: 75 = + h 75 h = oben einsetzen: V() = π 75 = π (75 ) (Klmmen setzen! nch dem Auflösen de Klmme: Büche küzen!). > 0 und h > 0 75 > 0 < 75 ( 8,66 ) (beim Wuzelziehen bucht mn hie nu die positive Lösung, weil j > 0 ist!) lso: D V = ]0; 75 [ (die 0 muss hie usgeschlossen weden, weil sonst h nicht definiet wäe; die Rechnung oben usgeschlossen weden, muss be nicht) 75 sollte wegen de. V () = π (75 ); V () = 6π Stellen mit wgechte Tngente: V () = 0 75 = 0 = 5 (m) (einfch) (beim Wuzelziehen bucht mn hie nu die positive Lösung, weil j > 0 ist!) V (5) = 0π < 0 Mximlstelle V(5) 785 (m ) Rndwete: V(0) = 0; V( 75 ) = 0 fü = 5 (m) ist ds Volumen m gößten (eigentlich müsste mn hie jeweils den Limes hinscheiben, sttt einfch nu einzusetzen, weil 0 und 75 j eigentlich beide nicht zu Definitionsmenge gehöen...) h beechnen: h = = 0 (m)
4 . gesucht: V Zylinde = π h mit h = y P = p() = π 9 einsetzen: V = π ( ) = ( ) > 0 und P G p D V = ]0;] (ob mn die 0 und die ein- ode usschließt, ist Geschmckssche). V () = ( 4 π. 78) ; V () = (. 78) Stellen mit wgechte Tngente: ( 4. 78) π π = = 0 4 ( 9,5) = 0 = 0 D V ode 9,5 = 0 = 9,5 4,4 D V (Es gibt lso in de Definitionsmenge g keine eltiven Extem! Flls mn die 0 zu Definitionsmenge dzu nimmt: V (0) = 6π > 0 Minimum!) Rndwete: V(0) = 0; V() = 90π 8 (m ) Ds gößtmögliche Volumen des Innenums ehält mn lso, wenn de Rdius des Innenums gleich dem des Tums ist die Stützmue muss lso diekt n de Innenmue hochgezogen weden.
5 . gesucht: V Pism = G h = h (V soll in Abhängigkeit von dgestellt weden h muss noch beechnet weden!) gegeben: s = 90 = + 6h (Gundfläche: 6 Seitenknten mit Länge ; Deckfläche: 6 Seitenknten mit Länge ; dzu 6 Knten de Länge h dzwischen) umstellen nch h: 90 = 6h h = 5 oben einsetzen: V() = (5 ) = (5 ) (Klmmen setzen!) > 0 und h > 0 5 > 0 < 7,5 lso: D V = ]0;7,5[ (die 0 und die 7,5 sollten wegen de Rechnung oben usgeschlossen weden, müssen be nicht). V () = (0 6 ) = 9 (5 ); V () = 9 (5 ) Stellen mit wgechte Tngente: V () = 0 (5 ) = 0 = 0 D V ; = 5 (cm) V (5) = 9 ( 5) < 0 Mximlstelle V(5) 5 (cm ) Rndwete: V(0) = 0; V(7,5) = 0 fü = 5 (cm) ist ds Volumen m gößten (eigentlich müsste mn hie jeweils den Limes hinscheiben, sttt einfch nu einzusetzen, weil 0 und 7,5 j eigentlich beide nicht zu Definitionsmenge gehöen...) h beechnen: h = 5 5 = 5 (cm)
6 4. gesucht: V Pymide = G h = h (V soll in Abhängigkeit von h dgestellt weden bzw. muss noch beechnet weden!) d gegeben: s = 0 + h = 0 (Stz des Pythgos ngewendet uf ds in de Skizze gezeigte echtwinklige Deiecke: eine Kthete ist hlb so lng wie die Digonle d, die zweite Kthete ist die Höhe h, die Hypotenuse ist s) + h = 00 (gegebene Zusmmenhng zwischen Digonle und Seitenlänge eingesetzt) + h = h = 00 (Klmme ufgelöst und Buch geküzt) umstellen nch : = 00 h = 00 h (Hinweis: Mn muss die Wuzel hie nicht ziehen, weil mn j sowieso nu bucht und nicht. Wenn mn die Wuzel be doch zieht, dnn ist ds Egebnis = 00 h, und ds ist nicht dsselbe wie = 00 h 4,4h!!! Hie steht eine Diffeenz, d knn mn nicht us den beiden Temen einzeln die Wuzel ziehen!!!) oben einsetzen: V(h) = (00 h ) h = (00h h ) (Klmmen setzen!) h > 0 und h < 0 (die Kthete muss ntülich küze ls die Hypotenuse sein) lso: D V = ]0;0[ (die 0 und die 0 sollten wegen de Rechnung oben usgeschlossen weden, müssen be nicht) 4. V (h) = (00 h ) ; V (h) = ( 6h) = 4h Stellen mit wgechte Tngente: V (h) = 0 00 h 00 = 0 h = 5,77 (einfch) (beim Wuzelziehen bucht mn hie nu die positive Lösung, weil j h > 0 ist!) V (5,77) = 4 5,77 < 0 Mximlstelle V(5,77) 56,60 Rndwete: V(0) = 0; V(0) = 0 fü h 5,77 (cm) ist ds Volumen m gößten, nämlich etw 56,60 (cm ) (eigentlich müsste mn hie jeweils den Limes hinscheiben, sttt einfch nu einzusetzen, weil 0 und 0 j eigentlich beide nicht zu Definitionsmenge gehöen...) beechnen: = 00 =,55 (cm)
Aufgaben zu Kreisen und Kreisteilen
www.mthe-ufgben.com ufgben zu Keisen und Keisteilen Keisfläche: ( Rdius des Keises) Keisumfng: U Keisingfläche: ( ußen innen ) Keisusschnitt / Keissekto: Öffnungswinkel, b Keisbogen α bzw. b 60 α α b 60
Abitupüfung Mthemtik Bden-Wüttembeg (ohne CAS) Pflichtteil Aufgben Aufgbe : ( VP) Bilden Sie die este Ableitung de Funktion f mit f() ( ) e weit wie möglich. und veeinfchen Sie so Aufgbe : ( VP) Beechnen
5 Rigorose Behandlung des Kontaktproblems Hertzscher Kontakt
5 Rigoose Behndlung des Kontktpoblems Hetsche Kontkt In diesem Kpitel weden Methoden u exkten Lösung von Kontktpoblemen im Rhmen de "Hlbumnäheung" eläutet. Wi behndeln dbei usfühlich ds klssische Kontktpoblem
Die Lagrangepunkte im System Erde-Mond
Die Lgngepunkte i Syste Ede-ond tthis Bochdt Tnnenbusch-ynsiu Bonn [email protected] Einleitung: Welche Käfte spüt eine Rusonde, die sich ntiebslos in de Nähe von Ede und ond ufhält? Zunächst sind
Exkurs: Portfolio Selection Theory
: Litetu: Reinhd Schmidt und Ev Tebege (1997): Gundzüge de Investitions- und Finnzieungstheoie, 4. Auflge, Wiesbden: Gble Velg BA-Mikoökonomie II Pofesso D. Mnfed Königstein 1 Aktien und Aktienenditen
7. VEKTORRECHNUNG, ANALYTISCHE GEOMETRIE
Vektoechnung Anltische Geometie 7. VEKTORRECHNUNG ANALYTISCHE GEOMETRIE 7.1. Vektoen () Definition Schiet mn einen Punkt P 1 im Koodintensstem in eine ndee Lge P so ist diese Schieung duch Ange des Upunktes
2.8. Aufgaben zum Satz des Pythagoras
Aufgbe 1 Vervollständige die folgende Tbelle:.8. Aufgben zum Stz des Pythgors Kthete 6 1 4 1 13 17 15 Kthete b 8 1 7 8 11 Hypotenuse c 13 9 19 17 Aufgbe Berechne jeweils die Länge der dritten Seite: Aufgbe
Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS
Musterlösung der Präsenzufgben zu Mthemtik I für ET/IT und ITS WS / Bltt 6. Bestimmen Sie zu vorgegebenem Volumen V > die Dose (Zylinder mit der kleinsten Oberfläche und ds Gls (Zylinder ohne Deckel mit
3. Ganzrationale Funktionen
3. Gnzrtionle Funktionen ) Definitionen und Beispiele Definition: Eine gnzrtionle Funktion n-ten Grdes ht ls Definitionsterm ein Polynom n-ten Grdes, d.h. y = f() = n n n-1 n-1 1 0. n 0, i ( i = 1, n)
Einser-Flächen. Online-Ergänzung HEINZ KLAUS STRICK. MNU 66/7 (15.10.2013) Seiten 1 5, ISSN 0025-5866, Verlag Klaus Seeberger, Neuss
Einser-Flächen HEINZ KLAUS STRICK Online-Ergänzung MNU 66/7 (15.10.01) Seiten 1 5, ISSN 005-5866, Verlg Klus Seeberger, Neuss 1 HEINZ KLAUS STRICK Einser-Flächen Die bgebildeten Figuren hben eines gemeinsm:
Entdecke die Welt! Australien USA
Entdecke die Welt! Die Feien sind zu Ende endlich sieht Leon seine Feunde wiede! Jede von ihnen w im Ulub in einem ndeen Lnd. Sie hben lle Postkten geschieben und etws mitgebcht. Die blonde Nicole w in
Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist,
Seitenlängen von Qudrten lssen sich mnchml sehr leicht und mnchml etws schwerer Wurzeln bestimmen. Dnn brucht mn Wurzeln. Treffender müsste mn von Qudrtwurzeln sprechen. Sie stehen in enger Beziehung zu
Brückenkurs Lineare Gleichungssysteme und Vektoren
Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem
1.2 Der goldene Schnitt
Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert
Grundwissen Jahrgangsstufe 9
Grundwissen Jhrgngsstufe 9 GM 9. Qudrtwurzeln und die Menge der reellen Zhlen QUADRATWURZELN Unter der Qudrtwurzel us einer Zhl (kurz: Wurzel us, Schreibweise ) versteht mn diejenige nichtnegtive Zhl,
Vorkurs Mathematik DIFFERENTIATION
Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt
1 Kurvendiskussion /40
009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.
ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG
Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-6 FLÄHENBEREHNUNG MITTELS INTEGRLREHNUNG Geschichtlich entwickelte sich die Integrlrechnug us folgender Frgestellung: Wie knn mn den Flächeninhlt
Abiturprüfung Mathematik 2017 Merkhilfe S. 1/8. Dreieck Flächeninhalt: 1 2. Mindestens zwei Seiten sind gleich lang.
Aitupüfung Mthemtik 07 Mekhilfe S. /8 Eene Figuen Deieck Flächeninhlt: A g h g gleichschenkliges Deieck Mindestens zwei Seiten sind gleich lng. gleichseitiges Deieck Alle dei Seiten sind gleich lng. Flächeninhlt:
Berufsmaturität GIBB. Mathematik. BMS GEW Skript. Autoren: B. Jakob, A. Göldi, M. Saier
Beufsmtuität GIBB Mthemtik BMS GEW Skipt Autoen: B. Jkob, A. Göldi, M. Sie Inhltsvezeichnis Geometie Plnimetie... S. 8 Plnimetie... S. 9 6 Steeometie... S. 7 40 Tigonometie Tigonometie... S. 4 54 Tigonometie...
- 1 - VB Inhaltsverzeichnis
- - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit
Volumen von Rotationskörpern
Volumen von Rottionskörpern Beispiele: [ Es stellt sich die Frge: Wie entstehen solche Rottionskörper bzw wie lssen sich solche Rottionskörper er zeugen? Rotiert eine Fläche z.b. um die x-achse, so entsteht
Aufgaben zur Vertiefung der Geometrie. WS 2005/06 5./6. Dezember 2005 Blatt 3
ufgben zur Vertiefung der Geometrie WS 2005/06 5./6. ezember 2005 ltt 3 1. Umkugel und Innenkugel eines Tetreders Leiten Sie die Formel für ds Volumen, die Oberfläche, den Rdius der umbeschriebenen und
Vorbereitung auf die Mathematik Schularbeit
Vorbereitung uf die Mthemtik Schulrbeit 7. März 0 Alles Gute ll deinen Bemühungen, KL, KV Viel Erfolg! . Schulrbeit: MATHEMATIK KL.: M3b/I. - S. Mi, 7.03.0 ) Zeichne ds Prllelogrmm us den Bestimmungsstücken
Grundwissen Jahrgangsstufe 7
GM 7.1 chsensymmetrie Grundwissen Jhrgngsstufe 7 Definition Zwei unkte liegen symmetrisch bezüglich einer chse, wenn ihre Verbindungsstrecke von der chse senkrecht hlbiert wird. M und liegen symmetrisch
Dreiecke als Bausteine
e ls usteine Jedes Viereck lässt sich in zwei e zerlegen. Wirklich jedes? Konstruktion eines s bei drei beknnten Seiten bmessen einer Strecke mit dem Geodreieck. Zirkelschlg um einen Punkt mit der zweiten
Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999
Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden
Die. Zeltla1.08. bis 08.08.201. Stadtgemeinde St.Valentin www.takatuka.at
Die m n e i e c h e F Zeltl1.08. bis 08.08.201 0 l t n N ge im 5 2015 Stdtgemeinde St.Vlentin www.tktuk.t Liebe Kinde! Liebe Elten! 2 Beeits in wenigen Wochen beginnen die Sommefeien. Die Stdtgemeinde
Mathematik. Name, Vorname:
Kntonsschule Zürich Birch Fchmittelschule Aufnhmeprüfung 2007 Nme, Vornme: Nr.: Zeit: 90 Minuten erlubte Hilfsmittel: Tschenrechner us der Sekundrschule, lso weder progrmmierbr noch grfik- oder lgebrfähig
Lösung Arbeitsblatt Geometrie / Trigonometrie
Fchhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mthemtik und Nturwissenschften Lösung Arbeitsbltt Geometrie / Trigonometrie Dozent: - Brückenkurs Mthemtik 016 Winkelbeziehugen
Mathematik in eigenen Worten Arbeitsblätter und Kopiervorlagen
Mthemtik in eigenen Woten Abeitsblätte und Kopievolgen Abeitsblätte und Kopievolgen stehen unte www.klett.ch/spektumschule kostenlos ls Downlod zu Vefügung. Ihe Vewendung fü den eigenen Unteicht wid vom
ARBEITSBLATT 1-13. Maßeinheiten. 1. Längenmaße. km m dm cm mm. Beispiel: Schreib mehrnamig: 2,032801 km Lösung: 2,032801 km = 2 km 32 m 8 dm 1 mm
ARBEITSBLATT 1-13 13 Mßeinheiten 1. Längenmße 1000 10 10 10 km m dm cm mm Beispiel: Schreib mehrnmig:,03801 km Lösung:,03801 km = km 3 m 8 dm 1 mm Beispiel: Drücke in km us: 4 km 0 m 3 cm Lösung: 4 km
9.2. Bereichsintegrale und Volumina
9.. Beeichsintegale und Volumina Beeichsintegale Rein fomal kann man Integale übe einem (meßbaen) Beeich B bilden, indem man eine möglicheweise auf einem gößeen Beeich definiete Funktion f mit de chaakteistischen
Übungsheft Mittlerer Schulabschluss Mathematik
Ministerium für Bildung und Kultur des Lndes Schleswig-Holstein Zentrle Abschlussrbeit 011 Übungsheft Mittlerer Schulbschluss Mthemtik Korrekturnweisung Impressum Herusgeber Ministerium für Bildung und
Aufgabe 1: a) Die Effektivverzinsung einer Nullkuponanleihe lässt sich anhand der folgenden Gleichung ermitteln: F =
Aufgabe : a Die Effektivvezinsung eine Nullkuponanleihe lässt sich anhand de folgenden Gleichung emitteln: Hie gilt P( c( aktuelle Maktpeis de Anleihe Nennwet de Anleihe 4 und folglich i P( / c( c( i c(
Induktivität und Energie des Magnetfeldes
Induktivität und Enegie de Mgnetfelde 1. D CMS (Compct Muon Solenoid) m CERN it ein ieige Teilchendetekto fü den HC (ge Hdon Collide). D Kentück de CMS it ein upleitende Elektomgnet de änge = 13m und mit
Wärmedurchgang durch Rohrwände
ämeuchgng uch Rohwäne δ - L Rohlänge Bl: Sonäe ämeleung uch ene enschchge zylnsche n Fü e ämeleung gl llgemen: λ x Fü ene ünne konzensche Schch es Rohes von e Dcke gl: &Q λ Fläche: f(): 2 π L (Mnelfläche)
Aufgabenblatt 3. Lösungen. A1. Währungsrisiko-Hedging
Aufgabenblatt 3 Lösungen A. Wähungsisiko-Hedging. Renditen fü BASF und Baye in EUR Kus in t Kus in t- / Kus in t- Beobachtung fällt daduch weg. Kuse fü BASF und Baye in USD z.b. BASF am 8.05.: EUR 570
Satzgruppe des Pythagoras
Humboldt-Universität zu Berlin Institut für Mthemtik Dr. I. Lehmnn: Ausgewählte Kpitel der Didktik der Mthemtik WS 2008/09 Referentinnen: Undine Pierschel & Corneli Schulz 16.12.2008 Stzgruppe des Pythgors
Musterlösung zu Aufgabe 1 (Klassenstufe 9/10)
Musterlösung zu Aufgbe 1 (Klssenstufe 9/10) Aufgbe. Drei Freunde spielen mehrere Runden eines Spiels, bei dem sie je nch Rundenpltzierung in jeder Runde einen festen, gnzzhligen Betrg x, y oder z usgezhlt
Einführung in die Finanzmathematik - Grundlagen der Zins- und Rentenrechnung -
Einfühung in die Finanzmathematik - Gundlagen de ins- und Rentenechnung - Gliedeung eil I: insechnung - Ökonomische Gundlagen Einfache Vezinsung - Jähliche, einfache Vezinsung - Untejähliche, einfache
Übungsblatt 1 zum Propädeutikum
Üungsltt zum Propädeutium. Gegeen seien die Mengen A = {,,,}, B = {,,} und C = {,,,}. Bilden Sie die Mengen A B, A C, (A B) C, (A C) B und geen Sie diese in ufzählender Form n.. Geen Sie lle Teilmengen
Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie -
Für den Mthe GK, Henß - Linere Alger und nlytische Geometrie - Bis uf die Astände ist jetzt lles drin.. Ich h noch ne tolle Seite entdeckt mit vielen Beispielen und vor llem Aufgen zum Üen mit Lösungen..
Lösung: a) 1093 1100 b) 1093 1090
OvTG Guting, Grundwissen Mthemtik 5. Klsse 1. Ntürliche Zhlen Dezimlsystem Mn nennt die Zhlen, die mn zum Zählen verwendet, 10963 = 1 10000+ 0 1000+ 9 100+ 6 10 + 3 1 ntürliche Zhlen. Der Stellenwert der
TECHNISCHE UNIVERSITÄT MÜNCHEN
TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufge 69. Quizz Integrle. Es sei Höhere Mthemtik für Informtiker II (Sommersemester
Grundwissen Abitur Analysis
GYMNASIUM MIT SCHÜLERHEIM PEGNITZ mthem-technolog u sprchl Gmnsium WILHELM-VON-HUMBOLDT-STRASSE 7 9257 PEGNITZ FERNRUF 0924/48333 FAX 0924/2564 Grundwissen Abitur Anlsis Ws sind Potenzfunktion mit ntürlichen
Es soll der Betrag eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordinatenschreibweise gegeben ist. a 3. x 2
R. Brinkmnn http://brinkmnn-du.de Seite 8.. Vektoren im krtesischen Koordintensystem Betrg eines Vektors Es soll der Betrg eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordintenschreibweise
Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 3
Übungen zur Vorlesung Physiklische Chemie I Lösungsvorschlg zu Bltt 3 Prof. Dr. Norbert Hmpp 1. Aufgbe ) Die gegebene Verteilung besteht nur us diskreten Werten! Die durchgezogene Linie würde nur bei einer
Differenzial- und Integralrechnung III
Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in
KOMPONENTENTAUSCH. Elmar Zeller Dipl. Ing (FH), MBA Quality-Engineering
KOMPONENTENTAUSCH Komponententausch Beim Komponententausch weden nacheinande einzelne Komponenten zweie Einheiten vetauscht und ih Einfluss auf das Qualitätsmekmal untesucht. Ziele und Anwendungsbeeiche:
A.25 Stetigkeit und Differenzierbarkeit ( )
A.5 Stetigkeit / Differenzierbrkeit A.5 Stetigkeit und Differenzierbrkeit ( ) Eine Funktion ist wenn die Kurve nicht unterbrochen wird, lso wenn mn sie zeichnen knn, ohne den Stift vom Bltt bzusetzen.
Integralrechnung. www.mathe-total.de. Aufgabe 1
Integrlrechnung Aufgbe Bestimme die Fläche zwischen der Kurve der Funktion f() = und -Achse über dem Intervll I = [; 3] näherungsweise. Bestimme die Obersumme und Teile ds Intervll I in drei gleich große
Formelsammlung Mathematik Fachoberschule Jahrgangsstufe 12 Hochtaunusschule Oberursel. Philipp Maurer in Zusammenarbeit mit StR A.
Fomelsmmlung Mtemtik Fcoescule Jgngsstufe 12 Hoctunusscule Oeusel Pilipp Mue in Zusmmeneit mit StR A. Käme Stnd: 20. Feu 2014 Fomelsmmlung Mtemtik Fcoescule Jgngsstufe 12 Inltsvezeicnis 1 Mtemtisce Gundlgen
Formeln zu Mathematik für die Fachhochschulreife
Fomeln zu Mtemtik fü die Fcocsculeife Beeitet von B. Gimm und B. Sciemnn 3. Auflge VERLAG EUROPA-LEHRMITTEL Nouney, Vollme GmH & Co. KG Düsselege Stße 3 4781 Hn-Guiten Euop-N.: 8519 Autoen: Bend Gimm Bend
1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3
.6 Bruchterme Inhltsverzeichnis Einführung und Repetition 2 2 Multipliktion und Division von Bruchtermen 3 3 Die Addition von zwei Bruchtermen-Methode I 3 4 Doppelbrüche 5 5 Die Addition von zwei Bruchtermen
Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n
Them 13 Integrle, die von einem Prmeter bhängen, Integrle von Funktionen uf Teilmengen von R n Wir erinnern drn, dß eine Funktion h : [, b] R eine Treppenfunktion ist, flls es eine Unterteilung x < x 1
4. Chemische Bindung
4. Chemische Bindung 4... Vlenzindungs-Modell: Oktettegel Die Bildung enegetisch egünstigte Elektonenkonfigutionen (die esondes stil sind) wid ngestet Eine esondes stile Konfigution ist die Edelgskonfigution
Der Goldene Schnitt. III. Der Goldene Schnitt in der Mathematik
Der Goldene Schnitt III. Der Goldene Schnitt in der Mthemtik 1. Herleitung des Goldenen Schnitt Per Definition des Goldenen Schnitt gilt: b = b. (>b>0) Nch der Drstellung (s.o.) gilt, wenn S (der mittlere
nach der FIT-Methode HANDBALL LEKTÜRE Mannhard Bech Malte Gertenbach Mehr Stabilität Mehr Kraft Mehr Leistung
Mnnhrd Bech Mlte Gertenbch Athletiktrining nch der FIT-Methode Mehr Stbilität Speziell für den Hndbllsport entwickelt Für bessere Körperbeherrschung, Leistungssteigerung und Verletzungsprävention Ab der
Seminar Quantum Computation - Finite Quanten-Automaten und Quanten-Turingmaschinen
Seminr Quntum Computtion - Finite Qunten-Automten und Qunten-Turingmschinen Sebstin Scholz [email protected] Dezember 3. Einleitung Aus der klssischen Berechenbrkeitstheorie sind die odelle
Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion
Steeo-Rekonstuktion Geometie de Steeo-Rekonstuktion Steeo-Kalibieung Steeo-Rekonstuktion Steeo-Rekonstuktion Kameakalibieung kann dazu vewendet weden, um aus einem Bild Weltkoodinaten zu ekonstuieen, falls
Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35
Kpitel 0 Integrtion Josef Leydold Mthemtik für VW WS 205/6 0 Integrtion / 35 Flächeninhlt Berechnen Sie die Inhlte der ngegebenen Flächen! f (x) = Fläche: A = f (x) = +x 2 Approximtion durch Treppenfunktion
GRUNDWISSEN MATHEMATIK. Gymnasium Ernestinum Coburg Fachschaft Mathematik
GRUNDWISSEN MTHEMTIK Gymnsium Ernestinum Coburg Fchschft Mthemtik GM 5.1 Zhlen und Mengen Grundwissen Jhrgngsstufe 5 Mengen werden in der Mthemtik mit geschweiften Klmmern geschrieben: Menge der ntürlichen
Kapitel 5: Koordination der Personalführung im Führungssystem
Kpitel 5: Koodintion de Peonlfühung im Fühungytem 5. Beziehungen zwichen Contolling und Peonlfühung Kpitel 5 5. Koodintion de Peonlfühung mit dem Infomtionytem 5.3 Koodintion de Peonlfühung mit Plnung
Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III
Grundwissen m Ende der Jhrgngsstufe 9 Whlpflichtfächergruppe II / III Funktionsbegriff Gerdengleichungen ufstellen und zu gegebenen Gleichungen die Grphen der Gerden zeichnen Ssteme linerer Gleichungen
Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre
Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt
4 Die rationalen Zahlen
4 Die rtionlen Zhlen Der Ring der gnzen Zhlen ht den Mngel, dß nicht jede Gleichung = X, 0 innerhl Z lösr ist. (Z.B. ist 1 = 2 X unlösr in Z). Zu seiner Beseitigung erweitert mn den Zhlereich zum Körper
Vierecke. 1. Parallelogramm Ein Viereck heißt Parallelogramm, wenn die Gegenseiten jeweils parallel sind.
Vieeke. Pllelogmm Ein Vieek eißt Pllelogmm, wenn ie egenseiten jeweils pllel sin. D C Stz: Ein Vieek ist genu nn punktsymmetis (zum Digonlensnittpunkt), wenn es ein Pllelogmm ist. Ein Vieek ist genu nn
Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele
Themen Direkte Proportionlität Eigenschften Besonderheiten - Beispiele Zwei Größen und y heißen direkt proportionl, wenn gilt: Zum k-fchen Wert von gehört der k-fche Wert von y; Der Quotient q = y ht für
Versuch 31: Bestimmung der Licht- und Signalgeschwindigkeit Seite 1
Vesuch 31: Bestimmun de icht- und Sinleschwindikeit Seite 1 Teil 1: ichteschwindikeit Aufben: Messvefhen: Vokenntnisse: ehinhlte: itetu: Bestimmun de ichteschwindikeit im Zeit- und Fequenzbeeich. Diffeenzielle
Analysis mit dem Voyage 1
Anlysis mit dem Voyge 1 1. Kurvendiskussion Gegeben ist die Funktionschr Den Nenner erhält mn mit Hilfe der Funktion getdenom. Zeros liefert die Nullstellen des Nenners und dmit die Werte, die us dem Definitionsbereich
UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009
UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis
Grundwissen Mathematik Klasse 9 Übungsaufgaben
Grundwissen Mthemtik Klsse 9 Übungsufgben Rechnen mit Wurzeln:. Rdiziere so weit wie möglich! 7 8 b c d) e) ( b ) f) b c ( ) g) b b. Berechne! ( 8 8 )( 7 ) 7 9 9. Mche den Nenner rtionl und vereinfche
Eine Lerneinheit. über. regelmäßige Vielecke. und
BLK-Modellversuch SINUS Rheinlnd-Pflz Netzwerkschule Cusnus-Gymnsium Wittlich Fchbereich Mthemtik Kurfürstenstrsse 14 54516 Wittlich Eine Lerneinheit über regelmäßige Vielecke C D C A B E A B A B C D und
in Erfurt Geheimnisse unserer Stadt: Ein altes Badehaus Tierisch hoch: Giraffen In luftiger Höhe: Erfurter Fluglotsen Abenteuerreise durch BELANTIS
Ds kostenlose Stdt- und Mitmchmgzin fü Kinde N.1/12 Tieisch hoch: Giffen in Efut In luftige Höhe: Efute Fluglotsen Geheimnisse unsee Stdt: Ein ltes Bdehus Abenteueeise duch BELANTIS Hllo Kinde, Hie bin
Merkhilfe. 1 Inhalte der Mittelstufe STAATSINSTITUT FÜR SCHULQUALITÄT UND BILDUNGSFORSCHUNG MÜNCHEN. Mathematik am Gymnasium
STAATSINSTITUT FÜR SCHULQUALITÄT UND BILDUNGSFORSCHUNG MÜNCHEN Mekhilfe Mthemtik m Gymsium Ihlte de Mittelstufe Lösugsfomel fü qudtische Gleichuge c / 4c Poteze m m s s s s s s Logithme logc log logc log
Repetitionsaufgaben Exponential-und Logarithmusfunktion
Repetitionsufgben Eponentil-und Logrithmusfunktion Inhltsverzeichnis A) Vorbemerkungen B) Lernziele C) Eponentilfunktionen mit Beispielen 2 D) Aufgben Ep.fkt. mit Musterlösungen 6 E) Logrithmusfunktionen
Präfixcodes und der Huffman Algorithmus
Präfixcodes und der Huffmn Algorithmus Präfixcodes und Codebäume Im Folgenden werden wir Codes untersuchen, die in der Regel keine Blockcodes sind. In diesem Fll können Codewörter verschiedene Länge hben
( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck
Pof. D.-Ing. Victo Gheoghiu Kolbenmaschinen 88 5. Massenausgleich 5. Käfte und Momente eines Einzylindemotos 5.. Käfte und Momente duch den Gasduck S N De Gasduck beitet sich in alle Richtungen aus und
Statische Magnetfelder
Statische Magnetfelde Bewegte Ladungen ezeugen Magnetfelde. Im Magnetfeld efäht eine bewegte Ladung eine Kaft. Elektische Felde weden von uhenden und bewegten Ladungen gleichemaßen ezeugt. Die Kaft duch
TE- und TM-Moden im Wellenleiter. Bachelorarbeit
TE- und TM-Moden im Wellenleiter Sebstin Rubitzek 30. September 2014 in Grz Bchelorrbeit betreut von Ao.Univ.-Prof. Mg. Dr.rer.nt. Ulrich Hohenester 1 Inhltsverzeichnis 1 Einleitung 3 1.1 Ws ist ein Wellenleiter?......................
t 1 t cos(t) sin(t) haben als Spur jeweils den Einheitshalbkreis in der oberen Halbebene.
Kpitel Kurvenintegrle Kurven Sei I = [, b] R ein Intervll Eine Weg ist eine Abbildung dieses Intervlls in den R d, d, : I R d Dbei nennt mn () den Anfngspunkt, (b) den Endpunkt und ds Bild ([, b]) die
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernzirkel / Stationenlernen: Höhensätze (Pythagoras und Euklid)
Unterrihtsmterilien in digitler und in gedrukter Form uszug us: Lernzirkel / Sttionenlernen: Höhensätze (Pythgors und Euklid) Ds komplette Mteril finden Sie hier: Downlod ei Shool-Soutde SHOOL-SOUT Lernzirkel
Berechnungen am Prisma. Das Netz (Abwicklung) eines Prismas
Berechnungen m Prism Einführung des Prisms: Schüler ringen verschiedene Verpckungen mit in den Unterricht Klssifizierung der Verpckungen in Prismen und ndere Körper Erreitung der Eigenschften eines Prisms:
Nullstellen quadratischer Gleichungen
Nullstellen qudrtischer Gleichungen Rolnd Heynkes 5.11.005, Achen Nch y ufgelöst hen qudrtische Gleichungen die Form y = x +x+c. Zeichnet mn für jedes x uf der rechten Seite und ds drus resultierende y
1.3. Prüfungsaufgaben zur Statik
.3. Püfungsaufgaben zu Statik Aufgabe a: Käftezelegung (3) Eine 0 kg schwee Lape ist in de Mitte eines 6 beiten Duchganges an eine Seil aufgehängt, welches dot duchhängt. Wie goß sind die Seilkäfte? 0
2 Berechnung von Flächeninhalten unter Kurvenstücken
Übungsmteril 1 Berechnung von Flächeninhlten unter Kurvenstücken.1 Annäherung durch Rechtecke Um die Fläche zu berechnen, die zwischen dem Funktionsgrphen einer Funktion und der -Achse eingeschlossen wird,
Aufgabe 1 Zeige: Wenn die Summe von 1996 Quadratzahlen durch 8 teilbar ist, dann sind mindestens vier dieser Quadratzahlen gerade.
Landeswettbeweb athematik aden-wüttembeg 996 Runde ufgabe Zeige: Wenn die Summe von 996 Quadatzahlen duch 8 teilba ist, dann sind mindestens vie diese Quadatzahlen geade. Vobemekung Eine Quadatzahl ist
Grundwissen. Die Menge der reellen Zahlen 0 =0. Beispiele
Grundwissen Klsse 9 Die Menge der reellen Zhlen Die Umkehrung des Qudrierens wird für nicht negtive Zhlen ls Ziehen der Wurzel oder Rdizieren ezeichnet. Die Qudrtwurzel us (kurz: Wurzel us ) ist dei die
Grundlagen in Mathematik für die 1. Klassen der HMS und der FMS
Grundlgen in Mthemtik für die. Klssen der HMS und der FMS Einleitung In der Mthemtik wird häufig uf bereits Gelerntem und Beknntem ufgebut. Wer die Grundlgen nicht beherrscht, ht deshlb oft Mühe und Schwierigkeiten,
Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht
Großübung u Kräften, omenten, Äuivlen und Gleichgewicht Der Körper Ein mterielles Teilgebiet des Universums beeichnet mn ls Körper. Im llgemeinen sind Körper deformierbr. Sonderfll strrer Körper (odellvorstellung)
Mathematik PM Rechenarten
Rechenrten.1 Addition Ds Pluszeichen besgt, dss mn zur Zhl die Zhl b hinzuzählt oder ddiert. Aus diesem Grunde heisst diese Rechenrt uch Addition. + b = c Summnd plus Summnd gleich Summe Kommuttivgesetz
Musterlösung zur Musterprüfung 2 in Mathematik
Musterlösung zur Musterprüfung in Mthemtik Diese Musterlösung enthält usführliche Lösungen zu llen Aufgben der Musterprüfung in Mthemtik sowie Hinweise zum Selbstlernen. Literturhinweise ) Bosch: Brückenkurs
Verbrauchswerte. 1. Umgang mit Verbrauchswerten
Verbruchswerte Dieses Unterkpitel ist speziell dem Them Energienlyse eines bestehenden Gebäudes nhnd von Verbruchswerten (Brennstoffverbräuche, Wrmwsserverbruch) gewidmet. BEISPIEL MFH: Ds Beispiel des
Exponentialgleichungen 70 Exponentialgleichungen mit Ergebnissen und ausführlichen Lösungsweg
Übungen zum Kurs Eponentilgleichungen Eponentilgleichungen 70 Eponentilgleichungen mit Ergebnissen und usführlichen Lösungsweg 7.technisch verbesserte Auflge vom.09.007 (Sonderzeichen wurden teilweise
Schülerkurs. Mathematik > Lineare Algebra > Lineare Gleichungen Lineare Gleichungssysteme > Teil I: Theorie. Michael Buhlmann
Michel Buhlmnn Schülekus Mthemtik > Linee Alge > Linee Gleichungen Linee Gleichungssysteme > Teil I: Theoie Linee Gleichungen und linee Gleichungssysteme duchziehen den Mthemtikunteicht in llen Schulfomen
1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist
. Ohm = LED leuchtet wenn chlter gedrückt ist 2. Ohm = NICH ( = NO ) LED leuchtet wenn chlter nicht gedrückt ist = ist die Negtion von? Gibt es so einen kleinen chlter (Mikrotster)? 2. Ohm = UND LED leuchtet
4 Stetigkeit. 4.1 Intervalle
4 Stetigkeit Der Grenzwertbegriff für Zhlenfolgen lässt sich uf Funktionen übertrgen. Funktionen (oder Abbildungen) wren bereits im Kpitel über Mengen ufgetreten. Hier wird nun der Fll betrchtet, dss Definitionsbereich
Oberfläche des Zylinders
Zylinde und Kegel Zylinde: Jede Zylinde hat zwei keisfömige Gundflächen (G), die zueinande paallel sind. Die gekümmte Seitenfläche heißt Mantelfläche (M). De Abstand de beiden Gundflächen voneinande ist
