Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernzirkel / Stationenlernen: Höhensätze (Pythagoras und Euklid)

Größe: px
Ab Seite anzeigen:

Download "Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernzirkel / Stationenlernen: Höhensätze (Pythagoras und Euklid)"

Transkript

1 Unterrihtsmterilien in digitler und in gedrukter Form uszug us: Lernzirkel / Sttionenlernen: Höhensätze (Pythgors und Euklid) Ds komplette Mteril finden Sie hier: Downlod ei Shool-Soutde

2 SHOOL-SOUT Lernzirkel Höhensätze (Pythgors und Euklid) Seite 7 von 23 2 Gegeen sind die Größen = 6 m, α = 90 und h = 4 m Konstruiere ds Dreiek 3 Wie viele rehtwinklige Dreieke siehst du? SHOOL-SOUT Der persönlihe Shulservie E-Mil: info@shool-soutde Internet: Fx: 02501/26048 Linkensstr Münster

3 SHOOL-SOUT Lernzirkel Höhensätze (Pythgors und Euklid) Seite 8 von 23 III Stz des Pythgors WIEDERHOLUNG In jedem rehtwinkligen Dreiek knn mn mit zwei gegeenen Seitenlängen die dritte Seitenlänge usrehnen Hierfür verwendet mn den Stz des Pythgors Der Stz des Pythgors esgt, dss in einem rehtwinkligen Dreiek die Summe der Fläheninhlte der Qudrte üer der Kthete und der Kthete gleih dem Fläheninhlt des Qudrtes üer der Hypotenuse ist: ls Formel: ² + ² = ² Den Fläheninhlt des Qudrtes üer der Kthete erehnet mn, indem mn die Seitenlänge qudriert: = ² = = ² Den Fläheninhlt des Qudrtes üer der Seite erehnet mn indem mn die Seitenlänge qudriert : h = ² = = ² Den Fläheninhlt des Qudrtes üer der Hypotenuse errehnet mn, indem mn die Seitenlänge qudriert: = ² = = ² Nun wissen wir, dss gilt: = ², = ² und = ² SHOOL-SOUT Der persönlihe Shulservie E-Mil: info@shool-soutde Internet: Fx: 02501/26048 Linkensstr Münster

4 SHOOL-SOUT Lernzirkel Höhensätze (Pythgors und Euklid) Seite 9 von 23 Der Stz des Pythgors esgt, dss: + = lso uh ² + ² = ² Mit der Formel ² + ² = ² können wir nun nhnd von zwei gegeenen Seitenlängen die dritte Seitenlänge estimmen eispiel: Wir wissen, dss die Kthete die Seitenlänge 4 und die Kthete die Seitenlänge 5 ht Welhe Seitenlänge ht die Hypotenuse? Wir setzen = 4 und = 5 in die Formel ² + ² = ² ein: 4² + 5² = ² = ² ,4 = UFGEN 1 Gegeen sind die Ktheten und erehne mit dem Stz des Pythgors ) = 3 m, = 4 m ) = 7 m, = 7 m ) = 10 m, = 12 m Mit dem Stz des Pythgors können wir niht nur nhnd der gegeenen Längen der zwei Ktheten die Länge der Hypotenuse erehnen, sondern uh mithilfe der gegeenen Länge der Hypotenuse und einer Kthete die Länge der zweiten Kthete Denn ² + ² = ² ² = ² ² ² = ² ² Wollen wir lso die Länge der Kthete wissen, so rehnen wir: ² = ² ² Wollen wir die Länge der Kthete wissen, so rehnen wir: ² = ² ² SHOOL-SOUT Der persönlihe Shulservie E-Mil: info@shool-soutde Internet: Fx: 02501/26048 Linkensstr Münster

5 SHOOL-SOUT Lernzirkel Höhensätze (Pythgors und Euklid)Seite 10 von 23 UFGEN 2 Gegeen sind die Seitenlängen der Kthete und der Hypotenuse Welhe Formel verwendest du um zu erehnen? Wie lng ist jeweils die Seite? Formel : ² = ) = 2 m, = 3 m ) = 9 m, = 15 m ) = 10 m, = 20 m 3 Gegeen sind die Seitenlängen der Kthete und der Hypotenuse Welhe Formel verwendest du um zu erehnen? Wie lng ist jeweils die Seite? Formel : ² = ) = 6 m, = 9 m ) = 7 dm, = 12 dm ) = 14 m, = 25 m 4 Gegeen sind jeweils zwei der Seitenlängen der Kthete, der Kthete und der Hypotenuse erehne die fehlende Seitenlänge ) = 3 m, = 3 m ) = 5 m, = 7 m ) = 4 mm, = 6 mm 5 Niht immer heißen die Ktheten oder und die Hypotenuse Umkreise mit einem Stift die Hypotenuse ) e = 5,5 m, f = 3,9 m, g = 6,7 m ) x = 6,7 m, y = 3,2 m, z = 5,8 m ) m = 7,8 m, n = 5,9 m, o = 5,1 m SHOOL-SOUT Der persönlihe Shulservie E-Mil: info@shool-soutde Internet: Fx: 02501/26048 Linkensstr Münster

6 SHOOL-SOUT Lernzirkel Höhensätze (Pythgors und Euklid)Seite 11 von 23 IV Höhenstz und Kthetenstz des Euklid WIEDERHOLUNG Neen dem Stz von Pythgors git es noh zwei weitere wihtige Winkelsätze, nämlih den Höhenstz und den Kthetenstz von Euklid Unser rehtwinkliges Dreiek wird folgendermßen eshriftet: us Kpitel III wisst ihr ereits, dss gilt: ² + ² = ² In der Zeihnung sieht ds folgendermßen us: ² h ² ² SHOOL-SOUT Der persönlihe Shulservie E-Mil: info@shool-soutde Internet: Fx: 02501/26048 Linkensstr Münster

7 SHOOL-SOUT Lernzirkel Höhensätze (Pythgors und Euklid)Seite 12 von 23 Nun eshriften wir zwei weitere Seiten, nämlih p und q Ds heißt: Die Seite wird n der Höhe h ufgestlten in p + q ² p h q ² p q Der Kthetenstz des Euklid esgt, dss in einem rehtwinkligen Dreiek ds Qudrt üer denselen Fläheninhlt esitzt wie ds Rehtek mit den Seitenlängen p und sowie ds Qudrt üer denselen Fläheninhlt wie ds Rehtek mit den Seitenlängen q und ls Formeln: ² = q ² = p SHOOL-SOUT Der persönlihe Shulservie E-Mil: info@shool-soutde Internet: Fx: 02501/26048 Linkensstr Münster

8 Unterrihtsmterilien in digitler und in gedrukter Form uszug us: Lernzirkel / Sttionenlernen: Höhensätze (Pythgors und Euklid) Ds komplette Mteril finden Sie hier: Downlod ei Shool-Soutde

Die Satzgruppe des Pythagoras

Die Satzgruppe des Pythagoras 7 Die Stzgruppe des Pythgors In Klssenstufe 7 hen wir uns ei den Inhlten zur Geometrie insesondere mit Dreieken und ihren Eigenshften eshäftigt. In diesem Kpitel wirst du erkennen, dss es ei rehtwinkligen

Mehr

10 1 Grundlagen der Schulgeometrie. 1.3 Das Dreieck

10 1 Grundlagen der Schulgeometrie. 1.3 Das Dreieck 10 1 Grundlgen der Shulgeometrie 13 Ds Dreiek In diesem shnitt findet lles in der ffinen Stndrdeene 2 = R 2 sttt Drei Punkte, und, die niht uf einer Gerden liegen, ilden ein Dreiek Die Punkte,, nennt mn

Mehr

Symmetrien und Winkel

Symmetrien und Winkel 5-04 1 10 mthuh 1 LU reitsheft + weitere ufgen «Grundnforderungen» Symmetrien 301 Zeihne Grossuhsten des lphets, sortiert nh vier Typen: hsensymmetrish punktsymmetrish hsen- und punktsymmetrish weder hsen-

Mehr

Wir haben ein Koordinatensystem mit der x-achse und der y-achse. Nun wird ein Kreis gebildet mit dem Radius r=1.

Wir haben ein Koordinatensystem mit der x-achse und der y-achse. Nun wird ein Kreis gebildet mit dem Radius r=1. Trigonometrie In diesem Themenereih wenden wir uns den Winkeln im rehtekigen Dreiek zu. Du hst uf deinem Tshenrehner siher shon die Tsten sin, os und tn gesehen. Doh ws edeuten sie? Ds wollen wir herusfinden.

Mehr

2.2. Aufgaben zu Figuren

2.2. Aufgaben zu Figuren 2.2. Aufgen zu Figuren Aufge 1 Zeihne ds Dreiek ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erehne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und C(8

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kohls Mathe-Tandem Geometrie - Partnerrechnen im

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kohls Mathe-Tandem Geometrie - Partnerrechnen im Unterrihtsmterilien in digitler und in gedrukter Form uszug us: Kohls Mthe-Tndem Geometrie - Prtnerrehnen im 9.-10. Shuljhr Ds komplette Mteril finden Sie hier: Shool-Sout.de Mthe-Tndem Geometrie für ds

Mehr

Geometrische Figuren und Körper

Geometrische Figuren und Körper STNRUFGEN Geometrishe Figuren und Körper Geometrishe Figuren und Körper Welhe Shreiweisen geen den Winkel β des neenstehenden reieks PQR rihtig wieder? β = Qrp β = rp β = PQR R β = QRP β = pq q p P r Q

Mehr

Die Winkelsumme im Dreieck beträgt 180. Herleitung bzw. experimentelle Begründung in der Schule: Durch Punktspiegelung. Bedeutung+Winkelsumme 1

Die Winkelsumme im Dreieck beträgt 180. Herleitung bzw. experimentelle Begründung in der Schule: Durch Punktspiegelung. Bedeutung+Winkelsumme 1 edeutung+winkelsumme 1 Winkelsumme Kpitel 5: Dreiekslehre 5.1 edeutung der Dreieke Durh Tringultion lssen sih Vieleke in Dreieke zerlegen ( n Ek in n- Dreieke) eweis von Sätzen mittels Sätzen üer Dreieke

Mehr

Flächensätze am rechtwinkligen Dreieck

Flächensätze am rechtwinkligen Dreieck Flähensätze m rehtwinkligen Dreiek ufge: Zeihne ein rehtwinkliges Dreiek us = 7 m, = 5 m γ = 90 o und zeihne die Höhe h ein. γ Kthete h Kthete q Hypotenusenshnitte Hypotenuse p MERKE: Ktheten: Hypotenuse:

Mehr

Muss der Umfang (u) oder der Flächeninhalt (A) berechnet werden? Kreuze an! Der Umfang (u) ist die Länge des Weges um eine Fläche herum.

Muss der Umfang (u) oder der Flächeninhalt (A) berechnet werden? Kreuze an! Der Umfang (u) ist die Länge des Weges um eine Fläche herum. 9 Rettungsring Umfng und Fläheninhlt von Figuren Begriffe: Umfng und Fläheninhlt 1 Muss der Umfng (u) oder der Fläheninhlt () erehnet werden? Kreuze n! u B C D E F G H Zun eines Grundstüks Rsenflähe eines

Mehr

Ein Winkel zwischen 0 und 90 heißt spitzer Winkel, ein Winkel zwischen 90 und 180 heißt stumpfer Winkel.

Ein Winkel zwischen 0 und 90 heißt spitzer Winkel, ein Winkel zwischen 90 und 180 heißt stumpfer Winkel. Geometrie 1 3 Winkelsummen Der von zwei Nhrseiten eines Vieleks geildete Winkel heißt Innenwinkel. Die Summe der Innenwinkel eines Dreieks eträgt 180. + + = 180 Die Summe der Innenwinkel eines Viereks

Mehr

Download. Hausaufgaben Geometrie 1. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben Geometrie 1. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: ownlod Otto Myr Husufgen Geometrie 1 Üen in drei ifferenzierungsstufen ownloduszug us dem Originltitel: Husufgen Geometrie 1 Üen in drei ifferenzierungsstufen ieser ownlod ist ein uszug us dem Originltitel

Mehr

Der Begriff der Stammfunktion

Der Begriff der Stammfunktion Lernunterlgen Integrlrehnung Der Begriff der Stmmfunktion Wir gehen von folgender Frgestellung us: welhe Funktion F x liefert ls Aleitung eine gegeene Funktion f x. Wir suhen lso eine Umkehrung der Aleitung

Mehr

Arbeitsblatt Geometrie / Trigonometrie

Arbeitsblatt Geometrie / Trigonometrie Fhhohshule Nordwestshweiz (FHNW) Hohshule für Tehnik Institut für Geistes- und Nturwissenshft reitsltt Geometrie / Trigonometrie Dozent: Roger urkhrdt Klsse: rükenkurs 2010 Winkeleziehugen 1. ufge üro:

Mehr

Aufgabe 1. Die Zahl 6 wird aus 3 gleichen Ziffern mit Hilfe der folgenden mathematischen

Aufgabe 1. Die Zahl 6 wird aus 3 gleichen Ziffern mit Hilfe der folgenden mathematischen Deprtment Mthemtik Tg der Mthemtik 5. Juli 008 Klssenstufen 9, 10 Aufge 1. Die Zhl 6 wird us 3 gleihen Ziffern mit Hilfe der folgenden mthemtishen Symole drgestellt: + Addition Sutrktion Multipliktion

Mehr

KOMPETENZHEFT ZUR TRIGONOMETRIE, III

KOMPETENZHEFT ZUR TRIGONOMETRIE, III Mthemtik mht Freu(n)de KOMPETENZHEFT ZUR TRIGONOMETRIE, III 1. Aufgenstellungen Aufge 1.1. Zur Shneelsterehnung wird der Neigungswinkel α des in der nhstehenden Aildung drgestellten Dhes enötigt. Dei gilt:

Mehr

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B Erkundungen Terme vergleihen Forshungsuftrg : Fläheninhlte von Rehteken uf vershiedene Arten erehnen Die Terme () is (6) eshreien jeweils den Fläheninhlt von einem der drei Rehteke. Ordnet die Terme den

Mehr

Download. Hausaufgaben: Trigonometrie. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben: Trigonometrie. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: Downlod Otto Myr Husufgen: Üen in drei Differenzierungsstufen Downloduszug us dem Originltitel: Husufgen: Üen in drei Differenzierungsstufen Dieser Downlod ist ein uszug us dem Originltitel Husufgen Mthemtik

Mehr

Satzgruppe des Pythagoras

Satzgruppe des Pythagoras Stzgruppe des Pythgors Jürgen Zumdik I. ntdeken des Stzes 1) Seilspnnergeshihte oder Zimmermnnsgeshihte (in Zimmermnn legt us Ltten der Länge 1,0 m, 1,60 m und,00 m ein Dreiek). ) us einer Werung von Ritter-Sport

Mehr

Pythagoras. Suche ein rechtwinkliges Dreieck mit ganzzahligen Seitenlängen. ... c Roolfs

Pythagoras. Suche ein rechtwinkliges Dreieck mit ganzzahligen Seitenlängen. ... c Roolfs Pythgors Suhe ein rehtwinkliges Dreiek mit gnzzhligen Seitenlängen..... 1 Pythgors Für ein Dreiek mit den Seitenlängen = 3 und = 4 (in m) gilt vermutlih = 5. Weise diese Vermutung nh. Tipp: Bestimme den

Mehr

Download VORSCHAU. Trigonometrie an Stationen. Übungsmaterial zu den Bildungsstandards. Marco Bettner, Erik Dinges.

Download VORSCHAU. Trigonometrie an Stationen. Übungsmaterial zu den Bildungsstandards. Marco Bettner, Erik Dinges. Downlod Mro Bettner, Erik Dinges Trigonometrie n Sttionen Üungsmteril zu den Bildungsstndrds Downloduszug us dem Originltitel: Trigonometrie n Sttionen Üungsmteril zu den Bildungsstndrds Dieser Downlod

Mehr

Download. Trigonometrie an Stationen. Übungsmaterial zu den Bildungsstandards. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Trigonometrie an Stationen. Übungsmaterial zu den Bildungsstandards. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Downlod Mro Bettner, Erik Dinges Trigonometrie n Sttionen Üungsmteril zu den Bildungsstndrds Downloduszug us dem Originltitel: Trigonometrie n Sttionen Üungsmteril zu den Bildungsstndrds Dieser Downlod

Mehr

01 Proportion Verhältnis Maßstab

01 Proportion Verhältnis Maßstab 5 Ähnlihkeit und Strhlensätze LS 01.M1 01 Proportion Verhältnis Mßst 1 Lies die folgende Informtion sorgfältig. Mrkiere wihtige egriffe und Formeln. ) Proportionle Zuordnung ei einer proportionlen Zuordnung

Mehr

Leseprobe. Geometrie: Dreieck, Viereck, Vieleck, Kreis. Sicher, effizient und individuell den Grundstein zum Erfolg legen

Leseprobe. Geometrie: Dreieck, Viereck, Vieleck, Kreis. Sicher, effizient und individuell den Grundstein zum Erfolg legen Leseroe Geometrie: Dreiek, Vierek, Vielek, Kreis Siher, effizient und individuell den Grundstein zum Erfolg legen KD Home demy ein Unternehmen der Klidos ildungsgrue Shweiz uszug us Lernheft uf den folgenden

Mehr

a) Spezielle Winkel bei schneidenden Geraden und Parallelen α 3 β 4 Institut für Automatisierungstechnik Prof. Dr. Ch. Bold Vorsemester V.

a) Spezielle Winkel bei schneidenden Geraden und Parallelen α 3 β 4 Institut für Automatisierungstechnik Prof. Dr. Ch. Bold Vorsemester V. 0.05.0 Geometrie und Trigonometrie ) Spezielle Winkel ei shneidenden Gerden und Prllelen 4 4 Sheitelwinkel sind gleih (z.. zw. ) Neenwinkel ergänzen sih zu 80 0 (z.. + 80 0 ) Stufenwinkel sind gleih (z..

Mehr

2.2. Figuren Dreiecke Winkelsumme in Dreiecken Besondere Dreiecke Vierecke

2.2. Figuren Dreiecke Winkelsumme in Dreiecken Besondere Dreiecke Vierecke .. Figuren Figuren sind zweidimensionle Geilde in der Eene. Die einfhsten Figuren sind Dreieke und Viereke.... Dreieke Bezeihnungen in Dreieken werden die Ekpunkte A, B, sowie die dzugehörigen Innenwinkel,,

Mehr

Grundwissenkatalog / g8 Geometrie / 7. Jahrgangsstufe

Grundwissenkatalog / g8 Geometrie / 7. Jahrgangsstufe Grundwissenktlog / g8 Geometrie /. Jhrgngsstufe Die folgende ufstellung enthält mthemtishe Grundfertigkeiten, die ein Shüler nh der. Jhrgngsstufe eherrshen sollte. Dieses Wissen wird in den folgenden Jhren

Mehr

M 2 - Übungen zur 2. Schularbeit

M 2 - Übungen zur 2. Schularbeit M - Üungen zur. hulreit ) erehne ds Ergenis! ) ( ) + ) ( ) ) ( ) ( ) + 0 ) erehne! )( ) + ( ) ) ( + ) )( ) ( ) + ) hreie ds Ergenis ls gemishte Zhl! (Kürze ereits vor dem Multiplizieren!) ) ) ) Löse die

Mehr

gehört ebenfalls zu einem Paar. Da 5 eine Primzahl und kein anderes Quadervolumen ein Vielfaches von 5 V o

gehört ebenfalls zu einem Paar. Da 5 eine Primzahl und kein anderes Quadervolumen ein Vielfaches von 5 V o Lndeswettewer Mthemtik Bden-Württemerg 999 Runde ufge Ein Würfel wird durh je einen Shnitt rllel zur order-, Seiten und Dekflähe in ht Quder zerlegt (siehe Skizze) Können sih die Ruminhlte dieser Quder

Mehr

2 Die Bildsprache Der relevante Winkel im grünen Dreieck ist stumpf; die gleichschenkligen Dreiecke haben den Basiswinkel 180 :

2 Die Bildsprache Der relevante Winkel im grünen Dreieck ist stumpf; die gleichschenkligen Dreiecke haben den Basiswinkel 180 : Hns Wlser, [20080409] Eine Visulisierung des Kosinusstzes 1 Worum es geht Es wird eine zum Pythgors-Piktogrmm nloge Figur für niht rehtwinklige Dreieke esprohen. Dei werden ähnlihe gleihshenklige Dreieke

Mehr

Änderungen in Zweitauflagen von Buch, Arbeits- und Theorieheft und Begleitordner

Änderungen in Zweitauflagen von Buch, Arbeits- und Theorieheft und Begleitordner Änderungen in Zweituflgen von uh, reits- und Theorieheft und egleitordner lle uflgen des Shüleruhes, des reits- und Theorieheftes und des egleitordners lssen sih prolemlos neeneinnder verwenden. Shüleruh

Mehr

Einführung in die Mathematik des Operations Research

Einführung in die Mathematik des Operations Research Universität zu Köln Mthemtishes Institut Prof. Dr. F. Vllentin ufge ( + 7 = 0 Punkte) Einführung in die Mthemtik des Opertions Reserh Sommersemester 0 en zur Klusur (7. Juli 0). Es seien M = {,..., n },

Mehr

Checkliste Sinus, Kosinus, Tangens

Checkliste Sinus, Kosinus, Tangens Chekliste Sinus, Kosinus, Tngens Nr. K 1 K K 3 K 4 K 5 K 6 K 7 K 8 Kompetenz Ih knn... in einem rehtwinkligen Dreiek Kthete, Gegenkthete und Hypotenuse estimmen in einem rehtwinkligen Dreiek die Seitenverhältnisse

Mehr

EINFÜHRUNG IN DIE GEOMETRIE SS DEISSLER skript05-temp.doc

EINFÜHRUNG IN DIE GEOMETRIE SS DEISSLER skript05-temp.doc EINFÜHRUNG IN DIE GEOMETRIE SS 05 50 DEISSLER skript05-temp.do 5 Dreiekslehre 5.1 edeutung der Dreieke Durh Tringultion lssen sih Vieleke in Dreieke zerlegen ( n Ek in n- Dreieke) eweis von Sätzen mittels

Mehr

2. Landeswettbewerb Mathematik Bayern 2. Runde 1999/2000

2. Landeswettbewerb Mathematik Bayern 2. Runde 1999/2000 Lndeswettewer Mthemtik Bern Runde 999/000 Aufge Ein Würfel wird durh je einen Shnitt rllel zur order-, Seiten und Dekflähe in ht Quder zerlegt (siehe Skizze) Können sih die Ruminhlte dieser Quder wie :

Mehr

Dreiecke können einerseits nach den Eigenschaften ihrer Seiten und andererseits nach ihren Winkeln benannt werden. Einteilung nach den Seiten:

Dreiecke können einerseits nach den Eigenschaften ihrer Seiten und andererseits nach ihren Winkeln benannt werden. Einteilung nach den Seiten: gnz klr: Mthemtik 2 - s Ferienheft mit Erfolgsnzeiger 3 Rettungsring Eigenshften von reieken & Viereken Eigenshften von reieken Ein reiek ht immer 3 Ekpunkte, 3 Seiten un 3 Innenwinkel. ie eshriftung eines

Mehr

12. Erweitern von Brüchen der kleinste gemeinsame Nenner

12. Erweitern von Brüchen der kleinste gemeinsame Nenner D Alger II. Erweitern von Brühen der kleinste gemeinsme Nenner Erweitere den Bruh mit. Hinweis: Beim Erweitern multiplizierst du Zähler und Nenner mit derselen Zhl zw. Vrilen. Der Wert des Bruhs leit eim

Mehr

Die Dreiecke ADM A und BCM C sind kongruent aufgrund

Die Dreiecke ADM A und BCM C sind kongruent aufgrund Westfälische Wilhelms-Universität Münster Mthemtisches Institut pl. Prof. Dr. Lutz Hille Dr. Krin Hlupczok Üungen zur Vorlesung Elementre Geometrie Sommersemester 010 Musterlösung zu ltt 4 vom 3. Mi 010

Mehr

NAME: Übungsarbeit auf die 3.SA KL.: - S.1. 1) 6G4.11-E / 001-m 0 1 2

NAME: Übungsarbeit auf die 3.SA KL.: - S.1. 1) 6G4.11-E / 001-m 0 1 2 NME: Üungsreit uf die 3.S KL.: - S.1 1) 6G4.11-E / 001-m 0 1 estimme die Höhe des umes, wenn = 14 m und Der Mßst soll 1 : 500 sein. umhöhe 38 ist. ) 6G4.1-E / 003-m 0 1 Konstruiere ds Dreiek im rehtwinkeligen

Mehr

DEMO. Dreiecke: Geometrie INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Konstruktionen. Kongruente Dreiecke. Datei Nr

DEMO. Dreiecke: Geometrie INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Konstruktionen. Kongruente Dreiecke. Datei Nr Geometrie Dreieke: Konstruktionen Kongruente Dreieke Dtei Nr. 11111 DEM Friedrih ukel Stnd: 19. Juni 2017 INTERNETILITHEK FÜR SHULMTHEMTIK www.mthe-d.shule 11111 Dreieke 1 Kongruenz 2 Inhlt 1. Konstruktion

Mehr

Download VORSCHAU. Hausaufgaben Geometrie 1. Üben in drei Diferenzierungsstufen. Otto Mayr. zur Vollversion. Downloadauszug aus dem Originaltitel:

Download VORSCHAU. Hausaufgaben Geometrie 1. Üben in drei Diferenzierungsstufen. Otto Mayr. zur Vollversion. Downloadauszug aus dem Originaltitel: ownlo Otto Myr Husufgen Geometrie 1 Üen in rei iferenzierungsstufen VORSHU ownlouszug us em Originltitel: Husufgen Geometrie 1 Üen in rei ifferenzierungsstufen VORSHU ieser ownlo ist ein uszug us em Originltitel

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Figuren, Körper, Flächeninhalt, Volumen - Stationenlernen

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Figuren, Körper, Flächeninhalt, Volumen - Stationenlernen Unterrichtsmterilien in digitler und in gedruckter Form Auszug us: Figuren, Körper, Flächeninhlt, Volumen - Sttionenlernen Ds komplette Mteril finden Sie hier: School-Scout.de SCHOOL-SCOUT Lernzirkel -

Mehr

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN. Dienstag

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN. Dienstag Lösungen Dienstg -- VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN Dienstg Blok.. - 4 3y 6 3-6y 3-3 y -. - 3y 4 - y 9 - y -93. y 0,,y Sämtlihe Lösungsmethoden liefern hier whre Aussgen. Z. Bsp. «0 0».

Mehr

Download. Basics Mathe Flächenberechnung. Fläche von Rechteck, Quadrat, Drachen, Raute, Parallelogramm, Dreieck. Michael Franck

Download. Basics Mathe Flächenberechnung. Fläche von Rechteck, Quadrat, Drachen, Raute, Parallelogramm, Dreieck. Michael Franck Downlod Mihel Frnk sis Mthe Flähenerehnung Flähe von Rehtek, Qudrt, Drhen, Rute, Prllelogrmm, Dreiek Downloduszug us dem Originltitel: sis Mthe Flähenerehnung Flähe von Rehtek, Qudrt, Drhen, Rute, Prllelogrmm,

Mehr

Besondere Linien und Punkte im Dreieck

Besondere Linien und Punkte im Dreieck Sttion 6 Aufge Besondere Linien und Punkte im Dreiek Nme: Betrhte folgende Begriffe. Shreie diese n die rihtige Stelle neen den Dreieken. Höhenlinie Winkelhlierende Seitenhlierende Mittelsenkrehte Mittelpunkt

Mehr

c) Wie viele einzelne Quadratflächen besitzen alle Seiten des entstandenen Würfels zusammen?

c) Wie viele einzelne Quadratflächen besitzen alle Seiten des entstandenen Würfels zusammen? Würfelufgen Für lle Aufgen gilt: Kntenlänge der Holzwürfel = m 1. Bue einen Würfel us 8 Holzwürfeln. ) Zeihne den entstndenen Würfel: ) Wie gross ist eine Kntenlänge des entstndenen Würfels? ) Wie viele

Mehr

1 Algebra. Addition und Subtraktion. Minuend. Differenz. Subtrahend. In einer Summe darf man die Summanden vertauschen. (Kommutativgesetz)

1 Algebra. Addition und Subtraktion. Minuend. Differenz. Subtrahend. In einer Summe darf man die Summanden vertauschen. (Kommutativgesetz) TG TECHNOLOGISCHE GRUNDLAGEN Seite 1 1 Alger Addition und Sutrktion In einer Summe drf mn die Summnden vertushen. (Kommuttivgesetz) + + Summnd Summ nd Beim ddieren drf mn die Summnden zu Teilsummen zusmmenfssen.

Mehr

Konstruktion des regulären Fünfecks mit dem rostigen Zirkel (rusty compass)

Konstruktion des regulären Fünfecks mit dem rostigen Zirkel (rusty compass) onstruktion des regulären Fünfeks mit dem rostigen Zirkel (rusty ompss) Vrinte 1 Oliver ieri ie hier vorliegende Methode zur onstruktion eines regulären Fünfeks unter Zuhilfenhme eines rostigen Zirkels

Mehr

Marco Bettner/Erick Dinges. Grundwissen Pythagoras und Trigonometrie. 9./10. Klasse VORSCHAU. Bergedorfer Kopiervorlagen.

Marco Bettner/Erick Dinges. Grundwissen Pythagoras und Trigonometrie. 9./10. Klasse VORSCHAU. Bergedorfer Kopiervorlagen. Mro ettner/erik Dinges Grundwissen Pythgors und Trigonometrie 9./10. Klsse ergedorfer Kopiervorlgen VORSHU Inhltsverzeihnis Grundwissen Pythgors und Trigonometrie Stzgruppe des Pythgors Stz des Pythgors

Mehr

H Dreiecke und Vierecke

H Dreiecke und Vierecke H Dreieke und Viereke 1 eziehungen zwishen Seiten und Winkeln im Dreiek In einem Dreiek liegt der längsten Seite der größte Winkel gegenüer. Umgekehrt liegt dem größten Winkel uh die längste Seite gegenüer.

Mehr

Mathematik Trigonometrie Einführung

Mathematik Trigonometrie Einführung Mthemtik Trigonometrie Einführung Ws edeutet ds Wort Trigonometrie und mit ws eshäftigt sih die Trigonometrie? Eine kleine Wortkunde: tri edeutet 'drei' Beispiel: Trithlon,... gon edeutet 'Winkel'/'Ek'

Mehr

Rund um den Satz des Pythagoras

Rund um den Satz des Pythagoras Wolfgng Shlottke Rund um den Stz des Pythgors Lernen n Sttionen und weiterführende ufgben für den Mthemtikunterriht uerverlg GmbH 3 Sroghty Pythgors rükwärts Die Umkehrung des Stzes des Pythgors (1) Du

Mehr

DOWNLOAD. Lernzirkel Dreieck. Albrecht Schiekofer. Downloadauszug aus dem Originaltitel:

DOWNLOAD. Lernzirkel Dreieck. Albrecht Schiekofer. Downloadauszug aus dem Originaltitel: DOWNLOD lreht Shiekofer Lernzirkel Dreiek Downloduszug us dem Originltitel: 1 4 5 6 7 8 9 10 Lernzirkel Grundlgen der Geometrie Koordintensystem (Fhegriffe) Koordinten estimmen Koordinten eintrgen Spiegelpunkte

Mehr

Formelsammlung Mathematik 4. Klasse

Formelsammlung Mathematik 4. Klasse Formelsmmlung Mthemtik 4. Klsse Inhlt Rehtek... Qurt... llgemeines Dreiek... Rehtwinkeliges Dreiek... Gleihshenkliges Dreiek... 4 Gleihseitiges Dreiek... 4 Trpez... 5 Prllelogrmm... 5 Rute Rhomus... 6

Mehr

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente:

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente: Inhlt: 1 Seiten und Winkel im rehtwinkligen reiek edienen des Tshenrehners erehnungen in rehtwinkligen reieken 4 erehnungen in llgemeinen reieken 5 erehnungen in Vieleken 6 erehnungen mit Prmetern Exkurs:

Mehr

5.6 Gleichsetzungsverfahren

5.6 Gleichsetzungsverfahren .6 Gleihsetzungsverfhren Verfhren: Beide Gleihungen des Gleihungssystems werden nh derselen Vrilen ufgelöst und die entsprehenden Terme werden einnder gleihgesetzt. Beispiele (G x ) ) () x + y () x - y

Mehr

Satzgruppe des Pythagoras

Satzgruppe des Pythagoras Humboldt-Universität zu Berlin Institut für Mthemtik Dr. I. Lehmnn: Ausgewählte Kpitel der Didktik der Mthemtik WS 2008/09 Referentinnen: Undine Pierschel & Corneli Schulz 16.12.2008 Stzgruppe des Pythgors

Mehr

( 3 ( 5. Grundwissen. Die Lösungen zum Grundwissen stehen im Anhang. Mit Brüchen rechnen. 1 Vervollständige die Additionsmauern im Heft.

( 3 ( 5. Grundwissen. Die Lösungen zum Grundwissen stehen im Anhang. Mit Brüchen rechnen. 1 Vervollständige die Additionsmauern im Heft. 6 Die Lösungen zum stehen im nhng. Mit rühen rehnen 1 Vervollständige die dditionsmuern im Heft. ) ) 3 10 3 5 2 erehne. ) 13 65 88 d) 7 13 : 1 65 3 20 3 ) 2 7 1 36 e) 2 1 7 : 15 2 2 15 1 20 ) 2 7 2 1 36

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr

M3 Übung: Strahlensatz, Teilungsrechnung, Strecken teilen Name: 1)Stelle eine Verhältnisgleichung auf und berechne x!

M3 Übung: Strahlensatz, Teilungsrechnung, Strecken teilen Name: 1)Stelle eine Verhältnisgleichung auf und berechne x! M Üung: Strhlenstz, Teilungsrehnung, Streken teilen Nme: 1)Stelle eine Verhältnisgleihung uf und erehne! 1,5 4,0,0 2)Berehne mit einer Proportion! (Mße in m!) 6,0 6,5 1, )Stelle eine Verhältnisgleihung

Mehr

Mathematische Probleme, SS 2013 Montag 8.4. $Id: dreieck.tex,v /04/09 10:49:12 hk Exp hk $

Mathematische Probleme, SS 2013 Montag 8.4. $Id: dreieck.tex,v /04/09 10:49:12 hk Exp hk $ $Id: dreiek.tex,v 1.2 2013/04/09 10:49:12 hk Exp hk $ 1 Dreieke In diesem Kpitel wollen wir die sogennnte Dreiekslehre ls Teil der Elementrgeometrie der Eene ehndeln. Wie in dieser gnzen Vorlesung sind

Mehr

Mathematische Probleme, SS 2016 Dienstag $Id: dreieck.tex,v /04/22 13:58:25 hk Exp $

Mathematische Probleme, SS 2016 Dienstag $Id: dreieck.tex,v /04/22 13:58:25 hk Exp $ $Id: dreiek.tex,v 1.24 2016/04/22 13:58:25 hk Exp $ 1 Dreieke In diesem Kpitel wollen wir die Theorie der eenen Dreieke ls Teil der Elementrgeometrie der Eene ehndeln. Dei wollen wir keine Axiomtik der

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/15 09:12:15 hk Exp hk $ 1.4 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/15 09:12:15 hk Exp hk $ 1.4 Dreiecksberechnung mit Seiten und Winkeln Mthemtishe Proleme, SS 2013 Montg 15.4 $Id: dreiek.tex,v 1.5 2013/04/15 09:12:15 hk Exp hk $ 1 Dreieke 1.4 Dreiekserehnung mit Seiten und Winkeln In der letzten Sitzung htten wir egonnen die vershiedenen

Mehr

Geometrie II Vertiefung der Geometrie

Geometrie II Vertiefung der Geometrie Titel Geometrie II Vertiefung der Geometrie WS 2006/07 R.Deißler Kruter, Siegfried Erlenis Elementrgeometrie Litertur Ein reitsuh zum selstständigen und ktiven Entdeken Spektrum kd.verlg, Heidelerg 2005

Mehr

Das geteilte Quadrat

Das geteilte Quadrat 1 Ds geteilte Qudrt Puzzles from round the world by Dik Hess 19. Juli 001 Gegeben sei ein Qudrt mit der Seitenlänge. Ds Qudrt soll in zwei untershiedlihe Rehteke geteilt werden, wobei ds kleine Rehtek

Mehr

Mathematische Probleme, SS 2018 Dienstag 5.6. $Id: dreieck.tex,v /06/05 15:41:51 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2018 Dienstag 5.6. $Id: dreieck.tex,v /06/05 15:41:51 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln Mthemtishe Proleme, SS 2018 Dienstg 5.6 $Id: dreiek.tex,v 1.43 2018/06/05 15:41:51 hk Exp $ 2 Dreieke 2.1 Dreiekserehnung mit Seiten und Winkeln Am Ende der letzten Sitzung htten wir den sogennnten Kongruenzstz

Mehr

der reellen Zahlen umfasst alle rationalen und irrationalen Zahlen.

der reellen Zahlen umfasst alle rationalen und irrationalen Zahlen. . Zhlen. Die Qudrtwurzel Die Qudrtwurzel ist die positive Lösung der Gleihung Ein Teil der Qudrtwurzeln sind rtionle Zhlen. 0! z.b. 9, 0,0 0, oder, 0 0! 9 heißt Rdiknd ndere dgegen irrtionle Zhlen z. B.,

Mehr

Seite 50. Einstieg. 1 a) α und γ sind Scheitelwinkel. b) α und α sind Stufenwinkel. c) β und δ sind Scheitelwinkel. d) β und δ sind Wechselwinkel.

Seite 50. Einstieg. 1 a) α und γ sind Scheitelwinkel. b) α und α sind Stufenwinkel. c) β und δ sind Scheitelwinkel. d) β und δ sind Wechselwinkel. Dreieke Shüleruhseite 8 5 Dreieke uftkt Seiten 8, 9 Seite 8 Ds Rehtek knn niht mehr verformt werden, wenn mn zwei gegenüerliegende Eken mit einem 5er-Streifen verindet. Dmit ds Sehsek seine Form ehält,

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Proleme, SS 016 Freitg 6.5 $Id: trig.tex,v 1.14 016/05/06 1:6:14 hk Exp $ Trigonometrische Formeln.1 Die dditionstheoreme In der letzten Sitzung htten wir geometrische Herleitungen der dditionstheoreme

Mehr

3 Trigonometrische Formeln

3 Trigonometrische Formeln Mthemtische Proleme, SS 018 Donnerstg 1.6 $Id: trig.tex,v 1. 018/06/1 14:08:44 hk Exp $ 3 Trigonometrische Formeln 3. Verdoppelungs- und Hlierungsformeln Als Verdoppelungsformeln ezeichnet mn die Formeln

Mehr

DOWNLOAD Freiarbeit: Geometrische Flächen

DOWNLOAD Freiarbeit: Geometrische Flächen DOWNLOAD Günther Koh Freireit: Geometrishe Flähen Mterilien für die 9. Klsse in zwei Differenzierungsstufen Downloduszug us dem Originltitel: Ds Werk ls Gnzes sowie in seinen Teilen unterliegt dem deutshen

Mehr

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente:

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente: Stzgruppe des Pytgors Inlt: 1 Der Stz des Pytgors Pytgors im Rum 3 ufstellen von Formeln 4 Prktise nwendungen 5 Der Ktetenstz 6 Der Höenstz 7 Exkurs: Konstruktion retwinkliger Dreieke 8 ekliste 9 Hinweise

Mehr

Lösungen von Hyperplot

Lösungen von Hyperplot ufgbensmmlung Weitere Lösungen zu Geometrieufgben der Mthemtik-Olympide Zentrles Komitee für die Olympiden Junger Mthemtiker Lösungen von Hyperplot zusmmengestellt von Steffen Polster https://mthemtiklph.de

Mehr

9 Vektorprodukt. Dieses Gleichungssystem muss man nun lösen! Das ist allerdings nicht ganz einfach. Die Lösung lautet:

9 Vektorprodukt. Dieses Gleichungssystem muss man nun lösen! Das ist allerdings nicht ganz einfach. Die Lösung lautet: 9 Vektorprodukt 9.1 Ds Vektorprodukt Gegeen seien zwei (komplnre) Vektoren und, die eine Eene ufspnnen. Suht mn einen Vektor n, der uf diese Eene senkreht steht, dnn muss n orthogonl zu und n orthogonl

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Shufhprinzip (Folie 137) Automten und formle Sprhen Notizen zu den Folien Im Blok Ds Shufhprinzip für endlihe Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl von

Mehr

2.2. Aufgaben zu Figuren

2.2. Aufgaben zu Figuren 2.2. Aufgen zu Figuren Aufge 1 Zeichne ds Dreieck ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erechne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und

Mehr

Trigonometrie. Theorie & Aufgaben

Trigonometrie. Theorie & Aufgaben Trigonometrie Theorie & Aufgen Version vom 8. Ferur 017 1 Winkelmsse 1.1 Ds Grdmss Ds trditionelle System der Winkelmessung eruht druf, dss der volle Winkel 360 entspriht. 10 90 60 150 180 30 0, 360 10

Mehr

2 Trigonometrie. 2.1 Ziele. 2.2 Warum braucht man Trigonometrie?

2 Trigonometrie. 2.1 Ziele. 2.2 Warum braucht man Trigonometrie? Mthemtik I / Trionometrie 2 Trionometrie 2. Ziele m Ende dieses Kpitels kennen Sie die wihtien eriffe der Trionometrie und können diese siher in Prolemen nwenden. Im rehtwinklien Dreiek knn us vershiedenen

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Mthemtik: Mg. Schmid Wolfgng Areitsltt. Semester ARBEITSBLATT MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Zunächst einml müssen wir den Begriff Sklr klären. Definition: Unter einem Sklr ersteht mn eine

Mehr

Formelsammlung für berufliche Gymnasien Mathematik

Formelsammlung für berufliche Gymnasien Mathematik Mit zugelssener Merkhilfe ohner Ott Deush Formelsmmlung für eruflihe Gymnsien Mthemtik Ds Werk und seine Teile sind urheerrehtlih geshützt. Jede Nutzung in nderen ls den gesetzlih zugelssenen Fällen edrf

Mehr

II Orientieren und Bewegen im Raum

II Orientieren und Bewegen im Raum Schüleruchseiten II Orientieren und ewegen im Rum Erkundungen Seite Seite ( ), ( ), D ( ), E ( ), F ( ), G ( ), H ( ) Ich sehe ws, ws Du nicht siehst Individuelle Lösungen Rechnen mit Vektoren uftrg )

Mehr

Satz des Pythagoras. c 2. a 2. b 2

Satz des Pythagoras. c 2. a 2. b 2 Stz des Pythgors 01 c b Hypotenusenqudrt = Summe der beiden Kthetenqudrte ² = c² b² = c² b² ² + b² = c² b² = c² ² b= c² ² c² = ² + b² c= ² + b² 0 Der Stz des Pythgors und seine rechnerische Anwendung Beispiel:

Mehr

Vorkurs Mathematik für Ingenieur Innen WS 2017/2018 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck:

Vorkurs Mathematik für Ingenieur Innen WS 2017/2018 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck: Prof. Dr. J. Pnnek Dynmics in Logistics Vorkurs Mthemtik für Ingenieur Innen WS 207/208 Übung 3 Aufgbe : Trigonometrie () Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck:

Mehr

20 % mit dem Rad. 60 % mit dem Bus 5 % zu Fuß. Eltern

20 % mit dem Rad. 60 % mit dem Bus 5 % zu Fuß. Eltern 2.1.12 420 Shüler kommen uf vershiedene rt und Weise in die Shule: 252 mit dem us, 84 mit dem Rd, 63 mit den Eltern, 21 zu Fuß. Stelle diesen Shverhlt in einem Prozentkreis dr! 20 % mit dem Rd 60 % mit

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 9

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 9 Regiomontnus - Gymnsium Hßfurt - Grundwissen Mthemtik Jhrgngsstufe 9 Wissen und Können Zhlenmengen N Z Q R ntürliche gnze rtionle reelle Aufgen, Beispiele, Erläuterungen N, Z, Q, R Wurzeln (Qudrtwurzel)

Mehr

Wurzel b bedeutet: Suche die Zahl, die mit sich selbst multipliziert gerade die Zahl ergibt, die unter der Wurzel steht.

Wurzel b bedeutet: Suche die Zahl, die mit sich selbst multipliziert gerade die Zahl ergibt, die unter der Wurzel steht. /0 Areitsltt Wurzel edeutet: Suhe die Zhl, die mit sih selst multipliziert gerde die Zhl ergit, die unter der Wurzel steht. Also: - suhe eine Zhl, die mit sih selst multipliziert, genu ergit. Die Lösung

Mehr

Dreiecke und Vierecke

Dreiecke und Vierecke reieke un Viereke Viereke Welhe esoneren Viereke sin eknnt, ws zeihnet esonere Viereke us? Impuls uf Seiten, Winkel, Symmetrie!.) s Qurt: Ein Qurt esitzt folgene Eigenshften: lle Seiten sin gleihlng. (

Mehr

Ich kann den SdP anwenden, um Seitenlängen in rechtwinkligen Dreiecken zu berechnen.

Ich kann den SdP anwenden, um Seitenlängen in rechtwinkligen Dreiecken zu berechnen. Klsse 9c Mthemtik Vorbereitung zur Klssenrbeit Nr. m.5.018 Themen: Stz des Pythgors, Qudrtische Gleichungen Checkliste Ws ich lles können soll Ich knn den Stz des Pythgors (SdP) in Worten formulieren.

Mehr

Erweiterung der Euklidischen Flächensätze auf das allgemeine Dreieck nebst Anwendung zur Volumenbestimmung des allgemeinen Tetraeders.

Erweiterung der Euklidischen Flächensätze auf das allgemeine Dreieck nebst Anwendung zur Volumenbestimmung des allgemeinen Tetraeders. Arno Fehringer, Gymnsillehrer für Mthemtik und Physik 1 Erweiterung der Euklidischen Flächensätze uf ds llgemeine Dreieck nest Anwendung zur Volumenestimmung des llgemeinen Tetreders. Arno Fehringer Juni

Mehr

Aufgaben zum Pythagoras, Kathetensatz, Höhensatz 1. - Lösungen -

Aufgaben zum Pythagoras, Kathetensatz, Höhensatz 1. - Lösungen - Mittelschule / Relschule / Gymnsium ufgben zum Pythgors, Kthetenstz, Höhenstz Hinweis: - Lösungen - Die jeweilige Längeneinheit (z.b. mm) wird beim Rechnen nicht ngegeben und erst dem Ergebnis hinzugefügt.

Mehr

Konstruktion mit Zirkel und Lineal

Konstruktion mit Zirkel und Lineal Alert Ludigs Universität Freiurg Institut für Mthemtik Ateilung für Reine Mthemtik Prof Dr D Wolke Dipl Mth S Feiler Üungen ur Vorlesung Ergänungen ur Elementren Zhlentheorie Wintersemester 9/ 9 Üungsltt

Mehr

Einige Formeln zum Goldenen Schnitt

Einige Formeln zum Goldenen Schnitt Einige Formeln zum Goldenen Schnitt Eine Strecke wird im Verhältnis geteilt, wenn ds Verhältnis der Gesmtstrecke m+m zur längeren Teilstrecke M gleich dem Verhältnis der längeren Teilstrecke M zur kürzeren

Mehr

1 Mein Wissen aus der 3. Klasse Beispiele

1 Mein Wissen aus der 3. Klasse Beispiele Mein Wissen us er. Klsse eispiele en Lösungen sin Wortteile zugeornet. Sie ergeen er Reihe nh einen mthemtishen egriff, en u in er. Klsse erehnen wirst! ei rzhlung wir vom Preis eines utos % Preisnhlss

Mehr

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα.

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα. Trigonometrie Wenn mn die Trigonometrischen Funktionen Sinus, Kosinus und Tngens berechnen will, ist es wichtig, uf welchen Winkel sie sich beziehen. Die Kthete, die direkt m Winkel nliegt, heißt Ankthete

Mehr

2 Trigonometrie. 2.1 Ziele. 2.2 Warum braucht man Trigonometrie?

2 Trigonometrie. 2.1 Ziele. 2.2 Warum braucht man Trigonometrie? Mthemtik I / Trionometrie Trionometrie. Ziele m Ende dieses Kpitels kennen Sie die wihtien eriffe der Trionometrie und können diese siher in Prolemen nwenden. Im rehtwinklien Dreiek knn us vershiedenen

Mehr

AT = λ TB. Kapitel 5: Teilverhältnisse und Ähnlichkeit. Definition Teilverhältnis λ. Allgemeiner

AT = λ TB. Kapitel 5: Teilverhältnisse und Ähnlichkeit. Definition Teilverhältnis λ. Allgemeiner Definition Teilverhältnis Definition Teilverhältnis Üung Kpitel 5: Teilverhältnisse und Ähnlihkeit Definition Teilverhältnis λ λ T T llgemeiner T λ T T T T T ist innerer Teilpunkt, flls λ > 0 T ist äußerer

Mehr

Der Kosinussatz. So erhalten wir: und. Um beide Formeln miteinander vereinen zu können, stellen wir die zweite Formel nach h 2 um, und erhalten:

Der Kosinussatz. So erhalten wir: und. Um beide Formeln miteinander vereinen zu können, stellen wir die zweite Formel nach h 2 um, und erhalten: Der Kosinusstz Dreieke lssen si mit drei ngen zu irer Figur, vollständig zeinen. D er die zeinerise Lösung eines Dreieks nit so genu und zudem ret ufwendig ist, muss es u einen renerisen Weg geen, die

Mehr

DOWNLOAD. Lernzirkel Viereck. Albrecht Schiekofer. Downloadauszug aus dem Originaltitel:

DOWNLOAD. Lernzirkel Viereck. Albrecht Schiekofer. Downloadauszug aus dem Originaltitel: OWNLO lreht Shiekofer Lernzirkel Vierek ownlouszug us em Originltitel: 5 6 7 8 9 0 Lernzirkel Grunlgen er Geometrie Koorintensystem (Fhegriffe) Koorinten estimmen Koorinten eintrgen Spiegelpunkte estimmen

Mehr

DOWNLOAD. Geometrie 7./8. Klasse: Das Dreieck. Mathetraining in 3 Kompetenzstufen. Brigitte Penzenstadler. Downloadauszug aus dem Originaltitel:

DOWNLOAD. Geometrie 7./8. Klasse: Das Dreieck. Mathetraining in 3 Kompetenzstufen. Brigitte Penzenstadler. Downloadauszug aus dem Originaltitel: DOWNLOD rigitte Penzenstadler 7./8. Klasse: Das Dreiek Mathetraining in 3 Kompetenzstufen Downloadauszug aus dem Originaltitel: Das Werk als Ganzes sowie in seinen Teilen unterliegt dem deutshen Urheberreht.

Mehr