2D Graphik: FFT und Anwendungen der Fouriertransformation. Vorlesung 2D Graphik Andreas Butz, Otmar Hilliges Freitag, 25.

Größe: px
Ab Seite anzeigen:

Download "2D Graphik: FFT und Anwendungen der Fouriertransformation. Vorlesung 2D Graphik Andreas Butz, Otmar Hilliges Freitag, 25."

Transkript

1 LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie D Graphik: FFT und Anwendungen der Fouriertransformation Vorlesung D Graphik Andreas Butz, Otmar Hilliges Freitag, 5. ovember 005

2 LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie Themen heute Fouriertransformation nochmal anschaulich Berechnung der FFT Restauration linearer Bildstörungen durch inverse Filterung Transformation und Interpolation in Bildern

3 LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie 3 Fouriertransformation: Grundidee Beschreibe beliebige Funktion als gewichtete Summe periodischer Grundfunktionen (Basisfunktionen) mit untersch. Frequenz

4 Überlagerung von Schwingungen: anschaulich LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie 4

5 LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie 5 Fourier Transformation zum Anschauen du/exploratories/

6 Fast Fourier Transformation LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie 6

7 LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie 7 Vorgehensweise generell Vereinfachende Annahme: k, k> utze Separabilität, um D-FT auf D zurückzuführen (O(n 4 ) O(n 3 )) Teile Summe in zwei Teilsummen auf Finde Gemeinsamkeiten in den Teilsummen und berechne beide Teilsummen miteinander Betrachte die Teilsumme und unterteile rekursiv bis (O(n 3 ) O(n log n)

8 LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie 8 Separabilität ) ( exp )exp, ( exp exp )exp, ( exp )exp, ( ) ( )exp, ( ), ( m u m n m n m n m n m F um i vn i n m f um i um i vn i n m f vn i um i n m f vn um i n m f v u F π π π π π π π π Vorgehensweise: F u (m) für alle Spalten m berechnen und dann bei den Zeilen verwenden.

9 LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie 9 Divide Schritt ) ( ) )( ( ) )( ( ) )( ( ) )( ( ) ( exp, K n u n K K n nu K K n un K n un W n f K W n f K W n f K W n f u F i W K π ( ) u K odd even K n nu K odd K n nu K even W u F u F u F W n f K u F W n f K u F ) )( ( ) ( ) ( ) )( ( ) (, ) )( ( ) ( Finde Gemeinsamkeiten in den Teilsummen Teile Summe in zwei Teilsummen auf

10 LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie 0 Ausnutzen der Periodizität u+ u u+ ( W ) ( W ),( W ) ( W ) F K ( ) u ( u + K ) F ( u + K ) + F ( u + K )( W ) ( F ( u) F ( u)( W ) u ) even K even odd K K odd K u K Also kann man F(u+K) mithilfe F(u) berechnen (einmal F even + F odd, einmal F even F odd ) Betrachte die Teilsumme [0 K-] und unterteile rekursiv bis K (O(n 3 ) O(n log n)

11 LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie Restauration linearer Bildstörungen

12 LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie Beispiel I: Bewegungsunschärfe Über einen Zeitraum Δt wird ein Objektpunkt p auf immer andere Punkte auf dem CCD-Chip abgebildet. Bei unbewegter Kamera sei die Bildhelligkeit des abgebildeten Punkts h. Dann ist sie bei bewegter Kamera h/δs, wobei Δs die zurückgelegte Strecke ist. Wenn Δs für alle Punkte gleich ist, dann lässt sich die Veränderung durch eine Faltung beschreiben.

13 LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie 3 Bewegungsunschärfe Faltungskern ist eine Funktion w mit Der Winkel α gibt die Bewegungsrichtung an. Die Strecke Δs gibt die Strecke an, um die sich der Punkt bewegt hat:

14 LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie 4 Bewegungsunschärfe * Gestörtes Bild Original Faltungskern

15 LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie 5 Repräsentation linearer Störungen Jede verschiebungsinvariante lineare Operation wird vollständig durch die Faltungsfunktion beschrieben. Die Faltungsfunktion beschreibt die Operation für beliebige Bilder Die Faltungsfunktion kann als Resultat der Veränderung eines Punkts erzeugt werden Punktantwort Point Spread Function (PSF)

16 Beispiel II: Fokussierungsunschärfe Maß der Unschärfe hängt vom Punktabstand z, der Brennweite der Linse f und der Kammerkonstante f k ab. Linsengesetz: Größe des Unschärfekreises: Unschärfe kann durch Aufnahme eines punktförmigen Testobjekts angenähert werden. LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie 6

17 LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie 7 Fokussierungsunschärfe Wie kann die Störung rückgängig gemacht werden?

18 LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie 8 Bildrestauration Ziel: Korrektur des Bildsignals um bekannte und unbekannte Störungen Annahme: Störung kann durch einen verschiebungsinvarianten linearen Operator h beschrieben werden. g(x,y) (Störung durch PSF h) g'(x,y) g'(x,y) [h*g] (x,y) PSF beschreibt die Störung Wie kann die PSF bestimmt werden?

19 Gesucht: PSF LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie 9

20 LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie 0 PSF von Testbildern Annahme: Störung ist unveränderlich und Testaufnahme ist möglich. Durch die Aufnahme eines punktförmigen Objekts kann ein δ-impuls approximiert werden. Aufnahme ist eine äherung für die PSF.

21 LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie PSF aus dem aufgenommenen Bild Testaufnahme ist nicht möglich: äherungsweise Bestimmung der PSF durch Betrachtung von Punkten oder Linien im gestörten Bild.

22 LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie Kanten Die meisten Bilder weisen wenige Linien oder Punkte auf, aber Kanten können in fast jedem Bild gefunden werden.

23 D-Kanten LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie 3

24 Kanten im D-Raum: Gradienten Gradient im kontinuierlichen Raum (x,y): Vektor der partiellen Ableitungen der Bildfunktion in x- und y-richtung: (f(x,y)) ( f/ x f/ y) Approximation des Gradienten: Differential wird durch Differenz approximiert: Die Länge des Gradienten ist sein Betrag G(f) oder näherungsweise Gx + Gy. LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie 4

25 Elemente des Gradienten LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie 5

26 LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie 6 PSF aus Kanten PSF kann auch aus dem Verlauf einer als ideal angenommenen Kante approximiert werden.

27 LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie 7 Invertierung der Störung Überführung der Repräsentation in den Frequenzraum: G'(u,v) FT[g'(m,n)] FT[[h*g](m,n)] H(u,v) G(u,v) Invertierung: g(m,n) FT - [G'(u,v)/H(u,v)] (Inverse Filterung)

28 LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie 8 Inverse Filterung FT - ( / ) Vollständige Rückgewinnung der Information aus den gestörten Daten

29 LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie 9 Bewegungsunschärfe PSF FT(PSF)

30 LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie 30 Bewegungsunschärfe Resultat der inversen Filterung FT - [FT (g )(u,v)/ft(psf)(u,v)]

31 LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie 3 umerische Probleme bei der inversen Filterung g h* f f ( m, n) FT (, v) ( ) u, v G u H Problem: ullstellen von H Treten auf, falls h als Matrix nicht den vollen Rang hat Auch kleine Werte von H sind numerisch schon ein Problem Deswegen in der Praxis: F ( u v) G u H 0 (, v) ( u, v) H ( u, v) > sonst H, min

32 LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie 3 Rauschen Problem: Inverse Filterung geht von idealen (ungestörten) Daten aus In Wirklichkeit enthalten Bilddaten Rauschen Dieses Rauschen wird bei der inversen Filterung extrem verstärkt Rauschen lässt sich nicht herausrechnen, da es nicht wiederholbar ist

33 Rauschen LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie 33

34 LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie 34 Ad-hoc Lösung Gewichte die Wirkung der inversen Filterung mit der Amplitude der Störungsfunktion im Verhältnis zur mittleren Amplitude H ( u, v) H ( u, v) A Problem:Gewichtung nimmt keine Rücksicht auf die Signalstärke von F

35 LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie 35 Wiener Filter H ( u, v) H ( u, v) H + ( u, v) S ( u, v) η S f ( u, v) oder H ( u, v) H ( u, v) ( u, v) + k H Wobei S η und S f die Spektren des Rauschens bzw. der ungestörten Funktion sind S η 0 (ungestört) perfekte inverse Filterung Leider ist S η in der Praxis meist unbekannt Lösung: heuristisches Wiener Filter mit k

36 LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie 36

37 LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie 37

38 Transformation und Interpolation LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie 38

39 LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie 39 Transformation und Interpolation Die Transformationen Translation, Rotation und Skalierung sind auf reellen Zahlen definiert: Digitale Bilder haben einen ganzzahligen Definitionsbereich. ach Transformation ist eine Interpolation notwendig.

40 LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie 40 Interpolation Konstante Interpolation (Wert des nächsten achbarpixels) Lineare Interpolation Interpolation durch Polynome höheren Grades. Interpolation im Frequenzraum.

41 Konstante Interpolation LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie 4

42 Bilineare Interpolation LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie 4

43 Polynome höheren Grades Interpolation der Bildfunktion durch mehr als Stützpunkte Polynom n-ten Grades interpoliert n+ Punkte Die Bildfunktion wird besser angenähert, wenn mehr Terme der Taylor-Approximation berücksichtigt werden. Ableitungen für die Taylor-Reihe werden durch Differenzen angenähert. Grad des Polynoms ist ein Kompromiss zwischen steigender Anzahl berücksichtigter Terme der Taylor-Reihe. steigender Ungenauigkeit der geschätzten Ableitungen. bilinear bikubisch LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie 43

44 LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie 44 Interpolation im Frequenzraum Die Basisfunktionen der Fouriertransformation haben einen reellen Definitionsbereich. Ein Funktionswert kann an beliebiger Stelle (x,y) bestimmt werden durch Die Interpolation ist exakt, falls die ursprüngliche Funktion f bandbegrenzt ist (was die meisten Funktionen jedoch nicht sind).

45 LMU München Medieninformatik Butz/Hilliges D Graphics WS Folie 45 Literatur Klaus D. Tönnies: "Grundlagen der Bildverarbeitung", ISB r&isbn &pszielgruppestudent

Computergraphik 1 2. Teil: Bildverarbeitung. Fouriertransformation Ende FFT, Bildrestauration mit PSF Transformation, Interpolation

Computergraphik 1 2. Teil: Bildverarbeitung. Fouriertransformation Ende FFT, Bildrestauration mit PSF Transformation, Interpolation Computergraphik 1 2. Teil: Bildverarbeitung Fouriertransformation Ende FFT, Bildrestauration mit PSF Transformation, Interpolation LMU München Medieninformatik Butz/Hoppe Computergrafik 1 SS2009 1 2 Repräsentation

Mehr

Computergrafik 2: Filtern im Frequenzraum

Computergrafik 2: Filtern im Frequenzraum Computergrafik 2: Filtern im Frequenzraum Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen

Mehr

Computergrafik 2: Übung 6. Korrelation im Orts- und Frequenzraum, Filtern im Frequenzraum, Wiener Filter

Computergrafik 2: Übung 6. Korrelation im Orts- und Frequenzraum, Filtern im Frequenzraum, Wiener Filter Computergrafik : Übung 6 Korrelation im Orts- und Frequenzraum, Filtern im Frequenzraum, Wiener Filter Quiz Warum Filtern im Frequenzraum? Ideales Tiefpassfilter? Parameter? Eigenschaften? Butterworth-Filter?

Mehr

Computergrafik 2: Fourier-Transformation

Computergrafik 2: Fourier-Transformation Computergrafik 2: Fourier-Transformation Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Fourier-Transformation Graphische DV und BV, Regina Pohle, 8. Fourier-Transformation 1 Einordnung in die Inhalte der Vorlesung Einführung

Mehr

Computergrafik 2: Filtern im Frequenzraum

Computergrafik 2: Filtern im Frequenzraum Computergrafik 2: Filtern im Frequenzraum Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen

Mehr

Bildverarbeitung. Bildvorverarbeitung - Fourier-Transformation -

Bildverarbeitung. Bildvorverarbeitung - Fourier-Transformation - Bildverarbeitung Bildvorverarbeitung - Fourier-Transformation - 1 Themen Methoden Punktoperationen / Lokale Operationen / Globale Operationen Homogene / Inhomogene Operationen Lineare / Nichtlineare Operationen

Mehr

Übung zur Vorlesung 2D Grafik Wintersemester 05/06. Otmar Hilliges

Übung zur Vorlesung 2D Grafik Wintersemester 05/06. Otmar Hilliges Übung zur Vorlesung 2D Grafik Wintersemester 05/06 Übungsblatt 5 Musterlösung auf der Übungsseite. https://wiki.medien.ifi.lmu.de/pub/main/uebung2dgrafikws 0506/FFT_LSG.jar Page 2 transform() for (y =

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Bildverbesserung - Filterung Graphische DV und BV, Regina Pohle,. Bildverbesserung - Filterung Einordnung in die Inhalte der Vorlesung

Mehr

1. Filterung im Ortsbereich 1.1 Grundbegriffe 1.2 Lineare Filter 1.3 Nicht-Lineare Filter 1.4 Separabele Filter 1.

1. Filterung im Ortsbereich 1.1 Grundbegriffe 1.2 Lineare Filter 1.3 Nicht-Lineare Filter 1.4 Separabele Filter 1. . Filterung im Ortsbereich. Grundbegriffe. Lineare Filter.3 Nicht-Lineare Filter.4 Separabele Filter.5 Implementierung. Filterung im Frequenzbereich. Fouriertransformation. Hoch-, Tief- und Bandpassfilter.3

Mehr

Computergrafik 2: Fourier-Transformation

Computergrafik 2: Fourier-Transformation Computergrafik 2: Fourier-Transformation Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen

Mehr

R.Wagner, Mathematik in der Astronomie

R.Wagner, Mathematik in der Astronomie Mathematik in der Astronomie Roland Wagner Johann Radon Institute for Computational and Applied Mathematics (RICAM) Österreichische Akademie der Wissenschaften (ÖAW) Linz, Austria Linz, 20.Mai 2016 Übersicht

Mehr

Motivation. Diskretisierung. Überblick. Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen. Diskretisierung und Quantisierung

Motivation. Diskretisierung. Überblick. Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen. Diskretisierung und Quantisierung Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen Motivation Analoge Aufnahme von Sprache, Bildern Digitale Speicherung durch Diskretisierung + Quantisierung Informationsverlust

Mehr

Einführung in die medizinische Bildverarbeitung WS 12/13

Einführung in die medizinische Bildverarbeitung WS 12/13 Einführung in die medizinische Bildverarbeitung WS 12/13 Stephan Gimbel Kurze Wiederholung Pipeline Pipelinestufen können sich unterscheiden, beinhalten aber i.d.r. eine Stufe zur Bildvorverarbeitung zur

Mehr

Computergrafik 2: Morphologische Operationen

Computergrafik 2: Morphologische Operationen Computergrafik 2: Morphologische Operationen Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies

Mehr

Diskrete Signalverarbeitung und diskrete Systeme

Diskrete Signalverarbeitung und diskrete Systeme Diskrete Signalverarbeitung und diskrete Systeme Computer- basierte Verarbeitung von Signalen und Realisierung von Systemverhalten erfordern diskrete Signale und diskrete Systembeschreibungen. Wegen der

Mehr

Computergrafik 2: Filtern im Ortsraum

Computergrafik 2: Filtern im Ortsraum Computergrafik 2: Filtern im Ortsraum Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen

Mehr

Übung: Computergrafik 1

Übung: Computergrafik 1 Prof. Dr. Andreas Butz Prof. Dr. Ing. Axel Hoppe Dipl.-Medieninf. Dominikus Baur Dipl.-Medieninf. Sebastian Boring Übung: Computergrafik 1 Fouriertransformation Organisatorisches Neue Abgabefrist für Blatt

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

4. Segmentierung von Objekten Video - Inhaltsanalyse

4. Segmentierung von Objekten Video - Inhaltsanalyse 4. Segmentierung von Objekten Video - Inhaltsanalyse Stephan Kopf Inhalt Vorgehensweise Berechnung der Kamerabewegungen zwischen beliebigen Bildern Transformation eines Bildes Hintergrundbilder / Panoramabilder

Mehr

Angewandte Mathematik am Rechner 1

Angewandte Mathematik am Rechner 1 Michael Wand Institut für Informatik. Angewandte Mathematik am Rechner 1 SOMMERSEMESTER 2017 Kapitel 5 Grundlagen Analysis Kontinuierliche Mengen Vollständige Mengen Folgen Iterative Berechnungen Grenzwert:

Mehr

Diskretisierung und Quantisierung (Teil 1) Prof. U. Rüde - Algorithmik kontinuierlicher Systeme

Diskretisierung und Quantisierung (Teil 1) Prof. U. Rüde - Algorithmik kontinuierlicher Systeme Algorithmik kontinuierlicher Systeme Diskretisierung und Quantisierung (Teil ) Digitalisierung und Quantisierung Motivation Analoge Aufnahme von Sprache, Bildern, Digitale Speicherung durch Diskretisierung

Mehr

4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter

4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter 4 Signalverarbeitung 4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter Weiterführende Literatur (z.b.): Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

Bildverarbeitung: Filterung. D. Schlesinger () Bildverarbeitung: Filterung 1 / 17

Bildverarbeitung: Filterung. D. Schlesinger () Bildverarbeitung: Filterung 1 / 17 Bildverarbeitung: Filterung D. Schlesinger () Bildverarbeitung: Filterung 1 / 17 Allgemeines Klassische Anwendung: Entrauschung (Fast) jeder Filter basiert auf einem Modell (Annahme): Signal + Rauschen

Mehr

Diskretisierung und Quantisierung (Teil 1) Prof. U. Rüde - Algorithmik kontinuierlicher Systeme

Diskretisierung und Quantisierung (Teil 1) Prof. U. Rüde - Algorithmik kontinuierlicher Systeme Algorithmik kontinuierlicher Systeme Diskretisierung und Quantisierung (Teil ) Digitalisierung und Quantisierung Motivation Analoge Aufnahme von Sprache, Bildern, Digitale Speicherung durch Diskretisierung

Mehr

Motivation Phasenbestimmung

Motivation Phasenbestimmung Motivation Phasenbestimmung Problem Spezialfall der Phasenbestimmung Gegeben: Zustand z = 1 n y {0,1} n( 1)x y y Gesucht: x F n Für n = 1 ist der Zustand z = 1 ( 0 + ( 1) x 1 ) = H x. Es gilt H z = x,

Mehr

Biosignal Processing II

Biosignal Processing II Biosignal Processing II LEARNING OBJECTIVES Describe the main purposes and uses of the Fouriertransforms. Describe the basic properties of a linear system. Describe the concepts of signal filtering. FOURIERREIHE

Mehr

Bildverarbeitung. Fachschaftsrat Informatik. Professor Fuchs. Fragen TECHNISCHE UNIVERSITÄT DRESDEN. Unterteilung der Filter in Klassen

Bildverarbeitung. Fachschaftsrat Informatik. Professor Fuchs. Fragen TECHNISCHE UNIVERSITÄT DRESDEN. Unterteilung der Filter in Klassen Professor Fuchs Unterteilung der Filter in Klassen Wie erstellt man bei der Segmentierung objektumschreibende Formen? Eigenschaften der Zellkomplextopologie Was ist ein Histogramm? Wozu ist es gut? Unterschied

Mehr

Digitale Bildverarbeitung (DBV)

Digitale Bildverarbeitung (DBV) Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie Email: heinz juergen.przybilla@hs bochum.de Tel. 0234 32 10517 Sprechstunde: Montags 13 14 Uhr und nach Vereinbarung

Mehr

Computergrafik 2: Morphologische Operationen

Computergrafik 2: Morphologische Operationen Computergrafik 2: Morphologische Operationen Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies

Mehr

Nichtmonotone Grauwertabbildung

Nichtmonotone Grauwertabbildung LMU München Medieninformatik Butz/Hilliges 2D Graphics WS2005 02.12.2005 Folie 1 Nichtmonotone Grauwertabbildung Zwei Grauwertfenster in einem Bild. g (g) 0 511 2100 g Erzeugt künstliche Kanten. Grenzen

Mehr

Zuname: Vorname: KennNr: Matr.Nr: PRÜFUNG AUS MATHEMATIK 3. 1)(8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation.

Zuname: Vorname: KennNr: Matr.Nr: PRÜFUNG AUS MATHEMATIK 3. 1)(8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation. (8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation. y 7y + 10y = sin(2x), y(0) = 1, y (0) = 3. x ( ) Bemerkung: Für festes a gilt L(e ax ) = 1 und L sin(ax) = arctan a. s a x s Die auftretenden

Mehr

Was bisher geschah. digitale Bilder: Funktion B : pos col Matrix B col pos. Punktoperationen f : col 1 col 2

Was bisher geschah. digitale Bilder: Funktion B : pos col Matrix B col pos. Punktoperationen f : col 1 col 2 Was bisher geschah digitale Bilder: Funktion B : pos col Matrix B col pos statistische Merkmale Punktoperationen f : col 1 col 2 (Bildanalyse) (Farbtransformation) Geometrische Operationen f : pos 1 pos

Mehr

Inhaltsverzeichnis. Kapitel 1: Rechnen mit Zahlen. Kapitel 2: Umformen von Ausdrücken. Kapitel 3: Gleichungen, Ungleichungen, Gleichungssysteme

Inhaltsverzeichnis. Kapitel 1: Rechnen mit Zahlen. Kapitel 2: Umformen von Ausdrücken. Kapitel 3: Gleichungen, Ungleichungen, Gleichungssysteme Kapitel 1: Rechnen mit Zahlen 1.1 Rechnen mit reellen Zahlen 1.2 Berechnen von Summen und Produkten 1.3 Primfaktorzerlegung 1.4 Größter gemeinsamer Teiler 1.5 Kleinstes gemeinsames Vielfaches 1.6 n-te

Mehr

Segmentierung. Vorlesung FH-Hagenberg SEM

Segmentierung. Vorlesung FH-Hagenberg SEM Segmentierung Vorlesung FH-Hagenberg SEM Segmentierung: Definition Die Pixel eines Bildes A={a i }, i=1:n, mit N der Anzahl der Pixel, werden in Teilmengen S i unterteilt. Die Teilmengen sind disjunkt

Mehr

"Kanten- und Linienerkennung in Grauwertbildern für Bildverarbeitungsstufen im Antikollissionssystem des Faustfahrzeugs"

Kanten- und Linienerkennung in Grauwertbildern für Bildverarbeitungsstufen im Antikollissionssystem des Faustfahrzeugs "Kanten- und Linienerkennung in Grauwertbildern für Bildverarbeitungsstufen im Antikollissionssystem des Faustfahrzeugs" Ning Liu HAW-Hamburg Seminarvortrag December 15, 2006 Ning Liu Kanten- und Linienerkennung

Mehr

Technische Universität München. Fakultät für Informatik

Technische Universität München. Fakultät für Informatik Technische Universität München Fakultät für Informatik Forschungs- und Lehreinheit Informatik IX Thema: Filterung im Bildraum: Konvolution Proseminar: Grundlagen Bildverstehen/Bildgestaltung Jonas Zaddach

Mehr

Digitale Signalverarbeitung Bernd Edler

Digitale Signalverarbeitung Bernd Edler Digitale Signalverarbeitung Bernd Edler Wintersemester 2010/2011 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Filterentwurf

Mehr

Computergrafik 2: Filtern im Ortsraum

Computergrafik 2: Filtern im Ortsraum Computergrafik 2: Filtern im Ortsraum Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen

Mehr

3.2 Rekonstruktion. 3.2 Rekonstruktion

3.2 Rekonstruktion. 3.2 Rekonstruktion Bei der Aufnahme eines Bildes in der Praxis erhält man so gut wie nie direkt jenes Bild, das man gerne verwenden w urde. Wie schon in der Einleitung beschrieben, passiert dies entweder durch Verzerrung(falsche

Mehr

Grundlagen der Computer-Tomographie

Grundlagen der Computer-Tomographie Grundlagen der Computer-Tomographie Quellenangabe Die folgenden Folien sind zum Teil dem Übersichtsvortrag: imbie.meb.uni-bonn.de/epileptologie/staff/lehnertz/ct1.pdf entnommen. Als Quelle für die mathematischen

Mehr

Übungsblatt 1 Geometrische und Technische Optik WS 2012/2013

Übungsblatt 1 Geometrische und Technische Optik WS 2012/2013 Übungsblatt 1 Geometrische und Technische Optik WS 2012/2013 Gegeben ist eine GRIN-Linse oder Glasaser) mit olgender Brechzahlverteilung: 2 2 n x, y, z n0 n1 x y Die Einheiten der Konstanten bzw. n 1 sind

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13

Mathematischer Vorkurs für Physiker WS 2012/13 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Übungsblatt 2 Wichtige Formeln aus der Vorlesung: Basisaufgaben Beispiel 1: 1 () grad () = 2 (). () () = ( 0 ) + grad ( 0 ) ( 0 )+

Mehr

Analysis III. Teil I. Rückblick auf das letzte Semester. Themen aus dem SS Inhalt der letzten Vorlesung aus dem SS.

Analysis III. Teil I. Rückblick auf das letzte Semester. Themen aus dem SS Inhalt der letzten Vorlesung aus dem SS. Analysis III für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Teil I Rückblick auf das letzte Semester Fakultät für Mathematik, Informatik und Naturwissenschaften

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Systemtheorie Teil A - Zeitkontinuierliche Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 6 Musterlösungen Spektrum von Signalen 6. Approximation eines periodischen Signals

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004 4 Signalverarbeitung 4.1! Grundbegriffe! 4.2! Frequenzspektren, Fourier-Transformation! 4.3! Abtasttheorem: Eine zweite Sicht Weiterführende Literatur (z.b.):!! Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

Diskretisierung und Quantisierung (Teil 1) Prof. U. Rüde - Algorithmik kontinuierlicher Systeme

Diskretisierung und Quantisierung (Teil 1) Prof. U. Rüde - Algorithmik kontinuierlicher Systeme Algorithmik kontinuierlicher Systeme Diskretisierung und Quantisierung (Teil ) Digitalisierung und Quantisierung Motivation Analoge Aufnahme von Sprache, Bildern, Digitale Speicherung durch Diskretisierung

Mehr

Computergraphik I. Das Abtasttheorem. Problem bei räumlicher Abtastung: Oliver Deussen Abtasttheorem 1

Computergraphik I. Das Abtasttheorem. Problem bei räumlicher Abtastung: Oliver Deussen Abtasttheorem 1 Das Abtasttheorem Problem bei räumlicher Abtastung: Oliver Deussen Abtasttheorem 1 Problem bei zeitlicher Abtastung: Oliver Deussen Abtasttheorem 2 Darstellung auf Monitor Was geschieht eigentlich, wenn

Mehr

Die Wärmeleitungsgleichung

Die Wärmeleitungsgleichung Die Wärmeleitungsgleichung In einem Stab der Länge 1 wird die Temperaturverteilung gegeben durch die Funktion u : ([0,1] [0, )) R, u(x,t) ist die Temperatur am Punkt x zum Zeitpunkt t. Die Funktion erfüllt

Mehr

Bildverarbeitung: Fourier-Transformation. D. Schlesinger () BV: Fourier-Transformation 1 / 16

Bildverarbeitung: Fourier-Transformation. D. Schlesinger () BV: Fourier-Transformation 1 / 16 Bildverarbeitung: Fourier-Transformation D. Schlesinger () BV: Fourier-Transformation 1 / 16 Allgemeines Bilder sind keine Vektoren. Bilder sind Funktionen x : D C (Menge der Pixel in die Menge der Farbwerte).

Mehr

5. Fourier-Transformation

5. Fourier-Transformation 5. Fourier-Transformation 5.1 Definition 5.2 Eigenschaften 5.3 Transformation reeller Funktionen 5.4 Frequenzbereich und Zeitbereich 2.5-1 5.1 Definition Definition: Die Fourier-Transformation einer Funktion

Mehr

Computergraphik I. Freiformkurven. aus: Farin Curven und Flächen im CAGD. Oliver Deussen Freiformkurven 1

Computergraphik I. Freiformkurven. aus: Farin Curven und Flächen im CAGD. Oliver Deussen Freiformkurven 1 Freiformkurven aus: Farin Curven und Flächen im CAGD Oliver Deussen Freiformkurven 1 Definition für gebogene Kurven und Flächen Anwendungen: CAD: Automobil-, Flugzeug-, Schiffsbau Computergraphik: Objektmodellierung

Mehr

2D Graphik: Bildverbesserung 2

2D Graphik: Bildverbesserung 2 LMU München Medieninformatik Butz/Hilliges D Graphics WS5 9..5 Folie D Graphik: Bildverbesserung Vorlesung D Graphik Andreas Butz, Otmar Hilliges Freitag, 9. Dezember 5 LMU München Medieninformatik Butz/Hilliges

Mehr

2D Graphik: Digitalphotographie, Abtastung von Bildern

2D Graphik: Digitalphotographie, Abtastung von Bildern LMU München Medieninformatik Butz/Hilliges 2D Graphics WS2005 11.11.2005 Folie 1 2D Graphik: Digitalphotographie, Abtastung von Bildern Vorlesung 2D Graphik Andreas Butz, Otmar Hilliges Freitag, 11. November

Mehr

Vorlesung Computergrafik 1 Andreas Butz, Axel Hoppe EINFÜHRUNG, ORGANISATORISCHES

Vorlesung Computergrafik 1 Andreas Butz, Axel Hoppe EINFÜHRUNG, ORGANISATORISCHES Vorlesung Computergrafik 1 Andreas Butz, Axel Hoppe EINFÜHRUNG, ORGANISATORISCHES 1 Wer? Wo? Prof. Dr.-Ing. Axel Hoppe, MD.H und LMU axel.hoppe@ifi.lmu.de Prof. Dr.-Ing. Andreas Butz, LMU butz@ifi.lmu.de

Mehr

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Mustererkennung Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Optimierung: Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen Optimierungsprobleme Optimierung Suche nach dem Maximum oder Minimum

Mehr

Grundlagen der Bildverarbeitung Klaus D. Tönnies

Grundlagen der Bildverarbeitung Klaus D. Tönnies Grundlagen der Bildverarbeitung Klaus D. Tönnies ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney Mexico City Madrid Amsterdam Inhaltsverzeichnis

Mehr

5 Interpolation und Approximation

5 Interpolation und Approximation 5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)

Mehr

Inhaltsverzeichnis Kapitel 1: Rechnen mit Zahlen... 1 Kapitel 2: Umformen von Ausdrücken... 10

Inhaltsverzeichnis Kapitel 1: Rechnen mit Zahlen... 1 Kapitel 2: Umformen von Ausdrücken... 10 Kapitel 1: Rechnen mit Zahlen...1 1.1 Rechnen mit reellen Zahlen...2 1.2 Berechnen von Summen und Produkten...3 1.3 Primfaktorzerlegung...4 1.4 Größter gemeinsamer Teiler...4 1.5 Kleinstes gemeinsames

Mehr

Extrema multivariater Funktionen

Extrema multivariater Funktionen Extrema multivariater Funktionen Ist f (x ) ein Minimum (Maximum) einer stetig differenzierbaren skalaren Funktion f auf einer Umgebung U von x, so gilt grad f (x ) = (0,..., 0) t. Extrema multivariater

Mehr

12.2 Gauß-Quadratur. Erinnerung: Mit der Newton-Cotes Quadratur. I n [f] = g i f(x i ) I[f] = f(x) dx

12.2 Gauß-Quadratur. Erinnerung: Mit der Newton-Cotes Quadratur. I n [f] = g i f(x i ) I[f] = f(x) dx 12.2 Gauß-Quadratur Erinnerung: Mit der Newton-Cotes Quadratur I n [f] = n g i f(x i ) I[f] = i=0 b a f(x) dx werden Polynome vom Grad n exakt integriert. Dabei sind die Knoten x i, 0 i n, äquidistant

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004 4 Signalverarbeitung 4.1! Grundbegriffe 4.2! Frequenzspektren, Fourier-Transformation 4.3! Abtasttheorem: Eine zweite Sicht 4.4! Filter! Weiterführende Literatur (z.b.): Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

Analysis 2, Woche 9. Mehrdimensionale Differentialrechnung I. 9.1 Differenzierbarkeit

Analysis 2, Woche 9. Mehrdimensionale Differentialrechnung I. 9.1 Differenzierbarkeit A Analysis, Woche 9 Mehrdimensionale Differentialrechnung I A 9. Differenzierbarkeit A3 =. (9.) Definition 9. Sei U R m offen, f : U R n eine Funktion und a R m. Die Funktion f heißt differenzierbar in

Mehr

Technische Universität München Fakultät für Informatik

Technische Universität München Fakultät für Informatik Technische Universität München Fakultät für Informatik Forschungs- und Lehreinheit Informatik IX Proseminar: Grundlagen Bildverarbeitung/Bildverstehen Rückgewinnung/Restauration von Informationen Markus

Mehr

k(x, y)u(y) dy = f(x), x 2, (3.20)

k(x, y)u(y) dy = f(x), x 2, (3.20) Bei der Aufnahme eines Bildes in der Praxis erhält man so gut wie nie direkt jenes Bild, das man gerne verwenden würde. Wie schon in der Einleitung beschrieben, passiert dies entweder durch Verzerrung

Mehr

Mathematische Probleme lösen mit Maple

Mathematische Probleme lösen mit Maple Mathematische Probleme lösen mit Maple Ein Kurzeinstieg Bearbeitet von Thomas Westermann überarbeitet 2008. Buch. XII, 169 S. ISBN 978 3 540 77720 5 Format (B x L): 15,5 x 23,5 cm Weitere Fachgebiete >

Mehr

Filter. Industrielle Bildverarbeitung, Vorlesung No M. O. Franz

Filter. Industrielle Bildverarbeitung, Vorlesung No M. O. Franz Filter Industrielle Bildverarbeitung, Vorlesung No. 5 1 M. O. Franz 07.11.2007 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Burger & Burge, 2005. Übersicht 1 Lineare Filter 2 Formale

Mehr

EVC Repetitorium Blender

EVC Repetitorium Blender EVC Repetitorium Blender Michael Hecher Felix Kreuzer Institute of Computer Graphics and Algorithms Vienna University of Technology INSTITUTE OF COMPUTER GRAPHICS AND ALGORITHMS Filter Transformationen

Mehr

Bildpunkt auf dem Gitter: Pixel (picture element) (manchmal auch Pel)

Bildpunkt auf dem Gitter: Pixel (picture element) (manchmal auch Pel) 4. Digitalisierung und Bildoperationen 4.1 Digitalisierung (Sampling, Abtastung) Rasterung auf 2D-Bildmatrix mathematisch: Abb. einer 2-dim. Bildfunktion mit kontinuierlichem Definitionsbereich auf digitales

Mehr

Digitale Signalverarbeitung Bernd Edler

Digitale Signalverarbeitung Bernd Edler Digitale Signalverarbeitung Bernd Edler Wintersemester 2008/2009 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Systeme bei stochastischer

Mehr

Systemtheorie abbildender Systeme

Systemtheorie abbildender Systeme Bandbegrenzung Bild in (b) nicht band-begrenzt: scharfe Kanten = Dirac-Funktionen = weißes Spektrum Erfordert Tapering vor Digitalisierung (Multiplikation mit geeigneter Fensterfunktion; auf Null drücken

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen IGPM RWTH Aachen Institut für Geometrie und Praktische Mathematik Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen

Mehr

Theoretische Physik 1, Mechanik

Theoretische Physik 1, Mechanik Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische

Mehr

Signale, Transformationen

Signale, Transformationen Signale, Transformationen Signal: Funktion s(t), t reell (meist t die Zeit, s eine Messgröße) bzw Zahlenfolge s k = s[k], k ganzzahlig s reell oder komplex s[k] aus s(t): Abtastung mit t = kt s, s[k] =

Mehr

WS 2014/15 FINITE-ELEMENT-METHODE JUN.-PROF. D. JUHRE

WS 2014/15 FINITE-ELEMENT-METHODE JUN.-PROF. D. JUHRE Approximation der äußeren virtuellen Arbeit Die virtuelle Arbeit der äußeren Lasten lässt sich als Funktion der vorgeschriebenen Knotenlasten N i 1 und der vorgeschriebenen Streckenlast p 1 ξ 1 angeben.

Mehr

Prüfungsleistung Mathematik 1 (TI 1)

Prüfungsleistung Mathematik 1 (TI 1) Hochschule Ulm Klein 08. Juli 00 Prüfungsleistung Mathematik (TI ) Name:... Matrikel-Nr.:... Punkte:... Note:... Bemerkungen: - alle Hilfsmittel zugelassen (kein Laptop / Handy) - Lösungswege müssen erkennbar

Mehr

2D Graphik: Klassifikation

2D Graphik: Klassifikation LMU München Medieninformatik Butz/Hilliges 2D Graphics WS2005 20.01.2006 Folie 1 2D Graphik: Klassifikation Vorlesung 2D Graphik Andreas Butz, Otmar Hilliges Freitag, 20. Januar 2006 LMU München Medieninformatik

Mehr

Globale Operationen. Prof. Dr. Aris Christidis WS 2018 / 19

Globale Operationen. Prof. Dr. Aris Christidis WS 2018 / 19 Globale Operationen Operationen / Funktionen, die alle Pixel des Eingabebildes benötigen, bevor sie ein Pixel oder eine Aussage für das Ergebnisbild ermitteln, nennt man global. (Beispiel: Erkennung /

Mehr

GMA. Grundlagen Mathematik und Analysis. Nullstellen und Fixpunkte Reelle Funktionen 3. Christian Cenker Gabriele Uchida

GMA. Grundlagen Mathematik und Analysis. Nullstellen und Fixpunkte Reelle Funktionen 3. Christian Cenker Gabriele Uchida GMA Grundlagen Mathematik und Analysis Reelle Funktionen 3 Christian Cenker Gabriele Uchida Data Analytics and Computing Nullstellen cos log : 0, 0,? 1 Fixpunkte Beispiel 1 Beispiel 2 1 0 0 und 1 1sin,?

Mehr

Digitale Bildverarbeitung Einheit 8 Lineare Filterung

Digitale Bildverarbeitung Einheit 8 Lineare Filterung Digitale Bildverarbeitung Einheit 8 Lineare Filterung Lehrauftrag WS 05/06 Fachbereich M+I der FH-Offenburg Dipl.-Math. Bernard Haasdonk Albert-Ludwigs-Universität Freiburg Ziele der Einheit Verstehen,

Mehr

3.3 Das Abtasttheorem

3.3 Das Abtasttheorem 17 3.3 Das Abtasttheorem In der Praxis kennt man von einer zeitabhängigen Funktion f einem Signal meist nur diskret abgetastete Werte fn, mit festem > und ganzzahligem n. Unter welchen Bedingungen kann

Mehr

2. Fourier-Transformation

2. Fourier-Transformation 2. Fourier-Transformation Die Fourier-Transformation ist ein wichtiges Hilfsmittel für die dynamische Analyse linearer Systeme: Die Fourier-Transformierte der Antwort ist gleich dem Produkt der Fourier-Transformierten

Mehr

Aufgabe 2 (5 Punkte) y = 1 x. y + 3e 3x+2 x. von f. (ii) Für welches u in R 2 gilt f(u) = [3, 3, 4] T? x 2 + a x 3 x 1 4x 2 + a x 3 2x 4

Aufgabe 2 (5 Punkte) y = 1 x. y + 3e 3x+2 x. von f. (ii) Für welches u in R 2 gilt f(u) = [3, 3, 4] T? x 2 + a x 3 x 1 4x 2 + a x 3 2x 4 Prof. Dr. B. Billhardt Wintersemester 4/5 Klausur zur Vorlesung Höhere Mathematik II (BNUW) 4.3.5 Aufgabe (a) Ermitteln Sie die Nullstellen des Polynoms p(z) = z 4 4z 3 + 3z + 8z. Tipp: p( + i) =. (b)

Mehr

(Fast) Fourier Transformation und ihre Anwendungen

(Fast) Fourier Transformation und ihre Anwendungen (Fast) Fourier Transformation und ihre Anwendungen Johannes Lülff Universität Münster 14.01.2009 Definition Fouriertransformation F (ω) = F [f(t)] (ω) := 1 2π dt f(t)e iωt Fouriersynthese f(t) = F 1 [F

Mehr

Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016

Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 Mathematik I+II für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 I. Wiederholung Schulwissen 1.1. Zahlbereiche 1.2. Rechnen mit reellen Zahlen 1.2.1. Bruchrechnung 1.2.2. Betrag 1.2.3. Potenzen 1.2.4. Wurzeln

Mehr

Debayeringverfahren. 19. Mai Thomas Noack, Nikolai Kosjar. SE Computational Photography - Debayeringverfahren

Debayeringverfahren. 19. Mai Thomas Noack, Nikolai Kosjar. SE Computational Photography - Debayeringverfahren Debayeringverfahren Thomas Noack, Nikolai Kosjar 19. Mai 2010 Was bisher geschah... Reduktion der Herstellungskosten durch Einsatz von nur noch einem CCD-Sensor mit Bayer-Filter Problem: Bayer Image Full

Mehr

Inhaltsübersicht. Deltafunktion Gammafunktion Fehlerfunktion. Kapitel 13: Spezielle Funktionen

Inhaltsübersicht. Deltafunktion Gammafunktion Fehlerfunktion. Kapitel 13: Spezielle Funktionen Inhaltsübersicht Kapitel 13: Spezielle Funktionen Deltafunktion Gammafunktion Fehlerfunktion Notizen zur Vorlesung Mathematik für Materialwissenschaftler 2 1 Die Bezeichnung Delta-Funktion ist streng genommen

Mehr

Filter Transformationen (Blender) INSTITUTE OF COMPUTER GRAPHICS AND ALGORITHMS

Filter Transformationen (Blender) INSTITUTE OF COMPUTER GRAPHICS AND ALGORITHMS Filter Transformationen (Blender) INSTITUTE OF COMPUTER GRAPHICS AND ALGORITHMS Wozu Filter? Wozu Filter? Beispiel 3 Teil1: Filter anwenden (verschiedene Filter anwenden um diverse Effekte zu erzeugen)

Mehr

Spektralanalyse. Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann!

Spektralanalyse. Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann! Spektralanalyse Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann! Mit der Spektralanalyse können wir Antworten auf folgende Fragen bekommen:

Mehr

Digitale Signalverarbeitung, Vorlesung 8 - Exakte Kanalentzerrung

Digitale Signalverarbeitung, Vorlesung 8 - Exakte Kanalentzerrung Digitale Signalverarbeitung, Vorlesung 8 - Exakte Kanalentzerrung Arbeitsgruppe Kognitive Signalverarbeitung 17. Dezember 2018 1 / 33 Ziele der heutigen Vorlesung Übertragungskanäle kompensieren Theoretische

Mehr

5. Numerische Differentiation. und Integration

5. Numerische Differentiation. und Integration 5. Numerische Differentiation und Integration 1 Numerische Differentiation Problemstellung: Gegeben ist eine differenzierbare Funktion f : [a,b] R und x (a,b). Gesucht sind Näherungen für die Ableitungen

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 7. Juni 201 *Aufgabe 1. Gegeben seien fx, y = xy 2 8e x+y und P = 1, 2. Der Gradient von f ist genau an der Stelle P Null. a Untersuchen Sie mit Hilfe der Hesse-Matrix,

Mehr

Beispiel für eine periodische Spline-Interpolationsfunktion: Wir betrachten f(x) = sin(πx) und geben die folgenden Stützstellen und Stützwerte vor:

Beispiel für eine periodische Spline-Interpolationsfunktion: Wir betrachten f(x) = sin(πx) und geben die folgenden Stützstellen und Stützwerte vor: 5 Splineinterpolation Beispiel für eine periodische Spline-Interpolationsfunktion: Wir betrachten f(x) sin(πx) und geben die folgenden Stützstellen und Stützwerte vor: x i 3 f i Damit ist n 5, h Forderung

Mehr

Polynominterpolation. Allgemeines Problem: Beispiel 1 (Teil 1):

Polynominterpolation. Allgemeines Problem: Beispiel 1 (Teil 1): . Großübung Polynominterpolation Allgemeines Problem: Aufgrund gegebener Messwerte (Paare aus Werten i und Funktionswerten f( i )) soll ein Funktionsverlauf rekonstruiert bzw. zumeist angenähert werden.

Mehr

Konvergenz und Stetigkeit

Konvergenz und Stetigkeit Mathematik I für Biologen, Geowissenschaftler und Geoökologen 12. Dezember 2007 Konvergenz Definition Fourierreihen Obertöne Geometrische Reihe Definition: Eine Funktion f : D R d heißt beschränkt, wenn

Mehr

Darstellung als Filterbank. Annahme für die Codierung: bestimmter Betrachtungsabstand, Wiedergabegröße Bestimmter Betrachtungswinkel für das Auge.

Darstellung als Filterbank. Annahme für die Codierung: bestimmter Betrachtungsabstand, Wiedergabegröße Bestimmter Betrachtungswinkel für das Auge. Darstellung als Filterbank Annahme für die Codierung: bestimmter Betrachtungsabstand, Wiedergabegröße Bestimmter Betrachtungswinkel für das Auge. - Trifft in bestimmten Maße auch auf das Original zu, da

Mehr

Lösungshinweise zur Klausur

Lösungshinweise zur Klausur Höhere Mathematik 1 und 4..14 Lösungshinweise zur Klausur für Studierende der Fachrichtungen el, kyb,mecha,phys Aufgabe 1 Entscheiden Sie, welche der folgenden Aussagen richtig und welche falsch sind.

Mehr

Runde 9, Beispiel 57

Runde 9, Beispiel 57 Runde 9, Beispiel 57 LVA 8.8, Übungsrunde 9,..7 Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 3..7 Angabe Seien y, z C N und c, d C N ihre Spektralwerte. Außerdem bezeichne (x k ) k die N - periodische

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004 4 Signalverarbeitung 4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter Weiterführende Literatur (z.b.): Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr