Gleichmäßige Berry-Esseen Schranken. Seminar zur Methode von Stein

Größe: px
Ab Seite anzeigen:

Download "Gleichmäßige Berry-Esseen Schranken. Seminar zur Methode von Stein"

Transkript

1 Gleichmäßige Berry-Esseen Schranken Seminar zur Methode von Stein Stefan Roth Institut für Stochastik 18. April, 2016 Universität Ulm

2 Inhalt Wiederholung Gleichmäßige Berry-Essen Schranken Berry-Esseen für beschränkte Zufallsvariablen Berry-Esseen für unabhängige Zufallsvariablen Appendix - Kommutative Paare Literatur

3 Seite 1 Gleichmäßige Berry-Esseen Schranken Stefan Roth 18. April, 2016 Wiederholung h H, Z N (0, 1), W Zufallsvariable. Stein-Gleichung: h(w) E h(z ) = f h (w) wf h(w) sup h H E h(w ) E h(z ) = sup h H E[f h (W ) Wf h(w )] Theorem 3.1: Falls es ein δ gibt, so, dass für jede gleichmäßige Lipschitzfunktion h so gilt d W (L(W ), N (0, 1)) := E h(w ) E h(z ) δ h, sup E h(w ) E h(z ) δ h Lip(1) d K (L(W ), N (0, 1)) := sup P(W z) φ(z) 2δ 1/2 z R

4 Seite 2 Gleichmäßige Berry-Esseen Schranken Stefan Roth 18. April, 2016 Voraussetzungen und Notation Setting: ξ 1,..., ξ n unabhängige Zufallsvariablen E ξ i = 0, 1 i n n E ξ2 i = 1 Notation: f z := f h für h = 1I (,z], z R W = n ξ i W (i) = W ξ i K i (t) = E [ ( )] ξ i 1I{0 t ξi } 1I {ξi t<0}

5 Seite 3 Gleichmäßige Berry-Esseen Schranken Stefan Roth 18. April, 2016 Berry-Esseen für beschränkte Zufallsvariablen Theorem 1: Falls ξ i δ 0, 1 i n, so gilt sup P(W z) φ(z) 3.3 δ 0 z R Bemerkung: Sind X 1,..., X n i.i.d. mit X i C, 1 i n, so folgt aus dem Theorem mit ξ i = (X i µ)/(σ n) sup P(W z) φ(z) 3.3 C + µ z R σ n, wobei µ = E X 1 und σ 2 = Var(X 1 ).

6 Seite 4 Gleichmäßige Berry-Esseen Schranken Stefan Roth 18. April, 2016 Zur Erinnerung: E [Wf z (W )] = n n K i (t)dt = n E ξi 2 = 1 t K i (t)dt = 1 2 E ξ i 3 E [ f z(w (i) + t) ] K i (t)dt u, v, w R: (w + u)f z (w + u) (w + v)f z (w + v) ( w + 2π/4)( u + v )

7 Seite 5 Gleichmäßige Berry-Esseen Schranken Stefan Roth 18. April, 2016 Beweis der Ungleichung von Folie 4: (w + u)f z (w + u) (w + v)f z (w + v) uf z (w + u) vf z (w + v) + w f z (w + u) f z (w + v) f z (w + u) ( u + v ) + w f z (w + u) f z (w + v) Mit Taylerreihenentwicklung von f z folgt f z (w + u) f z (w + v) = f z(ξ)u f z(η)v f z(ξ) u + f z(η) v Wegen f z (x) 1 und f z(x) 2π/4, x R also (w + u)f z (w + u) (w + v)f z (w + v) ( w + 2π/4)( u + v ).

8 Seite 6 Gleichmäßige Berry-Esseen Schranken Stefan Roth 18. April, 2016 Verallgemeinerung von Theorem 1: Es sei W eine (beliebige) reellwertige Zufallsvariable mit E W 1. Falls es Zufallsvariablen R 1, R 2 und M(t) 0 und Konstanten δ 0, δ 1 und δ 2 gibt, die nicht von z abhängen, so dass und t δ 0 M(t)dt = 1, R 1 δ 1, E R 2 δ 2 E [Wf z (W )] = E dann gilt [ t δ 0 f z(w + R 1 + t)m(t)dt sup P(W z) φ(z) 2.1 (δ 0 + δ 1 ) + δ 2 z R ] + E R 2,

9 Seite 7 Gleichmäßige Berry-Esseen Schranken Stefan Roth 18. April, 2016 Bemerkung: Es sei nun wieder W = n ξ i. Weiterhin sei I eine Zufallsvariable mit P(I = i) = E ξ 2 i, unabhängig von ξ 1,..., ξ n. Dann gilt: E [Wf z (W )] = n wobei K i (t) = K i (t)/ E ξ 2 i. [ ] E f z(w (i) + t) K i (t)dt [ n ] = E f z(w (i) + t) K i(t) t δ 0 E ξi 2 dt E ξi 2 [ ] = E f z(w (I) + t) K I (t)dt, t δ 0

10 Seite 8 Gleichmäßige Berry-Esseen Schranken Stefan Roth 18. April, 2016 Damit gilt also E [Wf z (W )] = E Wähle [ R 1 = W (I) W = ξ I R 2 = 0 M(t) = K I (t) t δ 0 f z(w + W (I) W + t) K I (t)dt Dann folgt mit δ 0 ξ i, 1 i n, δ 2 = 0 und δ 1 = δ 0 sup P(W z) φ(z) 4.2 δ 0 z R ]

11 Seite 9 Gleichmäßige Berry-Esseen Schranken Stefan Roth 18. April, 2016 Berry-Esseen für unabhängige Zufallsvariablen Von nun an: E ξ i 3 <, 1 i n (statt ξ i beschränkt) γ = n E ξ i 3 Im Beweis von Theorem 1: n P(W (i) + t z)k i (t)dt φ(z) 3 2 (1+ 2π/4)γ Schlüsselargument: Ersetze P(W (i) + t z) durch P(W z)

12 Seite 10 Gleichmäßige Berry-Esseen Schranken Stefan Roth 18. April, 2016 Proposition: Es gilt P(a W (i) b) 2(b a) + (1 + 2)γ für beliebige reelle a < b und jedes 1 i n. Theorem 2: Es gilt sup P(W z) φ(z) 7γ z R Bemerkung: Seien X 1,..., X n i.i.d., E X 1 3 <. Dann gilt mit ξ i := (X i µ)/(σ n) sup z R P(W z) φ(z) 7 E X 1 µ 3 σ 3, n wobei µ = E X 1 und σ 2 = Var(X 1 )

13 Seite 11 Gleichmäßige Berry-Esseen Schranken Stefan Roth 18. April, 2016 Beweis von Theorem 2: n P(W (i) + t z)k i (t)dt P(W z) = n n P(W (i) + t z) P(W z) K i (t)dt P(z max{t, ξ i } W (i) z min{t, ξ i })K i (t)dt Nun gilt mit der Proposition P(z max{t, ξ i } W (i) z min{t, ξ i }) [ ] = E P(z max{t, ξ i } W (i) z min{t, ξ i } ξ i ) [ E 2( t + ξi ) + (1 + ] 2)γ

14 Seite 12 Gleichmäßige Berry-Esseen Schranken Stefan Roth 18. April, 2016 Damit also n n =(1 + 2)γ + 2 ( )γ P(W (i) + t z)k i (t)dt P(W z) [ E 2( t + ξi ) + (1 + ] 2)γ K i (t)dt n ( ) 1 2 E ξ i 3 + E ξ i E ξi 2

15 Seite 13 Gleichmäßige Berry-Esseen Schranken Stefan Roth 18. April, 2016 Unter Berücksichtigung von n P(W (i) + t z)k i (t)dt φ(z) 3 2 (1+ 2π/4)γ führt dies zu P(W z) φ(z) [ ( ) (1 + ] 2π/4) γ 7γ

16 Seite 14 Gleichmäßige Berry-Esseen Schranken Stefan Roth 18. April, 2016 Kommutative Paare (Exchangeable pairs) Seien W und W zwei reellwertige Zufallsvariablen auf ein und demselben Wahrscheinlichkeitsraum. Das Paar (W, W ) heißt kommutativ, falls (W, W ) d = (W, W ) Eine Funktion g : R 2 R heißt antisymmetrisch, falls g(x, y) = g(y, x), für alle x, y R. Für ein kommutatives Paar gilt: E g(w, W ) = 0, für jede antisymmetrische Funktion g.

17 Seite 15 Gleichmäßige Berry-Esseen Schranken Stefan Roth 18. April, 2016 Im folgenden sei (W, W ) ein kommutatives Paar. Lemma: Falls für ein 0 < λ < 1, so gilt: E(W W ) = (1 λ)w, E W = 0, E(W W ) 2 = 2λ E W 2 Für jede stückweise stetige Funktion f mit f (w) C(1 + w ) ist E[Wf (W )] = 1 2λ E [ (W W )(f (W ) f (W )) ]

18 Seite 16 Gleichmäßige Berry-Esseen Schranken Stefan Roth 18. April, 2016 Beweis: Sei g(x, y) = (x y)(f (x) + f (y)). Dann existiert E g(w, W ) und es gilt 0 = E[(W W )(f (W ) + f (W ))] = E[(W W )(f (W ) f (W ))] + 2 E[f (W )(W W )] = E[(W W )(f (W ) f (W ))] + 2 E[f (W ) E[(W W ) W ]] = E[(W W )(f (W ) f (W ))] + 2λ E[Wf (W )]

19 Seite 17 Gleichmäßige Berry-Esseen Schranken Stefan Roth 18. April, 2016 Theorem 3: Ist (W, W ) ein kommutatives Paar und E(W W ) = (1 λ)w, so gilt Theorem 3.1 mit δ = 4 E 1 1 [ ] 2λ E (W W ) 2 W + 1 2λ E W W 3 Bemerkung: Es gilt: { E 1 1 [ ] } 2λ E (W W ) 2 W = 1 E W 2

20 Seite 18 Gleichmäßige Berry-Esseen Schranken Stefan Roth 18. April, 2016 Literatur [1] A.D. Barbour, Louis H. Y. Chen. An Introduction to Stein s Method. Singapore University Press, Singapore, 2005 (pp ). [2] I. Nourdin, G. Peccati. Normal Approximations with Malliavin Calculus - From Stein s Method to Universality. Cambridge University Press, New York, 2012.

Statistische Methoden

Statistische Methoden Statistische Methoden Dr. C.J. Luchsinger 2 Beweis CLT Literatur Kapitel 2: Krengel: 12 2.1 Einführung Wir repetieren aus WTS, Kapitel 5: Fragestellung: Was geschieht mit dem Ausdruck n k=1 X k nµ, (2.1)

Mehr

Schwache Konvergenz. Ivan Lecei. 18. Juni Institut für Stochastik

Schwache Konvergenz. Ivan Lecei. 18. Juni Institut für Stochastik Institut für Stochastik 18. Juni 2013 Inhalt 1 2 3 4 5 Nach ZGWS konvergiert für n F n (x) = P{ X 1+...+X n np npq x} gegen F(x) = 1 2π x e 1 2 u2 du, wenn die X i unabhängig und bernoulliverteilt sind

Mehr

Die von Neumannsche Ungleichung

Die von Neumannsche Ungleichung Die von Neumannsche Ungleichung Dominik Schillo 12. November 2012 Satz (Die von Neumannsche Ungleichung) Seien p C[z] ein Polynom in einer Variablen und T L(H) eine Kontraktion (d.h. T 1). Dann gilt: p(t

Mehr

Brownsche Bewegung. Satz von Donsker. Bernd Barth Universität Ulm

Brownsche Bewegung. Satz von Donsker. Bernd Barth Universität Ulm Brownsche Bewegung Satz von Donsker Bernd Barth Universität Ulm 31.05.2010 Page 2 Brownsche Bewegung 31.05.2010 Inhalt Einführung Straffheit Konvergenz Konstruktion einer zufälligen Funktion Brownsche

Mehr

1.3 Wiederholung der Konvergenzkonzepte

1.3 Wiederholung der Konvergenzkonzepte 1.3 Wiederholung der Konvergenzkonzepte Wir erlauben nun, dass der Stichprobenumfang n unendlich groß wird und untersuchen das Verhalten von Stichprobengrößen für diesen Fall. Dies liefert uns nützliche

Mehr

Mathematische Ökonometrie

Mathematische Ökonometrie Mathematische Ökonometrie Ansgar Steland Fakultät für Mathematik Ruhr-Universität Bochum, Germany ansgar.steland@ruhr-uni-bochum.de Skriptum zur LV im SoSe 2005. Diese erste Rohversion erhebt keinen Anspruch

Mehr

Kapitel II. Brownsche Bewegung. Literatur: Karatzas, Shreve (1999, Chap. 2).

Kapitel II. Brownsche Bewegung. Literatur: Karatzas, Shreve (1999, Chap. 2). Kapitel II Brownsche Bewegung Literatur: Karatzas, Shreve (1999, Chap. 2). Gegeben: Wahrscheinlichkeitsraum (Ω, A, P) mit Filtration F = (F t ) t I, wobei I = [0, [. Definition 1. W = (W t ) t I Brownsche

Mehr

Hawkes Prozesse Grundlagen

Hawkes Prozesse Grundlagen Hawkes Prozesse Grundlagen Im Folgenden sei (Ω, F, F, P) eine stochastische Basis. Das heißt F = (F t ) t ist eine rechtsstetige Filtration mit F t F für alle t und P ein Wahrscheinlichkeitsmaß auf dem

Mehr

22 Charakteristische Funktionen und Verteilungskonvergenz

22 Charakteristische Funktionen und Verteilungskonvergenz 22 Charakteristische Funktionen und Verteilungskonvergenz Charakteristische Funktionen (Fourier-Transformierte liefern ein starkes analytisches Hilfsmittel zur Untersuchung von W-Verteilungen und deren

Mehr

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Dr. Gerhard Mülich Christian Maaß 6.Mai 8 Im letzten Vortrag haben wir gesehen, dass das

Mehr

Der Primzahlsatz. Es gibt eine Konstante A, so daß f(x) g(x) Ah(x) für alle genügend großen x.

Der Primzahlsatz. Es gibt eine Konstante A, so daß f(x) g(x) Ah(x) für alle genügend großen x. Der Primzahlsatz Zusammenfassung Im Jahr 896 wurde von Hadamard und de la Vallée Poussin der Primzahlsatz bewiesen: Die Anzahl der Primzahlen kleiner gleich verhält sich asymptotisch wie / log. Für ihren

Mehr

Theorem 9 Sei G eine Verteilungsfunktion in IR. 1. Quantil-Transformation: Wenn U U(0, 1) (standard Gleichverteilung), dann gilt P(G (U) x) = G(x).

Theorem 9 Sei G eine Verteilungsfunktion in IR. 1. Quantil-Transformation: Wenn U U(0, 1) (standard Gleichverteilung), dann gilt P(G (U) x) = G(x). Theorem 9 Sei G eine Verteilungsfunktion in IR. 1. Quantil-Transformation: Wenn U U(0, 1) (standard Gleichverteilung), dann gilt P(G (U) x) = G(x). 2. Wahrscheinlichkeit-Transformation: Sei Y eine Zufallsvariable

Mehr

1.3 Zufallsvariablen

1.3 Zufallsvariablen 1.3 Zufallsvariablen Beispiel Irrfahrt zwischen drei Zuständen Start in G bei t = 0, Zeithorizont T N Grundraum σ-algebra Ω = {ω = (ω 0, ω 1,..., ω T ) {G, R, B} T +1, ω 0 = G} Wahrscheinlichkeitsmaß P

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

13 Grenzwertsätze Das Gesetz der großen Zahlen

13 Grenzwertsätze Das Gesetz der großen Zahlen 13 Grenzwertsätze 13.1 Das Gesetz der großen Zahlen Der Erwartungswert einer zufälligen Variablen X ist in der Praxis meist nicht bekannt. Um ihn zu bestimmen, sammelt man Beobachtungen X 1,X 2,...,X n

Mehr

Vorlesung 7b. Unabhängigkeit bei Dichten. und die mehrdimensionale Standardnormalverteilung

Vorlesung 7b. Unabhängigkeit bei Dichten. und die mehrdimensionale Standardnormalverteilung Vorlesung 7b Unabhängigkeit bei Dichten und die mehrdimensionale Standardnormalverteilung 0. Wiederholung: Die Normalverteilung Dichtefunktion ϕ der Standardnormalverteilung ϕ(x) 0.0 0.1 0.2 0.3 0.4 4

Mehr

Orthogonalpolynome Einführung, Eigenschaften und Anwendungen

Orthogonalpolynome Einführung, Eigenschaften und Anwendungen Anna Weller Orthogonalpolynome Einführung, Eigenschaften und Anwendungen 1 Orthogonalpolynome Einführung, Eigenschaften und Anwendungen Anna Weller Seminar zur Numerik im SS 2018, Universität zu Köln 10.

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

Compressed Sensing für Signale aus Vereinigungen von Unterräumen

Compressed Sensing für Signale aus Vereinigungen von Unterräumen Compressed Sensing für Signale aus Vereinigungen von Unterräumen Nadine Pawlitta 21. Januar 2011 Nadine Pawlitta () CS auf Vereinigungen von Unterräumen 21. Januar 2011 1 / 28 Übersicht 1 Grundprinzip

Mehr

Kapitel 12 Erwartungswert und Varianz

Kapitel 12 Erwartungswert und Varianz Kapitel 12 Erwartungswert und Varianz Vorlesung Wahrscheinlichkeitsrechnung I vom 4/10. Juni 2009 Lehrstuhl für Angewandte Mathematik 1 FAU 12.1 Der Erwartungswert Der Erwartungswert einer Zufallsvariablen

Mehr

Vorlesung Mathematik 2 für Ingenieure (Sommersemester 2016)

Vorlesung Mathematik 2 für Ingenieure (Sommersemester 2016) 1 Vorlesung Mathematik 2 für Ingenieure (Sommersemester 216) Kapitel 11: Potenzreihen und Fourier-Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.

Mehr

Kapitel 7. Martingale 1

Kapitel 7. Martingale 1 Kapitel 7 Martingale 1 7.1 Definition: a) (Ω, F) sei ein messbarer Raum. Eine Filtration (oder Filtrierung) ist eine aufsteigende Folge F = (F n ) n N von Teil-σ-Algebren von F, d.h. F n F n+1 F für n

Mehr

Klassische Extremwerttheorie Seien (X k ), k IN, nicht degenerierte i.i.d. ZV mit Verteilungsfunktion. Für n 1 definiere S n := n

Klassische Extremwerttheorie Seien (X k ), k IN, nicht degenerierte i.i.d. ZV mit Verteilungsfunktion. Für n 1 definiere S n := n Klassische Extremwerttheorie Seien (X k ), k IN, nicht degenerierte i.i.d. ZV mit Verteilungsfunktion F. Für n 1 definiere S n := n i=1 X i, M n := max{x i :1 i n} Frage: Welche sind die möglichen (nicht

Mehr

4.2 Moment und Varianz

4.2 Moment und Varianz 4.2 Moment und Varianz Def. 2.10 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: EX p

Mehr

4.2 Grenzwerte und Stetigkeit reeller Funktionen

4.2 Grenzwerte und Stetigkeit reeller Funktionen 4. Grenzwerte und Stetigkeit reeller Funktionen 73 4. Grenzwerte und Stetigkeit reeller Funktionen Definition 4.. Gegeben sei eine Funktion y = mit D(f). (i) Sei D(f). heißt stetig in, falls es für alle

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

Wichtige Klassen reeller Funktionen

Wichtige Klassen reeller Funktionen 0 Wichtige Klassen reeller Funktionen Monotone Funktionen sind i.a. unstetig, aber man kann etwas über das Grenzwertverhalten aussagen, wenn man nur einseitige Grenzwerte betrachtet. Definition 0. : Sei

Mehr

Konvergenz im quadratischen Mittel - Hilberträume

Konvergenz im quadratischen Mittel - Hilberträume CONTENTS CONTENTS Konvergenz im quadratischen Mittel - Hilberträume Contents 1 Ziel 2 1.1 Satz........................................ 2 2 Endlich dimensionale Vektorräume 2 2.1 Defintion: Eigenschaften

Mehr

13 Grenzwertsätze Das Gesetz der großen Zahlen

13 Grenzwertsätze Das Gesetz der großen Zahlen 13 Grenzwertsätze 13.1 Das Gesetz der großen Zahlen Der Erwartungswert einer zufälligen Variablen X ist in der Praxis meist nicht bekannt. Um ihn zu bestimmen, sammelt man Beobachtungen X 1,X 2,...,X n

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

Einführung in Quasi-Monte Carlo Verfahren

Einführung in Quasi-Monte Carlo Verfahren Einführung in Quasi- Markus Zahrnhofer 3. Mai 2007 Markus Zahrnhofer () Einführung in Quasi- 3. Mai 2007 1 / 27 Inhalt der Präsentation 1 Motivierendes Beispiel 2 Einführung 3 quasi- Allgemeines Diskrepanz

Mehr

Brownsche Bewegung. M. Gruber. 20. März 2015, Rev.1. Zusammenfassung

Brownsche Bewegung. M. Gruber. 20. März 2015, Rev.1. Zusammenfassung Brownsche Bewegung M. Gruber 20. März 2015, Rev.1 Zusammenfassung Stochastische Prozesse, Pfade; Definition der Brownschen Bewegung; Eigenschaften der Brownschen Bewegung: Kovarianz, Stationarität, Selbstähnlichkeit;

Mehr

Monte Carlo Finite Elemente Methode

Monte Carlo Finite Elemente Methode Monte Carlo Finite Elemente Methode Lisa Eppler Johannes-Gutenberg Universität Mainz 18. Januar 2018 1 / 55 Inhalt Monte Carlo Finite Elemente Methode 1 Wiederholung 2 Monte Carlo 3 Beispiele 1-d 2-d 4

Mehr

Erwartungswert und Varianz von Zufallsvariablen

Erwartungswert und Varianz von Zufallsvariablen Kapitel 7 Erwartungswert und Varianz von Zufallsvariablen Im Folgenden sei (Ω, A, P ) ein Wahrscheinlichkeitsraum. Der Erwartungswert von X ist ein Lebesgue-Integral (allerdings allgemeiner als in Analysis

Mehr

Funktionentheorie, Woche 11. Funktionen mit Singularitäten Meromorphe Funktionen

Funktionentheorie, Woche 11. Funktionen mit Singularitäten Meromorphe Funktionen Funktionentheorie, Woche Funktionen mit Singularitäten. Meromorphe Funktionen Definition. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P = f ( hat keine

Mehr

Vorlesung 7b. Der Zentrale Grenzwertsatz

Vorlesung 7b. Der Zentrale Grenzwertsatz Vorlesung 7b Der Zentrale Grenzwertsatz 1 Zentraler Grenzwertsatz (Tschebyscheff) Die standardisierte Summe von unabhängigen, identisch verteilten R-wertigen Zufallsvariablen konvergiert in Verteilung

Mehr

Klausur zur Vorlesung Stochastik II

Klausur zur Vorlesung Stochastik II Institut für Mathematische Stochastik WS 003/004 Universität Karlsruhe 05. 04. 004 Prof. Dr. G. Last Klausur zur Vorlesung Stochastik II Dauer: 90 Minuten Name: Vorname: Matrikelnummer: Diese Klausur hat

Mehr

Brownsche Bewegung. M. Gruber SS 2016, KW 11. Zusammenfassung

Brownsche Bewegung. M. Gruber SS 2016, KW 11. Zusammenfassung Brownsche Bewegung M. Gruber SS 2016, KW 11 Zusammenfassung Stochastische Prozesse, Pfade; Definition der Brownschen Bewegung; Eigenschaften der Brownschen Bewegung: Kovarianz, Stationarität, Selbstähnlichkeit;

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Prof. D. Salamon Funktionentheorie ETH Zürich MATH, PHYS 27. Oktober Musterlösung 5

Prof. D. Salamon Funktionentheorie ETH Zürich MATH, PHYS 27. Oktober Musterlösung 5 Prof. D. Salamon Funktionentheorie ETH Zürich MATH, PHYS 27. Oktober 2009 Musterlösung 5 1. Sei f : C C eine holomorphe Funktion, so dass f(z) < z n für ein n N und alle hinreichend grossen z. Dann ist

Mehr

MIA Analysis einer reellen Veränderlichen WS 06/07. Kapitel VI. Differenzierbare Funktionen in einer Veränderlichen

MIA Analysis einer reellen Veränderlichen WS 06/07. Kapitel VI. Differenzierbare Funktionen in einer Veränderlichen Version 01.02. Januar 2007 MIA Analysis einer reellen Veränderlichen WS 06/07 Kurzfassung Martin Schottenloher Kapitel VI. Differenzierbare Funktionen in einer Veränderlichen In diesem Kapitel werden differenzierbare

Mehr

Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2.

Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2. Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2. Lineare Korrelation Annahme: var(x 1 ),var(x 2 ) (0, ). Der Koeffizient

Mehr

Reelle Zufallsvariablen

Reelle Zufallsvariablen Kapitel 3 eelle Zufallsvariablen 3. Verteilungsfunktionen esultat aus der Maßtheorie: Zwischen der Menge aller W-Maße auf B, nennen wir sie W B ), und der Menge aller Verteilungsfunktionen auf, nennen

Mehr

Vorlesungsskript: Martingale

Vorlesungsskript: Martingale Vorlesungsskript: Martingale von Steffen Dereich Fachbereich Mathematik und Informatik Philipps-Universität Marburg Version vom 25. Februar 2010 Inhaltsverzeichnis 4 Martingale 2 4.1 Einführung.......................................

Mehr

Kapitel 2.9 Der zentrale Grenzwertsatz. Stochastik SS

Kapitel 2.9 Der zentrale Grenzwertsatz. Stochastik SS Kapitel.9 Der zentrale Grenzwertsatz Stochastik SS 07 Vom SGGZ zum ZGWS Satz.4 (Schwaches Gesetz großer Zahlen) Sei (X i ) i eine Folge unabhängiger, identisch verteilter Zufallsvariablen mit E[X ]

Mehr

5 Optimale erwartungstreue Schätzer

5 Optimale erwartungstreue Schätzer 33 5 Optimale erwartungstreue Schätzer 5.1 Definition Seien X 1,..., X n reelle Zufallsvariablen, T T (X 1,..., X n ) reellwertige Statistik. T heißt linear : c 1,..., c n R mit T n c j X j 5.2 Satz Seien

Mehr

Scheinklausur zur Vorlesung Stochastik II

Scheinklausur zur Vorlesung Stochastik II Institut für Mathematische Stochastik WS 2007/2008 Universität Karlsruhe 25. 02. 2008 Dr. B. Klar Scheinklausur zur Vorlesung Stochastik II Muster-Lösung Dauer: 90 Minuten Name: Vorname: Matrikelnummer:

Mehr

1. Wahrscheinlichkeitsrechnung. 2. Diskrete Zufallsvariable. 3. Stetige Zufallsvariable. 4. Grenzwertsätze. 5. Mehrdimensionale Zufallsvariable

1. Wahrscheinlichkeitsrechnung. 2. Diskrete Zufallsvariable. 3. Stetige Zufallsvariable. 4. Grenzwertsätze. 5. Mehrdimensionale Zufallsvariable 1. Wahrscheilichkeitsrechug. Diskrete Zufallsvariable 3. Stetige Zufallsvariable 4. Grezwertsätze 5. Mehrdimesioale Zufallsvariable Stetige Zufallsvariable Eie Zufallsvariable X : Ω R heißt stetig, we

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 15. April 2019 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 1. April

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr 1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen Sei X eine kontinuierliche Zufallsvariable. Wir können aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir

Mehr

39 Differenzierbare Funktionen und Kettenregel

39 Differenzierbare Funktionen und Kettenregel 192 VI. Differentialrechnung in mehreren Veränderlichen 39 Differenzierbare Funktionen und Kettenregel Lernziele: Konzepte: totale Ableitungen, Gradienten, Richtungsableitungen, Tangentenvektoren Resultate:

Mehr

Spezielle stetige Verteilungen

Spezielle stetige Verteilungen Spezielle stetige Verteilungen schon bekannt: Die Exponentialverteilung mit Parameter k R, k > 0 hat die Dichte f (x) = ke kx für x 0 und die Verteilungsfunktion F (x) = 1 e kx für x 0. Eigenschaften Für

Mehr

1 Die direkte Methode der Variationsrechnung

1 Die direkte Methode der Variationsrechnung Die direkte Methode der Variationsrechnung Betrachte inf I(u) = f(x, u(x), u(x)) dx : u u + W,p () wobei R n, u W,p mit I(u ) < und f : R R n R. (P) Um die Existenz eines Minimierers direkt zu zeigen,

Mehr

5 Zufallsvariablen, Grundbegriffe

5 Zufallsvariablen, Grundbegriffe II. Zufallsvariablen 5 Zufallsvariablen, Grundbegriffe Def. 12 Es seien (Ω 1, E 1,P 1 ) und (Ω 2, E 2,P 2 ) Wahrscheinlichkeitsräume. Eine Abbildung X : Ω 1 Ω 2 heißt E 1 E 2 meßbar, falls für alle Ereignisse

Mehr

Stochastik. 1. Wahrscheinlichkeitsräume

Stochastik. 1. Wahrscheinlichkeitsräume Stochastik 1. Wahrscheinlichkeitsräume Ein Zufallsexperiment ist ein beliebig oft und gleichartig wiederholbarer Vorgang mit mindestens zwei verschiedenen Ergebnissen, bei dem der Ausgang ungewiß ist.

Mehr

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

z k Anwendung des Quotientenkriteriums ergibt z k+1 (k + 1)! z k+1 k! = z k (k + 1)! = z k + 1

z k Anwendung des Quotientenkriteriums ergibt z k+1 (k + 1)! z k+1 k! = z k (k + 1)! = z k + 1 Beispiel: Wir untersuchen die Konvergenz der Reihe k=1 z k k! (z C) Anwendung des Quotientenkriteriums ergibt z k+1 (k + 1)! z k z k+1 k! = z k (k + 1)! = z k + 1 k! Damit konvergiert die Reihe (absolut)

Mehr

2. Ein Zufallsvektor X IR d ist multivariat normal verteilt dann und nur dann wenn seine charakteristische Funktion folgendermaßen gegeben ist:

2. Ein Zufallsvektor X IR d ist multivariat normal verteilt dann und nur dann wenn seine charakteristische Funktion folgendermaßen gegeben ist: Multivariate elliptische Verteilungen a) Die multivariate Normalverteilung Definition 2 Der Zufallsvektor (X 1, X 2,..., X d ) T hat eine multivariate Normalverteilung (oder eine multivariate Gauss sche

Mehr

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0 ANALYSIS FÜR PHYSIK UND VERWANDTE FÄCHER I 81 3. Stetigkeit 3.1. Stetigkeit. Im Folgenden sei D R eine beliebige nichtleere Teilmenge. Typischerweise wird D ein allgemeines Intervall sein, siehe Abschnitt

Mehr

Analysis 2, Woche 9. Mehrdimensionale Differentialrechnung I. 9.1 Differenzierbarkeit

Analysis 2, Woche 9. Mehrdimensionale Differentialrechnung I. 9.1 Differenzierbarkeit A Analysis, Woche 9 Mehrdimensionale Differentialrechnung I A 9. Differenzierbarkeit A3 =. (9.) Definition 9. Sei U R m offen, f : U R n eine Funktion und a R m. Die Funktion f heißt differenzierbar in

Mehr

Kapitel 1. Holomorphe Funktionen

Kapitel 1. Holomorphe Funktionen Kapitel 1 Holomorphe Funktionen Zur Erinnerung: I IR sei ein offenes Intervall, und sei z 0 I. Eine Funktion f : I IR heißt differenzierbar in z 0, falls der Limes fz fz 0 lim =: f z 0 z z 0 z z 0 existiert.

Mehr

Die Kopplung von Markovketten und die Irrfahrt auf dem Torus

Die Kopplung von Markovketten und die Irrfahrt auf dem Torus Die Kopplung von Markovketten und die Irrfahrt auf dem Torus Verena Monschang Vortrag 20.05.20 Dieser Seminarvortrag thematisiert in erster Linie die Kopplung von Markovketten. Zu deren besseren Verständnis

Mehr

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92 Kapitel 4 Funktionen und Stetigkeit In diesem Kapitel beginnen wir Funktionen f : Ê Ê systematisch zu untersuchen. Dazu bauen wir auf den Begriff des metrischen Raumes auf und erhalten offene und abgeschlossene

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik. PD Dr. U. Ludwig. Vorlesung 7 1 / 19

Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik. PD Dr. U. Ludwig. Vorlesung 7 1 / 19 Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik PD Dr. U. Ludwig Vorlesung 7 1 / 19 2.2 Erwartungswert, Varianz und Standardabweichung (Fortsetzung) 2 / 19 Bedingter Erwartungswert

Mehr

12 Ungleichungen. Wir beginnen mit einer einfachen Ungleichung über die Varianz. Satz 35 Es sei X eine zufällige Variable.

12 Ungleichungen. Wir beginnen mit einer einfachen Ungleichung über die Varianz. Satz 35 Es sei X eine zufällige Variable. 12 Ungleichungen Wir beginnen mit einer einfachen Ungleichung über die Varianz. Satz 35 Es sei X eine zufällige Variable. Dann gilt: min c R E(X c)2 = Var X. Beweis: Für alle reellen Zahlen c R gilt: E(X

Mehr

Gegenbeispiele in der Wahrscheinlichkeitstheorie

Gegenbeispiele in der Wahrscheinlichkeitstheorie Gegenbeispiele in der Wahrscheinlichkeitstheorie Mathias Schaefer Universität Ulm 26. November 212 1 / 38 Übersicht 1 Normalverteilung Definition Eigenschaften Gegenbeispiele 2 Momentenproblem Definition

Mehr

VERTEILUNGEN VON FUNKTIONEN EINER ZUFALLSVARIABLEN

VERTEILUNGEN VON FUNKTIONEN EINER ZUFALLSVARIABLEN KAPITEL 15 VETEILUNGEN VON FUNKTIONEN EINE ZUFALLSVAIABLEN In diesem Kapitel geht es darum, die Verteilungen für gewisse Funktionen von Zufallsvariablen zu bestimmen. Wir werden uns auf den Fall absolut

Mehr

10 Der Satz von Radon-Nikodym

10 Der Satz von Radon-Nikodym uch im Sinne einer Vorabinformation vor der Stochastik-Vorlesung wollen wir abschließend kurz absolut stetige Maße und den Satz von Radon-Nikodym streifen. Definition 10.1. Seien (, M) ein messbarer Raum

Mehr

Stochastik im SoSe 2018 Hausaufgabenblatt 1

Stochastik im SoSe 2018 Hausaufgabenblatt 1 Stochastik im SoSe 208 Hausaufgabenblatt K. Panagiotou/ L. Ramzews / S. Reisser Lösungen zu den Aufgaben. Aufgabe Seien n N 0, x, y, z R. Zeigen Sie, dass (x + y + z) n i+j+kn i,j,k N 0 ( ) n x i y j z

Mehr

L 2 -Theorie und Plancherel-Theorem

L 2 -Theorie und Plancherel-Theorem L -Theorie und Plancherel-Theorem Seminar Grundideen der Harmonischen Analysis bei Porf Dr Michael Struwe HS 007 Vortrag von Manuela Dübendorfer 1 Wiederholung aus der L 1 -Theorie Um die Fourier-Transformation

Mehr

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt Universität Basel Wirtschaftswissenschaftliches Zentrum Zufallsvariablen Dr. Thomas Zehrt Inhalt: 1. Einführung 2. Zufallsvariablen 3. Diskrete Zufallsvariablen 4. Stetige Zufallsvariablen 5. Erwartungswert

Mehr

wf = w 0 +E( x) Die Definition des Angebotspreises p a = wf w 0 ergibt daher: p a = E( x)

wf = w 0 +E( x) Die Definition des Angebotspreises p a = wf w 0 ergibt daher: p a = E( x) Satz: Im Fall dass die Nutzenfunktion des Entscheidungsträgers linear bezüglich des End-Vermögens ist, stimmt der Angebotspreis einer Lotterie mit deren Erwartungswert E( x) überein Da U linear ist, gilt:

Mehr

Multivariate Verteilungen

Multivariate Verteilungen Multivariate Verteilungen Zufallsvektoren und Modellierung der Abhängigkeiten Ziel: Modellierung der Veränderungen der Risikofaktoren X n = (X n,1, X n,2,..., X n,d ) Annahme: X n,i und X n,j sind abhängig

Mehr

4 Holomorphie-Konvexität. Definition Satz. 42 Kapitel 2 Holomorphiegebiete

4 Holomorphie-Konvexität. Definition Satz. 42 Kapitel 2 Holomorphiegebiete 42 Kapitel 2 Holomorphiegebiete 4 Holomorphie-Konvexität Wir wollen weitere Beziehungen zwischen Pseudokonvexität und affiner Konvexität untersuchen. Zunächst stellen wir einige Eigenschaften konvexer

Mehr

Stoppzeiten und Charakteristische Funktionen. Tutorium Stochastische Prozesse 15. November 2016

Stoppzeiten und Charakteristische Funktionen. Tutorium Stochastische Prozesse 15. November 2016 Stoppzeiten und Charakteristische Funktionen Tutorium Stochastische Prozesse 15. November 2016 Inhalte des heutigen Tutoriums Im heutigen Tutorium besprechen wir: (1) Eindeutigkeit von Maßen ohne schnittstabilen

Mehr

Beispiel: Die Sägezahnfunktion.

Beispiel: Die Sägezahnfunktion. Beispiel: Die Sägezahnfunktion. Betrachte die Sägezahnfunktion : für t = oder t = π S(t) := 1 (π t) : für < t < π Die Sägezahnfunktion ist ungerade, also gilt (mit ω = 1) a k = und b k = π π und damit

Mehr

Die j-funktion, Abschätzung der Fourierkoeffizienten. 1 Grundlagen

Die j-funktion, Abschätzung der Fourierkoeffizienten. 1 Grundlagen Die j-funktion, Abschätzung der Fourierkoeffizienten Vortrag zum Seminar zur Funktionentheorie, 0.04.00 Felix Voigtländer Diese Ausarbeitung beschäftigt sich zunächst mit der j-funktion. Diese stellt einerseits

Mehr

Stetigkeit. Kapitel 4. Stetigkeit. Peter Becker (H-BRS) Analysis Sommersemester / 543

Stetigkeit. Kapitel 4. Stetigkeit. Peter Becker (H-BRS) Analysis Sommersemester / 543 Kapitel 4 Stetigkeit Peter Becker (H-BRS) Analysis Sommersemester 2016 254 / 543 Inhalt Inhalt 4 Stetigkeit Eigenschaften stetiger Funktionen Funktionenfolgen und gleichmäßige Konvergenz Umkehrfunktionen

Mehr

Statistik für Ingenieure Vorlesung 3

Statistik für Ingenieure Vorlesung 3 Statistik für Ingenieure Vorlesung 3 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 14. November 2017 3. Zufallsgrößen 3.1 Zufallsgrößen und ihre Verteilung Häufig sind

Mehr

Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla

Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla Sätze über Konvexität von Kapitel 4.7 bis 4.10 Theorem 4.7-1. Sei U ein konvexer Unterraum eines normierten Vektorraums. Dann

Mehr

bn b n a n Z b a b := lim

bn b n a n Z b a b := lim KAPITEL 3 Satz von Fisher Tippett Gnedenko In diesem Kapitel beweisen wir den Satz von Fisher Tippett Gnedenko, der die Extremwertverteilungen beschreibt. Satz 3.0.1 (Satz von Fisher Tippett (1928), Gnedenko

Mehr

Kapitel 6 Grenzwerte von Funktionen und Stetigkeit

Kapitel 6 Grenzwerte von Funktionen und Stetigkeit Kapitel 6 Grenzwerte von Funktionen und Stetigkeit 225 Relle Funktionen Im Folgenden betrachten wir reelle Funktionen f : D R, mit D R. Wir suchen eine formale Definition für den folgenden Sachverhalt.

Mehr

Charakteristische Funktionen

Charakteristische Funktionen Kapitel 9 Charakteristische Funktionen Jeder Wahrscheinlichkeitsverteilung auf (, B 1 ) (allgemeiner: (R n, B n )) ist eine komplexwertige Funktion, ihre charakteristische Funktion, zugeordnet, durch die

Mehr

Vorlesung 7a. Der Zentrale Grenzwertsatz

Vorlesung 7a. Der Zentrale Grenzwertsatz Vorlesung 7a Der Zentrale Grenzwertsatz als Erlebnis und Das Schwache Gesetz der Großen Zahlen Wiederholung: Die Normalverteilung Dichtefunktion ϕ der Standardnormalverteilung ϕ(x) 0.0 0.1 0.2 0.3 0.4

Mehr

Aufgaben zu Kapitel 0

Aufgaben zu Kapitel 0 Aufgaben zu Kapitel 0 0.1. Seien A und B zwei Mengen. Wie kann man paarweise disjunkte Mengen A 1, A 2 und A 3 so wählen, dass A 1 A 2 A 3 = A B gilt? 0.2. Seien E ein Menge und A eine Teilmengen von E.

Mehr

01. Gruppen, Ringe, Körper

01. Gruppen, Ringe, Körper 01. Gruppen, Ringe, Körper Gruppen, Ringe bzw. Körper sind wichtige abstrakte algebraische Strukturen. Sie entstehen dadurch, dass auf einer Menge M eine oder mehrere sogenannte Verknüpfungen definiert

Mehr

Lineare Approximation

Lineare Approximation Lineare Approximation Yasemin Hafizogullari 9. Januar 2009 Yasemin Hafizogullari () Lineare Approximation 9. Januar 2009 1 / 49 Übersicht 1 Erster Abschnitt: Lineare Approximation in beliebiger orthonormal

Mehr

3 Windungszahlen und Cauchysche Integralformeln

3 Windungszahlen und Cauchysche Integralformeln 3 3 Windungszahlen und Cauchysche Integralformeln 3. Definition: Sei geschlossener Integrationsweg oder Zyklus mit z 0 C \ Sp. Dann heißt n(, z 0 ) := dz z z 0 Windungszahl (oder: Index, Umlaufszahl) von

Mehr

1 Polynome III: Analysis

1 Polynome III: Analysis 1 Polynome III: Analysis Definition: Eine Eigenschaft A(x) gilt nahe bei a R, falls es ein δ > 0 gibt mit A(x) gilt für alle x (a δ, a + δ)\{a} =: U δ (a) Beispiele: x 2 5 nahe bei 0 (richtig). Allgemeiner:

Mehr

Zufällige stabile Prozesse und stabile stochastische Integrale. Stochastikseminar, Dezember 2011

Zufällige stabile Prozesse und stabile stochastische Integrale. Stochastikseminar, Dezember 2011 Zufällige stabile Prozesse und stabile stochastische Integrale Stochastikseminar, Dezember 2011 2 Stabile Prozesse Dezember 2011 Stabile stochastische Prozesse - Definition Stabile Integrale α-stabile

Mehr

9 Die Normalverteilung

9 Die Normalverteilung 9 Die Normalverteilung Dichte: f(x) = 1 2πσ e (x µ)2 /2σ 2, µ R,σ > 0 9.1 Standard-Normalverteilung µ = 0, σ 2 = 1 ϕ(x) = 1 2π e x2 /2 Dichte Φ(x) = 1 x 2π e t2 /2 dt Verteilungsfunktion 331 W.Kössler,

Mehr

Grundlagen der Fourier Analysis

Grundlagen der Fourier Analysis KAPITEL A Grundlagen der Fourier Analysis Wir definieren wie üblich die L p -Räume { ( } 1/p L p (R) = f : R C f(x) dx) p =: f p < 1. Fourier Transformation in L 1 (R) Definition A.1. (Fourier Transformation,

Mehr

Seminarvortrag Schnitte von Fraktalen

Seminarvortrag Schnitte von Fraktalen Seminarvortrag Schnitte von Fraktalen Matthias Schmid matthias.schmid@uni-ulm.de Universität Ulm 9. Februar 2007 Inhaltsverzeichnis 1 Einleitung 2 1.1 Einordnung................................... 2 1.2

Mehr

Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen. Steven Klein

Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen. Steven Klein Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen Steven Klein 04.01.017 1 In dieser Ausarbeitung konstruieren wir die reellen Zahlen aus den rationalen Zahlen. Hierzu denieren wir zunächst

Mehr

Stochastik Aufgaben zum Üben: Teil 2

Stochastik Aufgaben zum Üben: Teil 2 Prof. Dr. Z. Kabluchko Wintersemester 205/206 Hendrik Flasche Januar 206 Aufgabe Stochastik Aufgaben zum Üben: Teil 2 Es sei X eine Zufallsvariable mit Dichte f X (y) = cy 5 I y>. Bestimmen Sie c, P[2

Mehr

Statistik für Informatiker, SS Erwartungswert, Varianz und Kovarianz

Statistik für Informatiker, SS Erwartungswert, Varianz und Kovarianz Erwartungswert, Varianz und Kovarianz 1/65 Statistik für Informatiker, SS 2018 1.4 Erwartungswert, Varianz und Kovarianz Matthias Birkner http://www.staff.uni-mainz.de/birkner/statinfo18/ 14.5.2018 / 28.5.2018

Mehr

7 Der Satz von Girsanov

7 Der Satz von Girsanov 7 Der Satz von Girsanov Der Satz von Girsanov wird uns eine neue Perspektive auf die Rolle des Drifts liefern. Die Prozesse Brownsche Bewegung B t, Brownsche Bewegung mit Drift X t = B t + µt haben wir

Mehr