|
|
|
- Christoph Gehrig
- vor 9 Jahren
- Abrufe
Transkript
1 Abitupüfung Mthemtik Bden-Wüttembeg (ohne CAS) Pflichtteil Aufgben Aufgbe : ( VP) Bilden Sie die este Ableitung de Funktion f mit f() ( ) e weit wie möglich. und veeinfchen Sie so Aufgbe : ( VP) Beechnen Sie ds Integl d e Aufgbe : ( VP) Hinweis: b de Abitupüfung nicht meh püfungselevnt Die Funktion f mit f() 8 ht die Nullstelle. Bestimmen Sie lle weiteen Nullstellen von f. Aufgbe : ( VP) Gegeben ist die Funktion f mit f(). Ih Schubild ist K. ) Geben Sie die Asymptoten von K n. b) Bestimmen Sie den Schnittpunkt de Tngente n K im Punkt P(/f()) mit de -Achse. Zuletzt ktulisiet:..
2 Aufgbe : ( VP) Die vie Abbildungen zeigen Schubilde von Funktionen einschließlich lle wgechten Asymptoten. Eines diese Schubilde gehöt zu Funktion f mit f(). ) Begünden Sie, dss Abbildung zu Funktion f gehöt. Bestimmen Sie den Wet von. b) Von den ndeen dei Abbildungen gehöt eine zu Ableitungsfunktion f und eine zu Integlfunktion I mit I () f(t)dt. Odnen Sie diesen beiden Funktionen die zugehöigen Abbildungen zu und begünden Sie jeweils Ihe Entscheidung. Aufgbe 6: ( VP) Gegeben sind die Punkte A(//), B(//-), C(/-/) und D(-/9/). Übepüfen Sie, ob diese vie Punkte in eine Ebene liegen. Zuletzt ktulisiet:..
3 Aufgbe : ( VP) Gegeben sind die Ebene E: und de Punkt P(9/-/). ) Beechnen Sie den Abstnd des Punktes P von de Ebene E. b) De Punkt S(-//) liegt uf E. Bestimmen Sie den Punkt Q uf de Geden duch S und P, de genuso weit von E entfent ist wie P. Aufgbe 8: ( VP) Die Gede g und die Ebene E schneiden sich im Punkt S. Die Gede g ist ds Bild von g bei Spiegelung n de Ebene E. Bescheiben Sie ein Vefhen, um eine Gleichung de Geden g zu emitteln. Zuletzt ktulisiet:..
4 Abitupüfung Mthemtik (Bden-Wüttembeg) Pflichtteil Lösungen Aufgbe : Die Ableitungsfunktion wid mit de Poduktegel und de Kettenegel emittelt: f() u() v() mit u(), v v() e, u (), () e (Kettenegel) Anwendung de Poduktegel: f () u () v() u() v () e ( ) ( e ) e ( ) e ( ) Aufgbe : e d e [ ln() ] ln(e) e ( ln() ) e e Aufgbe : Die Nullstellen von f() egibt sich mit dem Anstz f(), ds heißt es ist die Gleichung 8 zu lösen. Püfung, ob eine Nullstelle von f() ist: Es gilt f() 8 und dmit ist N(/) eine Nullstelle. (dies wid beeits in de Aufgbenstellung vousgesetzt; mn muss dies nicht meh unbedingt echneisch nchweisen) Beechnung de weiteen Nullstellen mit Polynomdivision: ( ³ ² - 8 ) : ( ) ² - -( ³ - ²) ² - 8 -( ² - ) ( - ) Aus dem Polynomdivisionsegebnis folgt 8 ( ) ( ) Zu Emittlung de weiteen Lösungen ist die Gleichung zu lösen: ± ( ) ±,, und Die weiteen Nullstellen luten N (, / ) und N ( / ). Zuletzt ktulisiet:..
5 Aufgbe : ) Ds Schubild von f() besitzt eine Defintionslücke bei. Fü stebt f () (egl, ob mn sich von links ode echts de nnähet). Somit liegt bei eine Polstelle ohne Vozeichenwechsel vo und dmit ist eine senkechte Asymptote. Vehlten fü ± : ( ) Es gilt f() Fü ± stebt de Buch. Dhe gilt lim f(). ± Ds Schubild K besitzt die wgechte Asymptote y -. b) Um den Schnittpunkt zu bestimmen, muss zunächst die Tngentengleichung in P ufgestellt weden. Beechnung de Koodinten von P: f() und dmit P(/-). Mit f() (siehe )) folgt f (). Tngentensteigung in P: f () Einsetzen von P und m in die Punkt-Steigungs-Fom: y ( ) ( ) y ist die Gleichung de Tngente in P Schnittpunkt de Tngente mit de -Achse: Setze die Tngentengleichung :, De Schnittpunkt de Tngente mit de -Achse lutet S(-,/). Aufgbe : ) Die Funktion f() besitzt die wgechte Asymptote y -. Dies ist dn ekennb, weil fü ± gilt, dss stebt. Ds einzige Schubild, dss eine wgechte Asymptote y - besitzt, ist Abbildung. Aus dem Schubild knn mn blesen: f(). f () b) Ds Schubild von f() besitzt n de Stelle einen Hochpunkt. Somit muss die Ableitungsfunktion f n diese Stelle eine Nullstelle mit einem Vozeichenwechsel von nch besitzen. Nu ds Schubild us Abbildung efüllt diese Bedingungm, somit gehöt Abbildung zu f. Die Integlfunktion mit de unteen Genze besitzt bei eine Nullstelle, d I() gilt. D nu die Abbildung dot eine Nullstelle besitzt, gehöt Abbildung zu de Integlfunktion. Zuletzt ktulisiet:..
6 Zuletzt ktulisiet:.. 6 Aufgbe 6: Zunächst wid nhnd de Punkte A, B und C die Pmetefom eine Ebenengleichung ufgestellt: E: 6 t AC AB t OA Nun wid mit Hilfe eine Punktpobe gepüft, ob de Punkt D uf diese Ebene liegt. 6 t 9 Aus de.zeile folgt t,. Aus de.zeile folgt: 6 ) (, 9 Kontolle mit.zeile: ) ( ) (, liefet eine whe Aussge. Dmit liegt de Punkt D in de Ebene E. Alle vie Punkte liegen somit in eine Ebene. Hinweis: Mn hätte die Aufgbe uch ndes lösen können: Die vie Punkte A,B,C,D liegen in eine Ebene wenn die dei Vektoen AB, AC und AD line bhängig sind. Wenn die Vektoen line unbhängig sind, liegen sie nicht in eine Ebene. Aufgbe : ) Aufstellen de Hesseschen Nomlfom von E: bzw. E: De Abstnd von P zu E beechnet sich mit 6 9 d. De Punkt P ht von de Ebene E den Abstnd d 6.
7 b) P X S X Q Zu Emittlung de Koodinten von Q muss die Gedengleichung nicht ufgestellt weden. 9 Es gilt OQ OP PS 6 Die Koodinten von Q luten Q(-/6/). Aufgbe 8:.Schitt: Beechnung des Schnittpunktes S de Gede g mit de Ebene E.Schitt: Bestimmung eines weiteen von S veschiedenen beliebigen Punktes P uf de Geden. Diese Punkt P wid nun n de Ebene E gespiegelt mit folgenden weiteen Schitten:.Schitt: Aufstellen eine Hilfsgede h, die othogonl zu Ebene E und duch P veläuft (Richtungsvekto von h ist ein Nomlenvekto von E).Schitt: Bestimmung des Schnittpunktes F von h mit E. Schitt: Beechnung des Spiegelpunktes P* mit OP * OP PF 6.Schitt: Aufstellen de Pmetefom de Gede g duch die Punkte S und P* g : OS SP * Zuletzt ktulisiet:..
Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie
Übungsaufgaben zum Püfungsteil Lineae Algeba /Analytische Geometie Aufgabe Von de Ebene E ist folgende Paametefom gegeben: 3 E: x= 4 + 0 + s 3 ;,s 0 3 4 a) Duch geeignete Wahl de Paamete und s ehält man
Versiera der Agnesi INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL. Text Nr Stand
Vesie de Agnesi Tet N. 5455 Stnd 5.. FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de 5455 Vesie de Agnesi Vowot Die Vesie de Agnesi ist eine lgebische Kuve. Gdes, die mn uf eine
Analysis. Klausur zu e-funktionen (Produkt-/Kettenregel, momentane Änderungsrate) (Bearbeitungszeit: 90 Minuten) Gymnasium J1.
Anlysis Klusur zu e-funktionen (Produkt-/Kettenregel, momentne Änderungsrte) (Berbeitungszeit: 90 Minuten) Gymnsium J Alender Schwrz www.mthe-ufgben.com Jnur 05 Pflichtteil - ohne Hilfsmittel Aufgbe :
Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1
www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)
Lösen einer Gleichung 3. Grades
Lösen eine Gleichung Gdes We sich uf dieses Abenteue einlssen will, bucht einige Kenntnisse übe komlee Zhlen Es eicht be, wenn mn folgende Schvehlte kennt und kochezettig (mn nehme) nwenden knn: Es gibt
Arkus-Funktionen. Aufgabensammlung 1
ANALYSIS Arkus-Funktionen Aufgbensmmlung 1 Dtei Nummer 4730 Stnd: 15. November 017 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 4730 Aufgbensmmlung Arkusfunktionen Aufgbe 1 (Lösung Seite
+ 2 2 = 0 = 1 ± Die drei Nullstellen. x x x 2,3
Hilfsmittelfreier Teil. Beispielufgbe 1 zur Anlysis Gegeben ist die Funktion f mit der Gleichung f ( x ) = x 3 + x x. Die zeigt den Grphen der Funktion f. (1) Berechnen Sie lle Nullstellen der Funktion
Kapitel 2. Schwerpunkt
Kpitel Schwepunkt Schwepunkt Volumenschwepunkt Fü einen Köpe mit dem Volumen V emittelt mn die Koodinten des Schwepunktes S (Volumenmittelpunkt) us S dv dv z S S z S dv dv z dv dv z S S S Flächenschwepunkt
Analytische Geometrie Übungsaufgaben 2 Gesamtes Stoffgebiet
Analytische Geometie Übungsaufgaben Gesamtes Stoffgebiet Pflichtteil (ohne Fomelsammlung und ohne GTR): P: a) Püfe, ob das Deieck ABC gleichschenklig ist: A(/7/), B(-//), C(//) b) Püfe, ob das Deieck ABC
Analysis. Ganzrationale Funktionen: komplettes Stoffgebiet. Allg. Gymnasien: ab J1 / Q1 Berufliche Gymnasien: ab Klasse 12.
Anlysis Allg. Gymnsien: b J / Q Berufliche Gymnsien: b Klsse Alexnder Schwrz August 0 Aufgbe : 4 Gegeben ist die Funktion f mit f(x) x 4x mit xr. Ihr Schubild sei K. ) Untersuche K uf Schnittpunkte mit
Übungen: Extremwertaufgaben
Übungen: Extemwetufgben.0 Eine Stenwte ht meist die Fom eines Zylindes (Rdius, Höhe h) mit eine oben ufgesetzten Hlbkugel (siehe z. B. die im Bild unten gezeigte Fitz-Weiths-Stenwte in Neumkt). Die gesmte
Quadratische Funktionen
Qudrtische Funktionen Die Scheitelpunktform ist eine spezielle Drstellungsform von qudrtischen Funktionen, nhnd der viele geometrische Eigenschften des Funktionsgrphen bgelesen werden können. Abbildung
Parametergleichung der Geraden durch den Punkt A mit dem Richtungsvektor u r t R heisst Parameter
8 3. Dastellung de Geaden im Raum 3.1. Paametegleichung de Geaden Die naheliegende Vemutung, dass eine Geade des Raumes duch eine Gleichung de Fom ax + by + cz +d 0 beschieben weden kann ist falsch (siehe
Zentrale Klausur 2015 Aufbau der Prüfungsaufgaben
Zentale Klausu 2015 Aufbau de Püfungsaufgaben Die Zentale Klausu 2015 wid umfassen: hilfsmittelfeie Aufgaben zu Analysis und Stochastik eine Analysisaufgabe mit einem außemathematischen Kontextbezug eine
Die Lagrangepunkte im System Erde-Mond
Die Lgngepunkte i Syste Ede-ond tthis Bochdt Tnnenbusch-ynsiu Bonn [email protected] Einleitung: Welche Käfte spüt eine Rusonde, die sich ntiebslos in de Nähe von Ede und ond ufhält? Zunächst sind
Mathematik-Aufgabenpool > Normalparabeln, spezielle allgemeine Parabeln I
Michel Buhlmnn Mthemtik-Aufgbenool > Normlrbeln, sezielle llgemeine Prbeln I Einleitung: Normlrbeln sind qudrtische Funktionen von der Form: y = + + q (Normlform), y = ( d) + c (Scheitelform), y = (- )(-
Volumen von Rotationskörpern, Bogenlänge und Mantelfläche
Modul Integle 3 Volumen von Rottionsköpen, Bogenlänge und Mntelfläche In diesem Modul geht es um einige spezielle Anwendungen de Integlechnung, und Volumin, Längen und Flächen zu estimmen. Fngen wi mit
Mathematik 1 für Bauwesen 14. Übungsblatt
Mthemtik für Buwesen Übungsbltt Fchbereich Mthemtik Wintersemester 0/0 Dr Ivn Izmestiev 8/900 Dr Vince Bárány, M Sc Juli Plehnert Gruppenübung Aufgbe G () Berechnen Sie ds Volumen des Rottionskörpers,
Kapitel 9 Integralrechnung für Funktionen einer Veränderlichen 9.6 Volumen von Rotationskörpern
Wolte/Dhn: Anlsis Individuell c Spinge 75 Kpitel 9 Integlechnung fü Funktionen eine Veändelichen 9.6 Volumen von Rottionsköpen Wi wenden uns jetzt de Bestimmung des Volumens eines sogennnten Rottionsköpes
Zentrale schriftliche Abiturprüfung Mathematik. Grundkurs
Ministerium für Bildung, Jugend und Sport Zentrle schriftliche Abiturprüfung 2006 Aufgbenstellungen A1 und A2 (Whl für Prüflinge) Mthemtik für Prüflinge Aufgbenstellungen A3 (siehe Extrbltt) (wird durch
Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1...
Pflichtteil Wahlteil Analysis 7 Wahlteil Analysis Wahlteil Analysis 7 Wahlteil Analytische Geometrie Wahlteil Analytische Geometrie 8 Lösungen: Pflichtteil Lösungen zur Prüfung : Pflichtteil Benötigte
Kardioiden INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL. Text Nr Stand 11. Mai 2016
Kadioiden Text N. 5 Stand. Mai 6 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 5 Kadioiden Vowot Die Kadioide ist aus meheen Günden beühmt. Da gibt es zuest die physikalische Escheinung de
von f im Punkt P ( 2 4) x x x Hilfsmittelfreier Teil. Beispielaufgabe 1 zur Analysis Gegeben ist die Funktion f mit der Gleichung
Hilfsmittelfreier Teil. Beispielufgbe zur Anlysis Gegeben ist die Funktion f mit der Gleichung f ( x ) = x + x x. Die zeigt den Grphen der Funktion f. () Berechnen ie lle Nullstellen der Funktion f. ()
Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg
Bden-Württemberg: Abitur 014 Whlteil A www.mthe-ufgben.com Huptprüfung Abiturprüfung 014 (ohne CAS) Bden-Württemberg Whlteil Anlysis Hilfsmittel: GTR und Formelsmmlung llgemeinbildende Gymnsien Alexnder
3. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner
3. Mthemtik-Schulrbeit für die 5. Klsse Autor: Gottfried Gurtner Arbeitszeit: 75 Minuten Lernstoff: Mthemtische Grundkompetenzen: AG.1 Einfche Terme und Formeln ufstellen, umformen und im Kontext deuten
Apsel/Wende Probeabitur LK Mathematik 2004/2005 Seite 2
Apsel/Wende Probebitur LK Mthemtik 004/005 Seite Hinweise für Schüler Aufgbenuswhl Von den vorliegenden Aufgben sind die Pflichtufgben P und P zu lösen. Von den Whlufgben W3 bis W6 sind Aufgben uszuwählen
Zentrale schriftliche Abiturprüfung Mathematik. Leistungskurs
Ministerium für Bildung, Jugend und Sport Zentrle schriftliche Abiturprüfung 005 Aufgbenstellungen A und A (Whl für Schülerinnen und Schüler) Mthemtik Aufgbenstellungen A3 (siehe Extrbltt) (wird durch
Gebrochenrationale Funktionen (Einführung)
Gebrochenrtionle Funktionen (Einführung) Ac Eine gebrochenrtionle Funktion R ist von der Form R(x) P(x) und Q(x) gnzrtionle Funktionen n-ten Grdes sind. P(x) Q(x), wobei Im Allgemeinen ht eine gebrochenrtionle
D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9
D-MAVT/D-MATL Anlysis I HS 26 Dr. Andres Steiger Lösung - Serie 9. MC-Aufgben (Online-Abgbe). Es sei f die Funktion f() = e + 7. Welche der folgenden Funktionen sind Stmmfunktionen von f? () g() = 2 2
Lösungen II.1. Lösungen II.2. c r d r. u r. 156/18 c) Assoziativgesetz
Lösungen II. / selbe Länge:,, 7;,, ;,, ;, ;, 9 selbe Tanslation:, ;, ;,, ;, Lösungen II. / a b a b c c d d s u v s u v b) ein Pfeil de Länge /7 a b ; y b a b) Kommutativgesetz / u a b ; v b c b) w u c
Mathematikaufgaben > Vektorrechnung > Kugeln
Michael Buhlmann Mathematikaufgaben > Vektoechnung > Kugeln Aufgabe: Gegeben ist eine Kugel K im deidimensionalen katesischen x 1 -x -x 3 -Koodinatensystem mit dem Uspung als Mittelpunkt und dem Radius
www.mathe-aufgaben.com
Abiturprüfung Mathematik 00 Baden-Württemberg (ohne CAS) Haupttermin Pflichtteil - Aufgaben Aufgabe : ( VP) Bilden Sie die Ableitung der Funktion f mit Aufgabe : ( VP) f() e =. Bestimmen Sie eine Stammfunktion
Archimedische Spirale 4
Aufgbenbltt-Achimedische Spile +Lösungen.doc Achimedische Spile Aufgbe An einem Holzpflock mit qudtischem Queschnitt (Seitenlänge z.. cm) ist im unkt eine Schnu befestigt, die von nch S eicht. Die Schnu
Abiturprüfung Physik 2016 (Nordrhein-Westfalen) Leistungskurs Aufgabe 1: Induktion bei der Torlinientechnik
Abitupüfung Physik 2016 (Nodhein-Westfalen) Leistungskus Aufgabe 1: Induktion bei de Tolinientechnik Im Fußball sogen egelmäßig umstittene Entscheidungen übe zu Unecht gegebene bzw. nicht gegebene Toe
7. VEKTORRECHNUNG, ANALYTISCHE GEOMETRIE
Vektoechnung Anltische Geometie 7. VEKTORRECHNUNG ANALYTISCHE GEOMETRIE 7.1. Vektoen () Definition Schiet mn einen Punkt P 1 im Koodintensstem in eine ndee Lge P so ist diese Schieung duch Ange des Upunktes
n n n
mthbu.ch9+ Repetition mthbu.ch9+ LU 901 1. Die Route de Steetpde in Züich ist 3.8 km lng. Wie lnge ist sie uf eine Kte mit dem Mssstb 1 : 5 000? 15. cm. Auf eine Kte des Mssstbs 1 : 5 000 misst du einen
Stochastik: Nutzung sozialer Netzwerke
Stochastik: Nutzung soziale Netzweke Die Nutzung von sozialen Netzweken wid imme beliebte. Dabei nutzen imme meh Jugendliche veschiedene soziale Netzweke. Es wid davon ausgegangen, dass 30 % alle Jugendlichen
Titrationskurven in der Chemie
RS 1..004 Titationskuven.mcd Titationskuven in de Chemie In de Chemie wid de sauee bzw. de basische Chaakte eine wässigen Lösung mit Hilfe des ph-wetes beschieben. In jede wässigen Lösung gilt: [H O] +.
Mathematik K1, 2017 Lösungen Vorbereitung KA 1
Mthemtik K, 07 Lösungen Vorbereitung KA Pflichtteil (etw 0..0 min) Ohne Tschenrechner und ohne Formelsmmlung (Dieser Teil muss mit den Lösungen bgegeben sein, ehe der GTR und die Formlsmmlung verwendet
Die Hyperbeläste kommen den Koordinaten-achsen beliebig nahe. Sie sind Asymptoten der Hyperbel.
.8. Die indirekte (umgekehrte) Proportionlität Die Funktion f : y \ heisst umgekehrte (indirekte) Proportionlität. Spezilfll : f: Bilde den Kehrwert der gegebenen Zhl. An der Stelle ist die Funktion nicht
Aufgabe 1 mit Lösung. Stelle x x + 2a x 2a VZW EPArt Wert
Aufgbe mit Lösung 4 ( 8 ) ( 4 8 ) f x = x x x + x= f x Achsensymmetrie + =. 4 lim x x + : Fll = c+ d 0! < 0 + x ±... Extrempunkte = = =. NB: f ( x) ( 4x 6 x) x( x ) x( x ) x MESt ( f ) { ;0;}. HB: 0 =
Abiturprüfung Mathematik 2017 Merkhilfe S. 1/8. Dreieck Flächeninhalt: 1 2. Mindestens zwei Seiten sind gleich lang.
Aitupüfung Mthemtik 07 Mekhilfe S. /8 Eene Figuen Deieck Flächeninhlt: A g h g gleichschenkliges Deieck Mindestens zwei Seiten sind gleich lng. gleichseitiges Deieck Alle dei Seiten sind gleich lng. Flächeninhlt:
Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 2013 Mathematik
Seite von 0 Unterlgen für die Lehrkrft Zentrle Klusur m Ende der Einführungsphse 0 Mthemtik. Aufgbenrt Anlysis. Aufgbenstellung Aufgbe : Untersuchung gnzrtionler Funktionen Aufgbe : Persönliche Leistungskurve
Zentrale schriftliche Abiturprüfung Mathematik. Leistungskurs
Ministerium für Bildung, Jugend und Sport Zentrle schriftliche Abiturprüfung 008 Mthemtik Aufgbenstellung A1 und A (Whl für Prüflinge) Aufgbenstellung A3 (siehe Extrbltt) (wird durch die Lehrkrft usgewählt)
Repetitionsaufgaben Exponential-und Logarithmusfunktion
Repetitionsufgben Eponentil-und Logrithmusfunktion Inhltsverzeichnis A) Vorbemerkungen B) Lernziele C) Eponentilfunktionen mit Beispielen 2 D) Aufgben Ep.fkt. mit Musterlösungen 6 E) Logrithmusfunktionen
Besondere Leistungsfeststellung Mathematik ERSTTERMIN
Sächsisches Staatsministeium Geltungsbeeich: fü Kultus Schüle de Klassenstufe 10 an allgemeinbildenden Gymnasien Schuljah 011/1 ohne Realschulabschluss Besondee Leistungsfeststellung Mathematik ERSTTERMIN
Höhere Mathematik für Ingenieure , Uhr
Studiengng: Mtrikelnummer: 3 5 6 Z Punkte Note Prüfungsklusur zum Modul Höhere Mthemtik für Ingenieure 0. 7. 05, 8.00 -.00 Uhr Zugelssene Hilfsmittel: A-Blätter eigene, hndschriftliche Ausrbeitungen ber
Wert eines Terms berechnen
gnz kl: Mthemtik 3 - Ds Feienheft mit Efolgsnzeige 3 Wet eines Tems eechnen Teme sind sinnvolle Rechenusdücke, die us Zhlen, Vilen, Rechenzeichen und Klmmen estehen können. Sinnlose Rechenusdücke (z. B.:
Besondere Leistungsfeststellung Mathematik
Sächsisches Sttsministerium Geltungsbereich: für Kultus Schüler der Klssenstufe 10 Schuljhr 01/13 n llgemeinbildenden Gymnsien Besondere Leistungsfeststellung Mthemtik N A C H T E R M I N Mteril für Schüler
Wir lassen die Funktionen grafisch darstellen: plotfunc2d(dq_f_a(h),dq_f_b(h),dq_f_c(h),h=-1..1)
Lösungen zum Wochenpln Ableitungen f := -> *^; g := -> -^; k := -> sqrt(); - Wir können den Differenzenquotienten n den Stellen,b,c uch ls Funktion von h definieren dq_f_ := h->(f(+h)-f())/h; dq_f_b :=
Volumen von Rotationskörpern
Volumen von Rottionskörpern Beispiele: [ Es stellt sich die Frge: Wie entstehen solche Rottionskörper bzw wie lssen sich solche Rottionskörper er zeugen? Rotiert eine Fläche z.b. um die x-achse, so entsteht
Pflichtteilaufgaben zu Elemente der Kurvendiskussion. Baden-Württemberg
Pflichtteilaufgaben zu Elemente der Kurvendiskussion Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Aleander Schwarz www.mathe-aufgaben.com September 6 Übungsaufgaben: Ü: Gegeben ist
Zu Aufgabe 1: Widerlegen Sie die folgenden falschen Behauptungen durch Angabe eines möglichst einfachen Gegenbeispiels:
Westfälische Wilhelms-Universität Münster Mthemtisches Institut pl. Prof. Dr. Lutz Hille Dr. Krin Hlupczok Übungen zur Vorlesung Elementre Geometrie Sommersemester 1 Musterlösung zu Bltt 1 vom 5. Juli
Kernfach Mathematik (Thüringen): Abiturprüfung 2013 Aufgabe A1: Analysis (mit CAS)
Kenfach Mathematik (Thüingen): Abitupüfung 03 Aufgabe A: Analysis (mit CAS) Gegeben ist die Funktion f duch y= f(x) = x e (x 0). x a) Untesuchen Sie den Gaphen de Funktion f auf lokale Extempunkte und
Dr. Arnulf Schönlieb, Übungsbeispiele zu Potenzen, Wurzeln und Vektoren, 6. Klasse (10. Schulstufe)
D. Anulf Schönlieb, Übungsbeispiele zu Potenzen, Wuzeln und Vektoen,. Klasse (10. Schulstufe) Übungsbeispiele zu Potenzen und Wuzeln sowie zu Vektoechnung,. Klasse (10. Schulstufe) 1)a) b) c) ) a) b) uv
Schülerkurs. Mathematik > Lineare Algebra > Lineare Gleichungen Lineare Gleichungssysteme > Teil I: Theorie. Michael Buhlmann
Michel Buhlmnn Schülekus Mthemtik > Linee Alge > Linee Gleichungen Linee Gleichungssysteme > Teil I: Theoie Linee Gleichungen und linee Gleichungssysteme duchziehen den Mthemtikunteicht in llen Schulfomen
Mathematik Name: Vorbereitung KA2 K1 Punkte:
Pflichtteil (etw 40 min) Ohne Tschenrechner und ohne Formelsmmlung (Dieser Teil muss mit den Lösungen bgegeben sein, ehe der GTR und die Formlsmmlung verwendet werden dürfen.) Aufgbe : [4P] Leiten Sie
R. Brinkmann Seite Aufgabe Die Gerade g verläuft durch die Punkte P 4 3,5 und P 2,5 1.
R. Brinkmnn http://brinkmnn-du.de Seite 9.09.0 Lösung linere Funktionen Teil IX en: A A A A Die Gerde g verläuft durch die Punkte P,5 und P,5. 5 Die Gerde h verläuft durch die Punkte P( 5,5 ) und P. Wie
Aufgabe 1: a) Die Effektivverzinsung einer Nullkuponanleihe lässt sich anhand der folgenden Gleichung ermitteln: F =
Aufgabe : a Die Effektivvezinsung eine Nullkuponanleihe lässt sich anhand de folgenden Gleichung emitteln: Hie gilt P( c( aktuelle Maktpeis de Anleihe Nennwet de Anleihe 4 und folglich i P( / c( c( i c(
fa x = VZW fa bei x x Extremstelle von fa 1 Stelle 3 x + 2a 3 x 2a VZW PA Wert
Die Veröffentlichung dieser Lösung geschieht ohne inhltliche Prüfung durch die Bezirksregierung Düsseldorf und den Mthe-Treff. Die Lösung stmmt nicht vom Originlutor der Aufgbe, sondern von einem Leser
Pflichtteil Aufgabe 5 Funktionenkompetenz
Pflichtteil Aufgabe 5 Funktionenkompetenz 2016 (5VP) Die Abbildung zeigt den Graphen einer Stammfunktion F einer Funktion f. Entscheiden Sie, ob folgende Aussagen wahr oder falsch sind. Begru nden Sie
Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher
Seminavotag Diffeentialgeometie: Rotationsflächen konstante Gaußsche Kümmung Paul Ebeman, Jens Köne, Mata Vitalis 1. Juni 22 Inhaltsvezeichnis Vobemekung 2 1 Einfühung 2 2 Este Fundamentalfom 2 3 Vetägliche
1 Kurvendiskussion /40
009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.
B Figuren und Körper
B Figuen und Köpe 1 Keis und Keisteile Ein Keis mit dem Rdius ht den Flächen inhlt A = p 2 und den Umfng U = 2p. Die Keiszhl p = 3,14159 ist eine itionle Zhl. Als Nähe ungswete fü p benutzt mn oftmls p
Lernkarten. Analysis. 11 Seiten
Lernkrten Anlysis Seiten Zum Ausdrucken muss mn jeweils eine Vorderseite drucken, dnn ds Bltt wenden, nochmls einlegen und die Rückseite drucken. Am esten druckt mn die Krten uf festem Ppier oder uf Visitenkrten-
Klausur 2 Kurs Ph11 Physik Lk
26.11.2004 Klausu 2 Kus Ph11 Physik Lk Lösung 1 1 2 3 4 5 - + Eine echteckige Spule wid von Stom duchflossen. Sie hängt an einem Kaftmesse und befindet sich entwede außehalb ode teilweise innehalb eine
Abstandsbestimmungen
Abstandsbestimmungen A) Vektoechnungsmethoden (mit Skalapodukt): ) Abstand eines Punktes P von eine Ebene IE im Raum (eine Geade g in de Ebene ): Anmekung: fü Geaden im Raum funktioniet diese Vektomethode
Abiturprüfung Mathematik 006 Baden-Württemberg (ohne CAS) Haupttermin Pflichtteil - Aufgaben Aufgabe : ( VP) Bilden Sie die Ableitung der Funktion f mit f(x) sin(4x ). Aufgabe : ( VP) Geben Sie eine Stammfunktion
3. Ganzrationale Funktionen
3. Gnzrtionle Funktionen ) Definitionen und Beispiele Definition: Eine gnzrtionle Funktion n-ten Grdes ht ls Definitionsterm ein Polynom n-ten Grdes, d.h. y = f() = n n n-1 n-1 1 0. n 0, i ( i = 1, n)
Mathematikaufgaben > Analysis > Funktionenscharen
Michel Buhlmnn Mthemtikugen > Anlysis > Funktionenschren Auge: Gegeen ist die Funktionenschr t t t mit reellen Prmeter t >. Die zugehörigen Schuilder heißen K t. Skizziere die Schuilder K,5, K und K jeweils
Probeklausur Mathematik für Ingenieure C3
Deprtment Mthemtik Dr. rer. nt. Lrs Schewe Mthis Sirvent Wintersemester 013/014 Probeklusur Mthemtik für Ingenieure C3 Anmerkungen zur Klusur: Die Arbeitszeit wird 90 Minuten betrgen. Sie können sämtliche
Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012
Senatsvewaltung fü Bildung, Wissenschaft und Foschung Fach Name, Voname Klasse Abschlusspüfung an de Fachobeschule im Schuljah / Mathematik (B) Püfungstag.. Püfungszeit Zugelassene Hilfsmittel Allgemeine
Lösungen zum Pflichtteil (ohne GTR und Formelsammlung) Gebrochenrationale Funktionen
www.mthe-ufgben.com Lösungen zum Pflichtteil (ohne GTR und Formelsmmlung) Gebrochenrtionle Funktionen Aufgbe : ) wgr. Asymptote: y, b) wgr. Asymptote: y 0 senkr. Asymptote: x - mit VZW senkr. Asymptote:
Kantonsschule Alpenquai Luzern Schriftliche Maturitätsprüfungen Grundlagenfach Mathematik. 6La, 6Lb, 6Rb, 7Sa. 180 Minuten
Bildungs- und Kulturdeprtement Kntonsschule Alpenqui Luzern Schriftliche Mturitätsprüfungen 2012 Fch Grundlgenfch Mthemtik Prüfende Lehrer Essodinm Alitiloh Pierre-Dominique Hool Stefn Müller Frnz Steiger
Ministerium für Schule und Weiterbildung NRW M LK HT 2 Seite 1 von 7. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs
Seite 1 von 7 Unterlgen für die Lehrkrft Abiturprüfung 2010 Mthemtik, Leistungskurs 1 Aufgbenrt Anlysis 2 Aufgbenstellung siehe Prüfungsufgbe 3 Mterilgrundlge entfällt 4 Bezüge zu den Vorgben 2010 1 Inhltliche
Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg
Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz wwwmathe-aufgabencom September 6 Abituraufgaben (Haupttermin) Aufgabe
2 Vektoralgebra. e e = 1 Der Betrag vom Einheitsvektor ist 1. r r Definition eines Vektors
- 1-2 Vektolge 2.1 Definition eines Vektos - Skle - Vektoen Def.: Q Ende Ein Vekto ist eine mthemtische Göße, die duch Ange von: P Anfng PQ - Mßhl (Mßeinheit) - Richtung Vollständig eschieen ist. Speielle
www.mathe-aufgaben.com
Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f(x) = x sin( x + ) Aufgabe : ( VP) Berechnen Sie das Integral
Es berechnet die Fläche zwischen Kurve und x-achse.
1. Welche Idee steckt hinter dem Integrl? 2. Welche geometrische Bedeutung ht ds Integrl? 3. Wie erechnet mn ein Integrl? Aufsummieren unendlich vieler infinitesiml kleiner Beiträge, die lle die Form eines
Kernfach Mathematik (Thüringen): Abiturprüfung 2015 Pflichtaufgaben Teil A
Kenfach Mathematik (Thüingen): Abitupüfung 2015 Pflichtaufgaben Teil A 1. Gegeben ist die Funktion f duch f(x) = x 3 3x + 2 (x 0). a) Zeigen Sie, dass t(x) = 3x + 2 eine Gleichung de Tangente an den Gaphen
