Konstruktion mit Zirkel und Lineal

Größe: px
Ab Seite anzeigen:

Download "Konstruktion mit Zirkel und Lineal"

Transkript

1 Alert Ludigs Universität Freiurg Institut für Mthemtik Ateilung für Reine Mthemtik Prof Dr D Wolke Dipl Mth S Feiler Üungen ur Vorlesung Ergänungen ur Elementren Zhlentheorie Wintersemester 9/ 9 Üungsltt Musterlösung 6 Deemer 9 Konstruktion mit Zirkel und Linel Die Menge {t + ( t) C t R} heißt Gerde in C durh C und C\{} und die Menge { C = r} heißt Kreis in C um C mit dem Rdius r R + {} Ist G eine Menge von Gerden in C und K eine Menge von Kreisen in C, so sei f (G, K) die Menge der Zhlen in C, die durh den Shnittpunkt eier Gerden us G, einen Shnittpunkt eier Kreise us K oder einen Shnittpunkt einer Gerden us G und eines Kreis us K definiert sind Außerdem ird mit (g, h) für g G und h G der kleinste niht negtive Winkel eeihnet, um den g mthemtish positiv gedreht erden muss, um prllel u h u sein Sei M C Seien G M, die Menge ller Gerden, die durh ei Punkte us M lufen und K M, die Menge ller Kreise um einen Punkt us M mit einem Rdius, der der Länge des Astnds eines Punktes us M um Mittelpunkt des Kreises entspriht Für lle n N seien nun M n := f (G M,n, K M,n ), G M,n die Menge ller Gerden, die durh ei Punkte us M n lufen und K M,n die Menge ller Kreise um einen Punkt us M n mit einem Rdius, der der Länge des Astnds eines Punktes us M n um Mittelpunkt des Kreises entspriht Seien A M := M M n, GA M := G M,n und KA M := K M,n n= n= A M heißt Menge der us M konstruierren Zhlen n= Aufge 67 (Fliegender Zirkel und Prllelen) Sei M C derrt, dss es ein A M und ein A M \ {} git ) Zeigen Sie, dss für A M und A M \ {} uh die dritte Spite eines gleihseitigen Dreieks, dessen eine Seite die Streke von nh ist, in A M liegt! ) Zeigen Sie unter Verendung von Aufgenteil ), dss für s A M, A M und A M der Kreis um s mit dem Rdius in KA M liegt! Tipp: Verenden Sie ein gleihseitiges Dreiek mit den Eken s und! ) Zeigen Sie, dss für A M und g GA M uh die Senkrehte u g durh in GA M liegt! Folgern Sie hierus, dss uh die Prllele u g durh in GA M liegt!

2 Lösung: ) Seien A M und A M \ {} Der Kreis um mit Rdius ist in KA M Außerdem ist der Kreis um mit Rdius in KA M Die Shnittpunkte der eiden Kreise sind die gesuhten Spiten der gleihseitigen Dreieke ) Seien s A M, A M und A M Ist =, so ist = und der Kreis vom Rdius um s liegt in KA M Ist s {, }, so ist der Kreis um s mit Rdius trivilereise in KA M Seien nun lso und s vorusgesett s Nh Aufgenteil ) ist die Spite C eines gleihseitigen Dreieks mit den Eken und s in A M Der Kreis um mit Rdius ist in KA M Die Gerde durh und ist in GA M Der eiter von entfernte Shnittpunkt des Kreises mit der Gerden C ist dmit in A M Der Kreis um mit Rdius ist in KA M und die Gerde durh und s ist in GA M Dmit ist deren näher ei s gelegener Shnittpunkt C ist in A M Zuguterlett ist der Kreis um s mit dem Rdius s in KA M Wegen s = s + s = = = = folgt die Behuptung

3 ) Seien A M und g GA M g h g g h h Es git ein (g A M ) \ {}, d g GA M und dmit eine Gerde durh ei Punkte us A M ist Der Kreis um mit dem Rdius ist in KA M und shneidet g Git es nur einen Shnittpunkt, so ist ds und die Gerde durh und steht senkreht uf g, d g eine Tngente n den Kreis ist Git es ei Shnittpunkte, so sei C \ {} der eite Shnittpunkt Die Kreise um und mit den Rdien liegen in KA M und shneiden sih in C \ {} Die Gerde h durh und ist in GA M und steht senkreht uf g Will mn die Prllele u g durh konstruieren, so muss mn lediglih die Senkrehte u h durh genu ie im ngegeenen Verfhren konstruieren Aufge 68 (A M R ist ein Unterkörper von R und A M ist ein Unterkörper von C) ) Zeigen Sie, dss mit A M und A M uh A M und + A M sind, enn A M und M C sind! ) Zeigen Sie, dss für M C, g GA M, h GA M, g GA M und h GA M ein k GA M, ein k GA M und ein k 3 GA M mit (g, k ) = (g, h ), (g, k ) = π (g, h ) (flls (g, h ) ist) { (g, h ) + (g, h ), flls (g, h ) + (g, h ) < π ist und (g, k 3 ) = (g, h ) + (g, h ) π, flls (g, h ) + (g, h ) π ist existieren, enn es ein A M und ein A M \ {} git! Bemerkung: Ds heißt, Winkel können hliert, gespiegelt und ddiert erden ) Zeigen Sie für M C, x R, y R und R \ {} dss xy A M und A M sind, enn {; ; x; y; } A M gilt! 3

4 Lösung: ) Seien A M und A M Wegen A M ist die Gerde durh und in GA M Außerdem ist der Kreis um mit Rdius in KA M Die Shnittpunkte von Gerde und Kreis sind gerde und + Wegen A M und Aufge 67 ) ist der Kreis um mit Rdius in KA M Außerdem ist der Kreis um mit Rdius in KA M Ein Shnittpunkt der eiden Kreise ist gerde + ) Seien g GA M, h GA M, g GA M und h GA M Hlieren: Ist g prllel u h, so sei k die Senkrehte uf g durh einen der g definierenden Punkte Nh Aufge 67 ) liegt diese in GA M g shneide nun lso h h d k g Sei C der Shnittpunkt von g und h Es git ein A M \{} und der Kreis um mit Rdius ist in KA M Ein Shnittpunkt des Kreises mit g sei, der in mthemtish positiver Rihtung näherliegende Shnittpunkt des Kreises mit h sei Die Kreise um mit Rdius und um mit Rdius sind in KA M und shneiden sih in und in d C \ {} Sei k die Gerde durh und d Spiegeln: Sei nun g niht prllel u h g d h k Sei C der Shnittpunkt von g und h Es git ein A M \ {} und der Kreis um mit Rdius ist in KA M Der Kreis und h shneiden sih in C Der Kreis um mit Rdius ist in KA M und shneidet g in und in C \ {} Der Kreis um mit Rdius ist in KA M und shneidet den Kreis um mit Rdius in und in d C \ {} Sei k die Gerde durh und d 4

5 Addieren: Sind g und h prllel, so sei k 3 := h Seien nun lso g und h niht prllel h g s k 3 g h Sei C ein Shnittpunkt von g und h Sei s C der Shnittpunkt von g und h Es git ein g A M mit s, d g eine Gerde durh ei vershiedene Punkte us A M ist Der Kreis um s mit Rdius s ist in KA M Sei C derjenige Shnittpunkt dieses Kreises mit h, der in mthemtish positiver Rihtung näher n liegt Nh Aufgenteil 67 ) ist der Kreis um mit Rdius s in KA M Er shneidet h in C Nh Aufgenteil 67 ) ist der Kreis um mit Rdius in KA M Sei C derjenige Shnittpunkt dieses Kreises mit dem Kreis um mit Rdius s, der in mthemtish positiver Rihtung näher n liegt Sei k 3 die Gerde durh und ) Seien x R, y R und R \ {} Es gelte {; ; x; y; } A M Produkt: Ist {x; y} {; }, so ist xy A M egen {; x; y} A M Es gelte lso x und y xy y x Die Kreise um und um mit den Rdien sind in KA M und shneiden sih in C Die Gerde durh und ist in GA M und der Kreis um mit dem Rdius y ist in KA M Ein Shnittpunkt der eiden sei C Die Gerde durh und x ist in GA M Nh Aufgenteil 67 ) ist die Prllele durh ur Gerden durh und x eenflls in GA M Die Gerde durh und ist in GA M und shneidet diese Prllele in C Der Kreis um mit Rdius ist in KA M und shneidet die Gerde durh und in xy und xy Beeis des letten Stes: Nh dem Strhlenst gilt x = Nun sind x = x, = = = und = y = y Ds liefert = x x = x = x y = xy = xy

6 Quotient: Ist =, so ist = A M Sei von nun n lso Die Kreise um und um mit den Rdien sind in KA M und shneiden sih in C Die Gerde durh und ist in GA M und der Kreis um mit dem Rdius ist in KA M Ein Shnittpunkt der eiden sei C Die Gerde durh und ist in GA M Nh Aufgenteil 67 ) ist die Prllele durh ur Gerden durh und eenflls in GA M Die Gerde durh und ist in GA M und shneidet diese Prllele in C Der Kreis um mit Rdius ist in KA M und shneidet die Gerde durh und in und Beeis des letten Stes: Nh dem Strhlenst gilt = Nun sind = = = und = = Ds liefert = = = = = Aufge 69 (Konstruktion der Wurel einer niht negtiven reellen Zhl) Seien M C mit A M und A M Zeigen Sie, dss x A M ist, enn x A M R mit x ist! Lösung: Sei x A M R mit x Ist x {; }, so ist x = x A M Es gelte nun lso x x+ x x + v h u x x+ x x + D A M nh Aufge 68 ein Körper ist, sind egen A M und x A M uh = + A M und x + A M Wiederum mit der Körpereigenshft folgt x+ A M (Die Konstruktion ist in hler Größe links nohmls drgestellt) 6

7 Die Gerde durh und ist in GA M Der Kreis um x+ mit Rdius x+ ist in K A M Die Sekrehte durh ur Gerden durh und ist nh Aufgenteil 67 ) in GA M Die Senkrehte shneidet den Kreis in C Der Kreis um mit dem Rdius ist nh Aufgenteil 67 ) in KA M und shneidet die Gerde durh und in x und x Beeis des letten Stes: Seien u := =, v := x + und h := Nh dem St des Thles ist ds Dreiek mit den Eken, und x + rehtinklig Außerdem sind die Dreieke mit den Eken, und, x + und rehtinklig Nh dem St des Pythgors folgen + x + = x +, + = und + x + = x + Mit x + = x + = x +, x + = x = x und = = folgt lso u + v = (x + ), + h = u und h + x = v Sett mn die hinteren eiden Gleihungen in die erste Gleihung ein und multipliiert die Klmmer us, so erhält mn Dmit folgt + h + h + x = x + x + h = x x = h = h = Zustufge (Konstruktion eines regelmäßigen Fünfeks) Seien M C derrt, dss GA M ist, und (, ) T A M mit Zeigen Sie, dss p q mit p und q ie folgt die Seitenlänge eines regelmäßigen Fünfeks mit Umkreisrdius ist! Die Gerde durh und ist in GA M Der Kreis um mit Rdius ist in KA M p Die Senkrehte durh uf die Gerde durh und ist in GA M Sei p C der Shnittpunkt der Senkrehten mit dem Kreis Der Kreis um mit Rdius ist in KA M q und shneidet den Kreis um mit Rdius in den Punkten C und C \ {} Deshl ist die Gerde durh und in GA M und shneidet die Gerde durh und in C Der Kreis um mit dem Rdius p ist in KA M Sei q C der Shnittpunkt dieses Kreises mit der Gerden durh und Tipp: Um die Länge der Seite eines regelmäßigen Fünfeks in Ahängigkeit des Umkreisrdius des Fünfeks u erehnen, etrhtet mn die Gleihung = ζ + ζ ζ ζ, in der ζ C eine fünfte Einheitsurel ist Dmit knn mn Re (ζ) = ζ + estimmen ζ Re (ζ) ist der Kosinusert des Shnittinkels eier Winkelhlierenden des Fünfeks Mit sin (α) = sin (α) os (α) = sin (α) sin (α) = os α) os α) für lle α R knn mn dnn die Seitenlänge des regelmäßigen Fünfeks estimmen 7

8 Lösung: Für ζ := e i π ist ζ = e πi = und es folgt Dmit ergit sih ζ + ζ + + ζ + ζ = ζ 4 j= ζ j = ζ ζ ζ = ( ζ + ) ( + ζ + ) = ζ + ζ ζ ζ ζ + ζ + ζ + ζ = ζ + ζ + + ζ + ζ = Ferner ist egen ζ ζ = ζ = ζ + ζ = ζ + ζ = ζ ζ + ζ ζ ζ = ζ + ζ = Re (ζ) = os ( ) π Zusmmengesett folgt ( ( ) ) ( ( ) ) π π os os ( ( ) π = os + ( ) ( ( )) ( ) π π = os + os ) ( ( )) ( ( )) ( π π = os + os = ζ + ) ( + ζ + ) ζ ζ = Wegen π π ist os ( ) π und dmit folgt ( ) π os = 4 Dmit ergit sih ) ( sin = sin π ) ( π ) = sin os = sin sin ) ) ) = os ) π os π ) ( ) π = os os ( ) 6 ( + ) = = (3 = = ) ( ) = + 3 = 4 ) 8

9 d In der Konstruktion ist π x (r) r Im neenstehenden Bild ird klr, dss die Seitenlänge x (r) eines regelmäßigen Fünfeks mit einem Umkreisrdius von r R + der folgenden Bedingung genügt: ) sin = x(r) r Mit dem Vorhergehenden folgt x (r) = r p =, = egen = und eil die Gerde durh und senkreht uf der Gerden durh und, uf der liegt, steht, p = p + nh dem St des Pythgors, q = p, q = q und iederum nh dem St des Pythgors p q = q + p Dmit folgt p q = q + p = ( q ) + ( p = ) + ( ) = p + + ( = + ( ) ) + ( = + 4 ) + Mit ( + 4 ) + = ( ) = = 4 folgt die Behuptung 9

Konstruktion des regulären Fünfecks mit dem rostigen Zirkel (rusty compass)

Konstruktion des regulären Fünfecks mit dem rostigen Zirkel (rusty compass) onstruktion des regulären Fünfeks mit dem rostigen Zirkel (rusty ompss) Vrinte 1 Oliver ieri ie hier vorliegende Methode zur onstruktion eines regulären Fünfeks unter Zuhilfenhme eines rostigen Zirkels

Mehr

Grundwissenkatalog / g8 Geometrie / 7. Jahrgangsstufe

Grundwissenkatalog / g8 Geometrie / 7. Jahrgangsstufe Grundwissenktlog / g8 Geometrie /. Jhrgngsstufe Die folgende ufstellung enthält mthemtishe Grundfertigkeiten, die ein Shüler nh der. Jhrgngsstufe eherrshen sollte. Dieses Wissen wird in den folgenden Jhren

Mehr

10 1 Grundlagen der Schulgeometrie. 1.3 Das Dreieck

10 1 Grundlagen der Schulgeometrie. 1.3 Das Dreieck 10 1 Grundlgen der Shulgeometrie 13 Ds Dreiek In diesem shnitt findet lles in der ffinen Stndrdeene 2 = R 2 sttt Drei Punkte, und, die niht uf einer Gerden liegen, ilden ein Dreiek Die Punkte,, nennt mn

Mehr

Wir haben ein Koordinatensystem mit der x-achse und der y-achse. Nun wird ein Kreis gebildet mit dem Radius r=1.

Wir haben ein Koordinatensystem mit der x-achse und der y-achse. Nun wird ein Kreis gebildet mit dem Radius r=1. Trigonometrie In diesem Themenereih wenden wir uns den Winkeln im rehtekigen Dreiek zu. Du hst uf deinem Tshenrehner siher shon die Tsten sin, os und tn gesehen. Doh ws edeuten sie? Ds wollen wir herusfinden.

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr

Die Satzgruppe des Pythagoras

Die Satzgruppe des Pythagoras 7 Die Stzgruppe des Pythgors In Klssenstufe 7 hen wir uns ei den Inhlten zur Geometrie insesondere mit Dreieken und ihren Eigenshften eshäftigt. In diesem Kpitel wirst du erkennen, dss es ei rehtwinkligen

Mehr

7.4. Teilverhältnisse

7.4. Teilverhältnisse 7... erehnung von Teilverhältnissen ufgen zu Teilverhältnissen Nr. 7.. Teilverhältnisse Die Shwerpunkte von Figuren und Körpern lssen sih mit Hilfe von Teilverhältnissen usdrüken und erehnen. Definition

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/15 09:12:15 hk Exp hk $ 1.4 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/15 09:12:15 hk Exp hk $ 1.4 Dreiecksberechnung mit Seiten und Winkeln Mthemtishe Proleme, SS 2013 Montg 15.4 $Id: dreiek.tex,v 1.5 2013/04/15 09:12:15 hk Exp hk $ 1 Dreieke 1.4 Dreiekserehnung mit Seiten und Winkeln In der letzten Sitzung htten wir egonnen die vershiedenen

Mehr

Der Begriff der Stammfunktion

Der Begriff der Stammfunktion Lernunterlgen Integrlrehnung Der Begriff der Stmmfunktion Wir gehen von folgender Frgestellung us: welhe Funktion F x liefert ls Aleitung eine gegeene Funktion f x. Wir suhen lso eine Umkehrung der Aleitung

Mehr

2.2. Aufgaben zu Figuren

2.2. Aufgaben zu Figuren 2.2. Aufgen zu Figuren Aufge 1 Zeihne ds Dreiek ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erehne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und C(8

Mehr

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/20 08:57:49 hk Exp $ 1.4 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/20 08:57:49 hk Exp $ 1.4 Dreiecksberechnung mit Seiten und Winkeln Mthemtishe Proleme, SS 2015 Montg 20.4 $Id: dreiek.tex,v 1.15 2015/04/20 08:57:49 hk Exp $ 1 Dreieke 1.4 Dreiekserehnung mit Seiten und Winkeln In der letzten Sitzung htten wir egonnen die vershiedenen

Mehr

Grundwissen Mathematik 8.Klasse Gymnasium SOB. Darstellung im Koordinatensystem: Der Kreisumfang ist direkt proportional zu seinem Radius.

Grundwissen Mathematik 8.Klasse Gymnasium SOB. Darstellung im Koordinatensystem: Der Kreisumfang ist direkt proportional zu seinem Radius. Gymso 1 Grundwissen Mthemtik 8.Klsse Gymnsium SOB 1.Funktionle Zusmmenhänge 1.1.Proportionlität Ändern sih ei einer Zuordnung die eiden Größen im gleihen Verhältnis, so spriht mn von einer direkten Proportionlität.

Mehr

Musterlösung zur Probeklausur zur Geometrie

Musterlösung zur Probeklausur zur Geometrie UNIVERSITÄT ULM Institut für Zhlentheorie un Whrsheinlihkeitstheorie Musterlösung zur Proeklusur zur Geometrie Prof. Dr. Helmut Mier, Hns- Peter Rek Gesmtpunktzhl: 3 Punkte, Punkte= % keine Age. Gi Definitionen

Mehr

Download. Trigonometrie an Stationen. Übungsmaterial zu den Bildungsstandards. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Trigonometrie an Stationen. Übungsmaterial zu den Bildungsstandards. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Downlod Mro Bettner, Erik Dinges Trigonometrie n Sttionen Üungsmteril zu den Bildungsstndrds Downloduszug us dem Originltitel: Trigonometrie n Sttionen Üungsmteril zu den Bildungsstndrds Dieser Downlod

Mehr

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B Erkundungen Terme vergleihen Forshungsuftrg : Fläheninhlte von Rehteken uf vershiedene Arten erehnen Die Terme () is (6) eshreien jeweils den Fläheninhlt von einem der drei Rehteke. Ordnet die Terme den

Mehr

Download. Hausaufgaben Geometrie 1. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben Geometrie 1. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: ownlod Otto Myr Husufgen Geometrie 1 Üen in drei ifferenzierungsstufen ownloduszug us dem Originltitel: Husufgen Geometrie 1 Üen in drei ifferenzierungsstufen ieser ownlod ist ein uszug us dem Originltitel

Mehr

Geometrische Figuren und Körper

Geometrische Figuren und Körper STNRUFGEN Geometrishe Figuren und Körper Geometrishe Figuren und Körper Welhe Shreiweisen geen den Winkel β des neenstehenden reieks PQR rihtig wieder? β = Qrp β = rp β = PQR R β = QRP β = pq q p P r Q

Mehr

Mathematik Trigonometrie Einführung

Mathematik Trigonometrie Einführung Mthemtik Trigonometrie Einführung Ws edeutet ds Wort Trigonometrie und mit ws eshäftigt sih die Trigonometrie? Eine kleine Wortkunde: tri edeutet 'drei' Beispiel: Trithlon,... gon edeutet 'Winkel'/'Ek'

Mehr

Die Winkelsumme im Dreieck beträgt 180. Herleitung bzw. experimentelle Begründung in der Schule: Durch Punktspiegelung. Bedeutung+Winkelsumme 1

Die Winkelsumme im Dreieck beträgt 180. Herleitung bzw. experimentelle Begründung in der Schule: Durch Punktspiegelung. Bedeutung+Winkelsumme 1 edeutung+winkelsumme 1 Winkelsumme Kpitel 5: Dreiekslehre 5.1 edeutung der Dreieke Durh Tringultion lssen sih Vieleke in Dreieke zerlegen ( n Ek in n- Dreieke) eweis von Sätzen mittels Sätzen üer Dreieke

Mehr

KOMPETENZHEFT ZUR TRIGONOMETRIE, III

KOMPETENZHEFT ZUR TRIGONOMETRIE, III Mthemtik mht Freu(n)de KOMPETENZHEFT ZUR TRIGONOMETRIE, III 1. Aufgenstellungen Aufge 1.1. Zur Shneelsterehnung wird der Neigungswinkel α des in der nhstehenden Aildung drgestellten Dhes enötigt. Dei gilt:

Mehr

Checkliste Sinus, Kosinus, Tangens

Checkliste Sinus, Kosinus, Tangens Chekliste Sinus, Kosinus, Tngens Nr. K 1 K K 3 K 4 K 5 K 6 K 7 K 8 Kompetenz Ih knn... in einem rehtwinkligen Dreiek Kthete, Gegenkthete und Hypotenuse estimmen in einem rehtwinkligen Dreiek die Seitenverhältnisse

Mehr

a) Spezielle Winkel bei schneidenden Geraden und Parallelen α 3 β 4 Institut für Automatisierungstechnik Prof. Dr. Ch. Bold Vorsemester V.

a) Spezielle Winkel bei schneidenden Geraden und Parallelen α 3 β 4 Institut für Automatisierungstechnik Prof. Dr. Ch. Bold Vorsemester V. 0.05.0 Geometrie und Trigonometrie ) Spezielle Winkel ei shneidenden Gerden und Prllelen 4 4 Sheitelwinkel sind gleih (z.. zw. ) Neenwinkel ergänzen sih zu 80 0 (z.. + 80 0 ) Stufenwinkel sind gleih (z..

Mehr

Repetitionsaufgaben: Trigonometrische Funktionen

Repetitionsaufgaben: Trigonometrische Funktionen Repetitionsufgen: Trigonometrishe Funktionen Inhltsverzeihnis Zusmmengestellt von Luks Fisher, KSA Voremerkungen und Lernziele....... 2 I. Trigonometrie im Dreiek...... 3 1. Trigonometrie im rehtwinkligen

Mehr

Die Näherung ist umso genauer, je kleiner die Zellen sind. Der Grenzwert ist

Die Näherung ist umso genauer, je kleiner die Zellen sind. Der Grenzwert ist Höhere Mthemtik Mehrfhintegrle sind Integrle üer eiete R n Zweifhintegrle treten B ei der Berehnung des Fläheninhltes und von Flähenträgheitsmomenten uf Dreifhintegrle kommen ei der Berehnung des Volumeninhltes

Mehr

Übungen zur Vorlesung Lineare Algebra I WS 2003/2004 Musterlösung zu Blatt 4

Übungen zur Vorlesung Lineare Algebra I WS 2003/2004 Musterlösung zu Blatt 4 Prof. Dr. Helmut Lening Pderorn, den 0. Novemer 00 Mrkus Diekämper, Andrew Huer, Mr Jesse Age is. Novemer 00, Ur Üungen ur Vorlesung Linere Alger I WS 00/004 Musterlösung u Bltt 4 AUFGABE (4 Punkte): Gegeen

Mehr

Der Vektor lebt unabhängig vom Koordinatensystem: Bei einer Drehung des Koordinatensystems ändern zwar die Komponenten, der Vektor v aber bleibt.

Der Vektor lebt unabhängig vom Koordinatensystem: Bei einer Drehung des Koordinatensystems ändern zwar die Komponenten, der Vektor v aber bleibt. Vektorlger Vektorlger Vektoren sind Grössen, die einen Betrg sowie eine Rihtung im Rum hen. Im Gegenstz zu den Vektoren estehen Sklre nur us einer Grösse ls Zhl. In Bühern wird nsttt v oft v geshrieen.

Mehr

Pythagoras. Suche ein rechtwinkliges Dreieck mit ganzzahligen Seitenlängen. ... c Roolfs

Pythagoras. Suche ein rechtwinkliges Dreieck mit ganzzahligen Seitenlängen. ... c Roolfs Pythgors Suhe ein rehtwinkliges Dreiek mit gnzzhligen Seitenlängen..... 1 Pythgors Für ein Dreiek mit den Seitenlängen = 3 und = 4 (in m) gilt vermutlih = 5. Weise diese Vermutung nh. Tipp: Bestimme den

Mehr

Seite 50. Einstieg. 1 a) α und γ sind Scheitelwinkel. b) α und α sind Stufenwinkel. c) β und δ sind Scheitelwinkel. d) β und δ sind Wechselwinkel.

Seite 50. Einstieg. 1 a) α und γ sind Scheitelwinkel. b) α und α sind Stufenwinkel. c) β und δ sind Scheitelwinkel. d) β und δ sind Wechselwinkel. Dreieke Shüleruhseite 8 5 Dreieke uftkt Seiten 8, 9 Seite 8 Ds Rehtek knn niht mehr verformt werden, wenn mn zwei gegenüerliegende Eken mit einem 5er-Streifen verindet. Dmit ds Sehsek seine Form ehält,

Mehr

Die Dreiecke ADM A und BCM C sind kongruent aufgrund

Die Dreiecke ADM A und BCM C sind kongruent aufgrund Westfälische Wilhelms-Universität Münster Mthemtisches Institut pl. Prof. Dr. Lutz Hille Dr. Krin Hlupczok Üungen zur Vorlesung Elementre Geometrie Sommersemester 010 Musterlösung zu ltt 4 vom 3. Mi 010

Mehr

5.6 Gleichsetzungsverfahren

5.6 Gleichsetzungsverfahren .6 Gleihsetzungsverfhren Verfhren: Beide Gleihungen des Gleihungssystems werden nh derselen Vrilen ufgelöst und die entsprehenden Terme werden einnder gleihgesetzt. Beispiele (G x ) ) () x + y () x - y

Mehr

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i,

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i, Präsenz-Aufgben 1. 1. Schreiben Sie z in der Form z α + βi mit α,β R. Aus der Vorlesung ist beknnt: i i i 1, i 1 1 i i i i i 1 i. () i 15 i 1 i (i ) 7 i ( 1) 7 i i i 15 + ( 1)i, (b) i 15 1 i 15 () 1 i

Mehr

Ober- und Untersummen, Riemann Integrale

Ober- und Untersummen, Riemann Integrale Oer- und Untersummen, Riemnn Integrle 1. Ds Prolem des Fläheninhlts Ausgngspunkt für die Entwiklung des Integrlegriffs wren vershiedene Frgestellungen, u.. ds Prolem der Messung des Fläheninhltes eines

Mehr

Änderungen in Zweitauflagen von Buch, Arbeits- und Theorieheft und Begleitordner

Änderungen in Zweitauflagen von Buch, Arbeits- und Theorieheft und Begleitordner Änderungen in Zweituflgen von uh, reits- und Theorieheft und egleitordner lle uflgen des Shüleruhes, des reits- und Theorieheftes und des egleitordners lssen sih prolemlos neeneinnder verwenden. Shüleruh

Mehr

Vektorrechnung in der Ebene Beweis des Satz des Thales. u v ACB. = a b a a + b b b a. = a b a + b a b. Beispiel 3 Satz des Thales

Vektorrechnung in der Ebene Beweis des Satz des Thales. u v ACB. = a b a a + b b b a. = a b a + b a b. Beispiel 3 Satz des Thales Vektorrehnung in der Eene Beweis des St des Thles Beispiel 3 St des Thles Mn eweise den St des Thles: Jeder Peripheriewinkel üer einem Kreisdurhmesser AB ist ein rehter Winkel. C 1 C C 3 Beweis: A M B

Mehr

H Dreiecke und Vierecke

H Dreiecke und Vierecke H Dreieke und Viereke 1 eziehungen zwishen Seiten und Winkeln im Dreiek In einem Dreiek liegt der längsten Seite der größte Winkel gegenüer. Umgekehrt liegt dem größten Winkel uh die längste Seite gegenüer.

Mehr

01 Proportion Verhältnis Maßstab

01 Proportion Verhältnis Maßstab 5 Ähnlihkeit und Strhlensätze LS 01.M1 01 Proportion Verhältnis Mßst 1 Lies die folgende Informtion sorgfältig. Mrkiere wihtige egriffe und Formeln. ) Proportionle Zuordnung ei einer proportionlen Zuordnung

Mehr

Ein Winkel zwischen 0 und 90 heißt spitzer Winkel, ein Winkel zwischen 90 und 180 heißt stumpfer Winkel.

Ein Winkel zwischen 0 und 90 heißt spitzer Winkel, ein Winkel zwischen 90 und 180 heißt stumpfer Winkel. Geometrie 1 3 Winkelsummen Der von zwei Nhrseiten eines Vieleks geildete Winkel heißt Innenwinkel. Die Summe der Innenwinkel eines Dreieks eträgt 180. + + = 180 Die Summe der Innenwinkel eines Viereks

Mehr

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 2. Runde 2013/2014

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 2. Runde 2013/2014 Lndeswettewer Mthemtik Bden-Württemerg Musterlösungen. Runde 0/04 Aufge Eine Zhlenfolge eginnt mit den positiven Zhlen und. Die weiteren Zhlen werden geildet, indem mn wehselnd die Summe und den Quotienten

Mehr

5 Ellipsen, Parabeln und Hyperbeln

5 Ellipsen, Parabeln und Hyperbeln 5 Ellipsen, Prbeln und Hperbeln Ellipsen: Seien b > reelle Zhlen und E = E,b := { + b = } Eine Qudrik Q R heißt Ellipse, wenn es reelle Zhlen b > gibt, so dss q E,b. Die Kurven E,b heißen Ellipsen in metrischer

Mehr

Umstellen von Formeln und Gleichungen

Umstellen von Formeln und Gleichungen Umstellen von Formeln und Gleihungen. Ds Zusmmenfssen von Termen edeutet grundsätzlih ein Ausklmmern, uh wenn mn den Zwishenshritt niht immer ufshreit. 4 6 = (4 6) =. Steht eine Vrile, nh der ufgelöst

Mehr

2. Landeswettbewerb Mathematik Bayern 2. Runde 1999/2000

2. Landeswettbewerb Mathematik Bayern 2. Runde 1999/2000 Lndeswettewer Mthemtik Bern Runde 999/000 Aufge Ein Würfel wird durh je einen Shnitt rllel zur order-, Seiten und Dekflähe in ht Quder zerlegt (siehe Skizze) Können sih die Ruminhlte dieser Quder wie :

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 2015 Bltt 6 26.05.2015 Üungen zur Vorlesung Grundlgen der Mthemtik II Lösungsvorschlg 21. ) Ein Qudrt mit der Seitenlänge + und dmit dem

Mehr

3 Punkte, Ortsvektoren und Verbindungsvektoren. Zunächst im 2-dimensionalen: A 4 1 , C 2 4. und D 3 1 Koordinatensystem. in einem kartesischen

3 Punkte, Ortsvektoren und Verbindungsvektoren. Zunächst im 2-dimensionalen: A 4 1 , C 2 4. und D 3 1 Koordinatensystem. in einem kartesischen Punkte Ortsvektoren und Verindungsvektoren Punkte Ortsvektoren und Verindungsvektoren Zunähst im -dimensionlen: A 4 Gegeen sind die Punkte B 5 C 4 und D Koordintensystem. in einem krtesishen AB CD d Zu

Mehr

Studienkolleg bei den Universitäten des Freistaates Bayern. Übungsaufgaben zur Vorbereitung auf den. Mathematiktest

Studienkolleg bei den Universitäten des Freistaates Bayern. Übungsaufgaben zur Vorbereitung auf den. Mathematiktest Studienkolleg ei den Universitäten des Freisttes Bern Üungsufgen zur Vorereitung uf den Mthemtiktest . Polnomdivision:. Dividieren Sie! ) ( 6 + 8 ):( + ) = Lös.: = ) ( 9 7 0 + 8 + 9):(6 + +) = Lös.: =

Mehr

Aufgaben zur Vorbereitung auf die Landesrunde der Mathematik-Olympiade für Klasse 7 - Teil 2

Aufgaben zur Vorbereitung auf die Landesrunde der Mathematik-Olympiade für Klasse 7 - Teil 2 Bezirkskomitee Chemnitz zur Förderung mthemtish-nturwissenshftlih begbter und interessierter Shüler www.bezirkskomitee.de Aufgben zur orbereitung uf die Lndesrunde der Mthemtik-Olympide für Klsse 7 - Teil

Mehr

Das geteilte Quadrat

Das geteilte Quadrat 1 Ds geteilte Qudrt Puzzles from round the world by Dik Hess 19. Juli 001 Gegeben sei ein Qudrt mit der Seitenlänge. Ds Qudrt soll in zwei untershiedlihe Rehteke geteilt werden, wobei ds kleine Rehtek

Mehr

Geometrie - Lösungen C E. Bestimmungsaufgaben Aufgabe 1) Geg.: (a) DE AC; (c) FDB = 145 ; Ges.: = ECG; = DEB. (Bezeichnungen siehe Figur)

Geometrie - Lösungen C E. Bestimmungsaufgaben Aufgabe 1) Geg.: (a) DE AC; (c) FDB = 145 ; Ges.: = ECG; = DEB. (Bezeichnungen siehe Figur) Geometrie - Lösungen estimmungsufgben ufgbe 1) Geg.: () ; (b) ; () F = 145 ; Ges.: = G; =. (ezeihnungen siehe Figur) F G Lösung: () (1) = 180-145 = 35 ; [Nebenwinkelstz für F]. (),(1) () = = 35 ; [Stufenwinkelstz].

Mehr

a b = a b a b = 0 a b

a b = a b a b = 0 a b Vektorlger Zusmmenfssung () Sklrprodukt weier Vektoren im Rum Unter dem Sklrprodukt os os weier Vektoren und versteht mn den Sklr woei der von den eiden Vektoren eingeshlossene Winkel ist ( 8) * os Rehenregeln

Mehr

2 Die Bildsprache Der relevante Winkel im grünen Dreieck ist stumpf; die gleichschenkligen Dreiecke haben den Basiswinkel 180 :

2 Die Bildsprache Der relevante Winkel im grünen Dreieck ist stumpf; die gleichschenkligen Dreiecke haben den Basiswinkel 180 : Hns Wlser, [20080409] Eine Visulisierung des Kosinusstzes 1 Worum es geht Es wird eine zum Pythgors-Piktogrmm nloge Figur für niht rehtwinklige Dreieke esprohen. Dei werden ähnlihe gleihshenklige Dreieke

Mehr

M 2 - Übungen zur 2. Schularbeit

M 2 - Übungen zur 2. Schularbeit M - Üungen zur. hulreit ) erehne ds Ergenis! ) ( ) + ) ( ) ) ( ) ( ) + 0 ) erehne! )( ) + ( ) ) ( + ) )( ) ( ) + ) hreie ds Ergenis ls gemishte Zhl! (Kürze ereits vor dem Multiplizieren!) ) ) ) Löse die

Mehr

10. Grassmannsche Vektoren und die Drehungen im Raum.

10. Grassmannsche Vektoren und die Drehungen im Raum. 10. Grassmannshe Vektoren und die Drehungen im Raum. Wir haen in der vorigen Vorlesung gesehen wie man Gegenstände im Raum vermöge der Zentralprojektion als Figuren in der Eene perspektivish genau darstellen

Mehr

Facharbeit über den Beweis der Existenz der Euler schen Gerade in ebenen Dreiecken.

Facharbeit über den Beweis der Existenz der Euler schen Gerade in ebenen Dreiecken. Fhreit üer den Beweis der Eistenz der Euler shen Gerde in eenen Dreieken. Verfßt von Ing. Wlter Höhlhumer im Mi und ergänzt im Juli Eistenz der Euler shen Gerde Eistenz der Euler shen Gerde Eistenz der

Mehr

Download. Hausaufgaben: Trigonometrie. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben: Trigonometrie. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: Downlod Otto Myr Husufgen: Üen in drei Differenzierungsstufen Downloduszug us dem Originltitel: Husufgen: Üen in drei Differenzierungsstufen Dieser Downlod ist ein uszug us dem Originltitel Husufgen Mthemtik

Mehr

Tutorium zur Vorlesung Grundlagen der Mathematik II Bearbeitungsvorschlag

Tutorium zur Vorlesung Grundlagen der Mathematik II Bearbeitungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 017 Bltt 8 0.06.017 Tutorium zur Vorlesung Grundlgen der Mthemtik II Berbeitungsvorschlg 9. Zu betrchten ist ein gleichseitiges Dreieck

Mehr

Muss der Umfang (u) oder der Flächeninhalt (A) berechnet werden? Kreuze an! Der Umfang (u) ist die Länge des Weges um eine Fläche herum.

Muss der Umfang (u) oder der Flächeninhalt (A) berechnet werden? Kreuze an! Der Umfang (u) ist die Länge des Weges um eine Fläche herum. 9 Rettungsring Umfng und Fläheninhlt von Figuren Begriffe: Umfng und Fläheninhlt 1 Muss der Umfng (u) oder der Fläheninhlt () erehnet werden? Kreuze n! u B C D E F G H Zun eines Grundstüks Rsenflähe eines

Mehr

EINFÜHRUNG IN DIE GEOMETRIE SS DEISSLER skript05-temp.doc

EINFÜHRUNG IN DIE GEOMETRIE SS DEISSLER skript05-temp.doc EINFÜHRUNG IN DIE GEOMETRIE SS 05 50 DEISSLER skript05-temp.do 5 Dreiekslehre 5.1 edeutung der Dreieke Durh Tringultion lssen sih Vieleke in Dreieke zerlegen ( n Ek in n- Dreieke) eweis von Sätzen mittels

Mehr

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 2 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

7. Grassmannsche Vektoren und die Drehungen im Raum.

7. Grassmannsche Vektoren und die Drehungen im Raum. 7. Grassmannshe Vektoren und die Drehungen im Raum. Wir haen im vorigen Kapitel gesehen, wie man Gegenstände im Raum vermöge der Zentralprojektion als Figuren in der Eene perspektivish genau darstellen

Mehr

Dreiecke können einerseits nach den Eigenschaften ihrer Seiten und andererseits nach ihren Winkeln benannt werden. Einteilung nach den Seiten:

Dreiecke können einerseits nach den Eigenschaften ihrer Seiten und andererseits nach ihren Winkeln benannt werden. Einteilung nach den Seiten: gnz klr: Mthemtik 2 - s Ferienheft mit Erfolgsnzeiger 3 Rettungsring Eigenshften von reieken & Viereken Eigenshften von reieken Ein reiek ht immer 3 Ekpunkte, 3 Seiten un 3 Innenwinkel. ie eshriftung eines

Mehr

5 Vierecke. 1 Quadrat

5 Vierecke. 1 Quadrat Viereke Shüleruhseite ((nm: Seitenereihe folgen in. Korr)) Viereke uftkt Seiten 8, 9 Seite 8 Qurt Viereksformen Seiten 0, Seite 0 Einstieg rotes Vierek: Rehtek lues Vierek: Rute grünes Vierek: Prllelogrmm

Mehr

Rechnerlösungen gibt es zu den Aufgaben 6 bis 10. Ausführliche Berechnungsbeispiele und vieles mehr gibt es unter

Rechnerlösungen gibt es zu den Aufgaben 6 bis 10. Ausführliche Berechnungsbeispiele und vieles mehr gibt es unter R. Brinkmnn http://rinkmnn-du.de eite.0.0 Lösungen Bruhrehnung I mit dem GTR CAIO fx-cg 0 Rehnerlösungen git es zu den Aufgen 6 is 0. Ausführlihe Berehnungseispiele und vieles mehr git es unter http://www.freiurger-verlg.de/

Mehr

Symmetrien und Winkel

Symmetrien und Winkel 5-04 1 10 mthuh 1 LU reitsheft + weitere ufgen «Grundnforderungen» Symmetrien 301 Zeihne Grossuhsten des lphets, sortiert nh vier Typen: hsensymmetrish punktsymmetrish hsen- und punktsymmetrish weder hsen-

Mehr

Kapitel IV Euklidische Vektorräume. γ b

Kapitel IV Euklidische Vektorräume. γ b Kpitel IV Euklidische Vektorräume 1 Elementrgeometrie in der Eene Sei E die Zeicheneene In der Schule lernt mn: (11) Stz des Pythgors: Sei E ein Dreieck mit den Seiten, und c, und sei γ der c gegenüerliegende

Mehr

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2015 MATHEMATIK. 24. Juni :30 Uhr 11:00 Uhr. Platzziffer (ggf. Name/Klasse):

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2015 MATHEMATIK. 24. Juni :30 Uhr 11:00 Uhr. Platzziffer (ggf. Name/Klasse): MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2015 MATHEMATIK 24. Juni 2015 8:30 Uhr 11:00 Uhr Pltzziffer (ggf. Nme/Klsse): Die Benutzung von für den Gebruh n der Mittelshule zugelssenen Formelsmmlungen

Mehr

Besondere Linien und Punkte im Dreieck

Besondere Linien und Punkte im Dreieck Sttion 6 Aufge Besondere Linien und Punkte im Dreiek Nme: Betrhte folgende Begriffe. Shreie diese n die rihtige Stelle neen den Dreieken. Höhenlinie Winkelhlierende Seitenhlierende Mittelsenkrehte Mittelpunkt

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufge 69. Quizz Integrle. Es sei Höhere Mthemtik für Informtiker II (Sommersemester

Mehr

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} +

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} + Lösungen zu Üungsltt 3 Aufge 1. Es gilt L(( ) ) = ({} {}) {} = ({} {}) ({} {} + ). Mit dem Verfhren us dem Beweis zu Stz 2.20 erhlten wir zunächst die folgenden eiden -NDEAs für die Sprchen {} {} und {}

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

Mittelwerte. Sarah Kirchner & Thea Göllner

Mittelwerte. Sarah Kirchner & Thea Göllner Mittelwerte Srh Kirher The Göller Mittelwerte sid vershiedee mthemtish defiierte Kegröße. Uter dem Mittelwert zweier oder mehrerer Zhle versteht m meistes de Durhshitt, owohl viele dere Mittelilduge vorkomme.

Mehr

Lineare Gleichungssysteme mit 3 und mehr Variablen

Lineare Gleichungssysteme mit 3 und mehr Variablen Linere Gleihungssysteme mit un mehr rilen Beispiel 1 mit rilen: 11 Zunähst estimmt mn ie rile, ie mn ls Erste eliminieren will. In iesem Fll soll von hinten nh vorn vorgegngen weren,.h. zuerst soll rile

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Shufhprinzip (Folie 137) Automten und formle Sprhen Notizen zu den Folien Im Blok Ds Shufhprinzip für endlihe Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl von

Mehr

Arbeitsblatt Geometrie / Trigonometrie

Arbeitsblatt Geometrie / Trigonometrie Fchhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mthemtik und Nturwissenschften Arbeitsbltt Geometrie / Trigonometrie Dozent: - rückenkurs Mthemtik 2016 Modul: Mthemtik Dtum: 2016

Mehr

Versuchsvorbereitung: P1-31, 40, 41: Geometrische Optik

Versuchsvorbereitung: P1-31, 40, 41: Geometrische Optik Prktikum Klssische Physik I Versuchsvorereitung: P-3, 40, 4: Geometrische Optik Christin Buntin Gruppe Mo- Krlsruhe, 09. Novemer 2009 Inhltsverzeichnis Brennweiten-Bestimmungen 2. Einfche Bestimmung der

Mehr

Durch die Umformung ergibt sich eine Schaltfunktion mit einer minimalen Anzahl von Verknüpfungsoperationen, nämlich 2.

Durch die Umformung ergibt sich eine Schaltfunktion mit einer minimalen Anzahl von Verknüpfungsoperationen, nämlich 2. 2 Die shltlgerishe Umformung von Shltfunktionen in Normlform soll m Beispiel er Umformung einer Mxterm-Normlform in eine Minterm-Normlform gezeigt weren. Beispiel: y = ) ( ) ( ) ( Es ietet sih ie Anwenung

Mehr

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente:

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente: Inhlt: 1 Seiten und Winkel im rehtwinkligen reiek edienen des Tshenrehners erehnungen in rehtwinkligen reieken 4 erehnungen in llgemeinen reieken 5 erehnungen in Vieleken 6 erehnungen mit Prmetern Exkurs:

Mehr

Kurvenintegrale. (Eine reguläre Kurve besitzt also in jedem Punkt einen nicht verschwindenden Tangentenvektor.)

Kurvenintegrale. (Eine reguläre Kurve besitzt also in jedem Punkt einen nicht verschwindenden Tangentenvektor.) Kurvenintegrle Definition: (Kurve) Eine stetige Abbildung : [, b] R n heißt ein Weg im R n. Ds Bild C := ([, b]) heißt Kurve im R n. Die Punkte () bzw. (b) heißen Anfngsbzw. Endpunkt der Kurve. heißt geshlossener

Mehr

3.3 Extrema I: Winkel Ebene/Gerade

3.3 Extrema I: Winkel Ebene/Gerade 3 3 ANALYSIS 3.3 Extrem I: Winkel Eene/Gerde In diesem Aschnitt gehen wir von einer Gerde g und einer g nicht enthltenden Eene ε us und wollen unter llen möglichen spitzen Schnittwinkeln zwischen g und

Mehr

BBS Nürnberg Grundwissen Mathematik 8. Jahrgangsstufe

BBS Nürnberg Grundwissen Mathematik 8. Jahrgangsstufe S Nürerg Grudwisse Mthetik 8. Jhrggsstufe Wisse ud Köe. Fuktioe eeihuge: D Defiitiosege f( Fuktiosvorshrift f( Fuktioster f( Fuktiosgleihug Fuktioswert vo ufge ud eispiele Eie Fuktio ist eie Zuordug, die

Mehr

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen Dr. Theo Lettmnn Pderorn, den 9. Jnur 24 Age 9. Jnur 24 A x, A 2 x, Üungen zur Vorlesung Modellierung WS 23/24 Bltt Musterlösungen AUFGABE 7 : Es sei der folgende prtielle deterministishe endlihe Automt

Mehr

2.2. Aufgaben zu Figuren

2.2. Aufgaben zu Figuren 2.2. Aufgen zu Figuren Aufge 1 Zeichne ds Dreieck ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erechne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und

Mehr

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf:

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf: Aufgbe : ) Lösen Sie die folgenden Gleichungen nch uf: = kein Problem einfch die Wurel iehen und ds ± nicht vergessen.. = = ±, b) + 5 = 0 Hier hben wir bei jedem Ausdruck ein, lso können wir usklmmern:

Mehr

Tag der Mathematik 2011

Tag der Mathematik 2011 Zentrum für Mthemtik Tg der Mthemtik 0 Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden.

Mehr

/LQHDUH*OHLFKXQJVV\VWHPH

/LQHDUH*OHLFKXQJVV\VWHPH /LQHDUH*OHLFKXQJVV\VWHPH (für Grund- und Leistungskurse Mthemtik) 6W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP Nch dem Studium dieses Skripts sollten folgende Begriffe eknnt sein: Linere Gleichung; homogene

Mehr

Flächensätze am rechtwinkligen Dreieck

Flächensätze am rechtwinkligen Dreieck Flähensätze m rehtwinkligen Dreiek ufge: Zeihne ein rehtwinkliges Dreiek us = 7 m, = 5 m γ = 90 o und zeihne die Höhe h ein. γ Kthete h Kthete q Hypotenusenshnitte Hypotenuse p MERKE: Ktheten: Hypotenuse:

Mehr

wertyuiopasdfghjklzxcvbnmqwertyui

wertyuiopasdfghjklzxcvbnmqwertyui qwertyuiopsdfghjklzxcvnmqwerty uiopsdfghjklzxcvnmqwertyuiopsd fghjklzxcvnmqwertyuiopsdfghjklzx Aufgen M-Beispielen cvnmqwertyuiopsdfghjklzxcvnmq Vorereitung uf die. Schulreit wertyuiopsdfghjklzxcvnmqwertyui

Mehr

Einige elementargeometrische Sätze über Dreiecke

Einige elementargeometrische Sätze über Dreiecke Seite I Einige elementrgeometrische Sätze üer Dreiecke Durch drei nicht uf einer Gerden gelegene (d.h. nicht-kollinere) Punkte A, B, C in der euklidischen Eene ein Dreieck ABC mit Seiten,, c und (Innen-)Winkeln,,

Mehr

2 Trigonometrie. 2.1 Ziele. 2.2 Warum braucht man Trigonometrie?

2 Trigonometrie. 2.1 Ziele. 2.2 Warum braucht man Trigonometrie? Mthemtik I / Trionometrie 2 Trionometrie 2. Ziele m Ende dieses Kpitels kennen Sie die wihtien eriffe der Trionometrie und können diese siher in Prolemen nwenden. Im rehtwinklien Dreiek knn us vershiedenen

Mehr

Zwei Kreise im gleichseitigen Dreieck

Zwei Kreise im gleichseitigen Dreieck -. ein Aufgbe us der pnischen Tempelgeometrie 3. August 006 Gegeben sei ds gleichseitige Dreieck ABC mit der Seitenlänge. Auf der öhenlinie h c = CD befinden sich die Mittelpunkte der Kreise k 1 und k.

Mehr

Z R Z R Z R Z = 50. mit. aus a) Z L R. Wie groß ist der Leistungsfaktor cos der gesamten Schaltung?

Z R Z R Z R Z = 50. mit. aus a) Z L R. Wie groß ist der Leistungsfaktor cos der gesamten Schaltung? Aufge F 99: Drehstromverruher Ein symmetrisher Verruher ist n ds Drehstromnetz ( 0 V, f 50 Hz) ngeshlossen. Die us dem Netz entnommene Wirkleistung eträgt,5 kw ei einem eistungsfktor os 0,7. ) Berehnen

Mehr

10 Das Riemannsche Integral

10 Das Riemannsche Integral 10 Ds Riemnnsche Integrl 50 10 Ds Riemnnsche Integrl Ziel dieses Prgrphen ist es, den Inhlt einer Fläche, die vom Grphen einer Funktion berndet wird, exkt zu definieren. f(b) f() = t 0 t1 t2 t3 t4 t5 t

Mehr

1 Integration im R Das Volumen im R 3

1 Integration im R Das Volumen im R 3 1 Integrtion im 2 1.1 s Volumen im 3 Wir wollen ds Volumen zwishen dem Grphen einer Funktion f : und der x y Ebene bestimmen. bei werden, wie bei univriten Funktionen, die Teile oberhlb der x y Ebene positiv

Mehr

29 Uneigentliche Riemann-Integrale

29 Uneigentliche Riemann-Integrale 29 Uneigentlihe Riemnn-Integrle 29.2 Uneigentlihe Riemnn-Integrle bei einer kritishen Integrtionsgrenze 29.3 Zusmmenhng des uneigentlihen mit dem eigentlihen Riemnn-Integrl 29.5 Cuhy-Kriterium für uneigentlihe

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie -

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie - Für den Mthe GK, Henß - Linere Alger und nlytische Geometrie - Bis uf die Astände ist jetzt lles drin.. Ich h noch ne tolle Seite entdeckt mit vielen Beispielen und vor llem Aufgen zum Üen mit Lösungen..

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunction eines DFA (Folie 92) Wie sieht die Üerführungfunktion us? δ : Z Σ Z Ds heißt: Ein Pr us Zustnd und Alphetsymol

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

Beispiellösungen zu Blatt 24

Beispiellösungen zu Blatt 24 µthemtischer κorrespondenz- zirkel Mthemtisches Institut Georg-August-Universität Göttingen Aufge Beispiellösungen zu Bltt Mn eweise, dss mn ein Qudrt für jede Zhl n 6 in genu n kleinere Qudrte zerlegen

Mehr

Satzgruppe des Pythagoras

Satzgruppe des Pythagoras Stzgruppe des Pythgors Jürgen Zumdik I. ntdeken des Stzes 1) Seilspnnergeshihte oder Zimmermnnsgeshihte (in Zimmermnn legt us Ltten der Länge 1,0 m, 1,60 m und,00 m ein Dreiek). ) us einer Werung von Ritter-Sport

Mehr

1. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 12 Saison 1961/1962 Aufgaben und Lösungen

1. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 12 Saison 1961/1962 Aufgaben und Lösungen 1. Mthemtik Olympide. Stufe (Bezirksolympide) Klsse 1 Sison 1961/196 Aufgen und Lösungen 1 OJM 1. Mthemtik-Olympide. Stufe (Bezirksolympide) Klsse 1 Aufgen Hinweis: Der Lösungsweg mit Begründungen und

Mehr