Infinite Impulse Response-Filter Rekursivfilter DSP-8-IIR 1

Größe: px
Ab Seite anzeigen:

Download "Infinite Impulse Response-Filter Rekursivfilter DSP-8-IIR 1"

Transkript

1 Ifiite Impulse Respose-Filter Rekursivfilter DSP-8-IIR

2 IIR-Filter. Ordug y [ ] ay [ ] bx o [ ] bx [ ] FIR-Teil x[] b v[] y[] x + + z - z - b a x Feed-forward Teil (FIR-Filter) x y[-] Feed-back Teil DSP-8-IIR 2

3 Beispiel y [ ].8 y [ ] 5 x [ ] ( b) x [] 2[] 3[ ] 2[ 3] Afagsbediguge: Der Wert y[] zum Zeitpukt = - ist icht bekat! Wir ehme a, dass die Eigagsgröße x[] plötzlich agelegt wird ud dass sie vorher Null war: x[] = für < Wir ehme weiters a, dass das System vor der Afagszeit im Ruhezustad war, d.h. DSP-8-IIR 3 y[] = für < (Iitial rest)

4 y[].8 y[ ] 5(2).8 () 5 ( 2) y[].8 y[] 5 x[].8 () 5 ( 3) 7 y[2].8 y[] 5 x[2].8 ( 7) 5 ( ) 5.6 y[3].8 y[2] 5x[3].8 ( 5.6) 5 ( 2) 5.52 y[4].8 y[3] 5 x[4].8 (5.52) 5 ( ) y[5].8 y[4] 5 x[5].8 (4.446) 5 ( ) y[6].8 y[5] 5 x[6].8 ( ) 5 ( ) y [ ].8 y [ ] 5 x [ ] (Eigag Null) y [ ]. 8 y [ ] y [ ] y[3](.8) B = [5]; A = [ -.8] filter(b,a,x) DSP-8-IIR Eigag Ausgag

5 N y[ ] ay [ l] bx[ k] l l M k k Output ist f(output) Feed-back FIR: Output ist f(iput) Feed-forward Bei FIR-Filter ist M die Ordug des Filters, bei IIR-Filter ist N die Ordug des Filters. DSP-8-IIR 5

6 Liearität, Zeitivariaz IIR-Filter N y[ ] ay [ l] bx[ k] l l M k k sid liear ud zeitivariat. DSP-8-IIR 6

7 Impulsatwort IIR-System. Ordug Die Atwort auf eie Eiheitsimpuls charakterisiert ei LTI-System vollstädig. Da jedes Eigagssigal als Überlagerug vo gewichtete, zeitverzögerte Eiheitspulse dargestellt werde ka, köe die etsprechede Ausgagssigale vo gewichtete ud zeitverzögerte Versioe der Impulsatwort gebildet werde: y [] xkh [ ][ k] k DSP-8-IIR 7

8 . 2. y [ ] ay [ ] bx[ ] Differezegleichug Impulsatwort h [ ] ah [ ] b[ ] Die Lösug dieser Diffezegleichug ist: bo ( a ) für h [ ] für Beweis durch Eisetze: h[] ah[ ] b[] ( a)( ) b für h [ ] ah [ ] b[ ] o o b( a) a ba ba o o b DSP-8-IIR 8

9 Schreibweise mit Eiheitssprug [ ] für für da wird h [ ] b ( a ) o [ ] DSP-8-IIR 9

10 Lösug der Differezegleichug y [ ] ay [ ] bx [ ] bx [ ] o Da LTI-System, Impulsatwort Summe vo zwei Terme h [ ] b( a) [ ] b( a) [ ] o b bo ba a DSP-8-IIR

11 Sprugatwort y [ ] ay [ ] bx [ ] o Bereche der Sprugatwort durch Eisetze i die Differezegleichug ud puktweises Bereche des Ausgagsigals: 2 3 x [ ] y [ ] b b b ( a ) b b ( a ) b ( a ) b a a a DSP-8-IIR

12 2 y [ ] b( aa... a ) b Es ist o k a k L k= r k r L r r L r y [ ] b a a für, we a DSP-8-IIR 2

13 Wir müsse drei Fälle uterscheide: We a, da domiiert a y über alle Greze == > Istabilität We, da geht für Abklige ==> Stabilität a a lim ud [ ] wächst a a gege Null. b y [ ] a y [ ] ( ) b für geht y [ ] y [ ] b we gerade o y [ ] we ugerade o y [ ] b DSP-8-IIR 3 a a

14 Amplitude Step Respose Amplitude 5 Step Respose 5 a =.5... stabil Step Respose 2 a =.... istabil Step Respose Amplitude.5 Amplitude 5 5 a = -... Grezfall 5 a =... istabil DSP-8-IIR 4

15 Systemfuktio Domai zdomai y [ ] h [ ] x [ ] Y( z) H( z) X( z) Die Systemfuktio vo FIR-Systeme ist immer ei Polyom i z -. Durch die Rückkoppelug wird die Systemfuktio vo IIR-Systeme immer ei Verhältis vo zwei Polyome (gebroche ratioale Fuktio). DSP-8-IIR 5

16 y [ ] ay [ ] bx [ ] bx [ ] o o Y( z) a z Y( z) b X( z) bz X( z) o Y( z) a z Y( z) b X( z) bz X( z) H( z) Yz ( ) b bz Bz ( ) o X ( z) a z A( z) Zählerpolyom: Feed-forward Koeffiziete Neerpolyom: + egative Feed-back Koeffiziete DSP-8-IIR 6

17 Blockdiagramm.Direktform bo bz Hz ( ) ( ) az ( ) bo bz Bz az DSP-8-IIR A z 7

18 Blockdiagramm 2.Direktform B( z) B( z) A( z) A( z) DSP-8-IIR 8

19 Delay-Elemete kombiiert DSP-8-IIR 9

20 Pole ud Nullstelle H( z) z z a b b o o o b bz bz b az z a Nullstelle Polstelle DSP-8-IIR 2

21 Pole ud Stabilität Die Systemfuktio H( z) b b z o bz az z a b ( b ) o hat die Impulsatwort h [ ] b ( a ) [ ] b( a ) [ ] o o b b ba a DSP-8-IIR 2

22 Die Impulsatwort ist proportioal a für. Für a kligt dieser Ausdruck ab, we. We a steigt dieser Ausdruck expoetiell a. Die Lage der Pole zeigt also a, ob die Impulsatwort abkligt oder asteigt. Systeme mit abkligede Impulsatworte sid stabile Systeme. Bouded Iput <=> Bouded Output Bibo - Stabilität Für stabile Systeme liege die Pole ierhalb des Eiheitskreises der z-ebee! DSP-8-IIR 22

23 Frequezgag eies IIR-Filters y [ ] H( ˆ ) e H jˆ 6 jˆ 4 ( ˆ ) He ( ) Hz ( ) jˆ ze 2 H(z) H( z).8 z Re Im Siusfolge trifft auf Pol auf dem Eiheitskreis: DSP-8-IIR 23 bouded iput ubouded output (Resoaz)

24 Frequezbereich (li) z-bereich Zeitbereich DSP-8-IIR 24

25 h [ ] H( z) H( e j ) ˆ? Pole, Nullstelle H(z) Zeitbereich Eigag, Ausgag h() { a, b } k k Frequezbereich j ˆ ( ) He DSP-8-IIR 25

26 y [ ] ay [ ] ay [ 2] bx [ ] bx [ ] bx [ 2] 2 2 H( z) b bz bz az az 2 Lösug DGL? He ( ) b be be ae jˆ jˆ 2 jˆ ae 2 j2ˆ jˆ DSP-8-IIR 26

27 Iverse z-trasformatio Eiführug am Beispiel eies Systems. Ordug b bz H z Y z H z X z ( ) ( ) ( ) ( ) az. Bestimmug der ztrasformatio X( z) 2. Muliplikatio vo HzXz ( ) ( ) 3. Bestimmug der Rücktrasformatio vo Y( z) DSP-8-IIR 27

28 Wir bestimme die Sprugatwort eies Systems. Ordug. h [ ] a [ ] H ( z) a z az für az ist diese Summe edlich H( z)... für az a [ ] az Eiheitssprug für a a z k x k für x x DSP-8-IIR 28

29 Partialbruchzerlegug o o HzXz 2 ( a) z az Yz ( ) ( ) ( ) A az oder scheller über Y( z) ( az ) Y( z) ( A B z b bz o A az z (Berechug durch Koeffizietevergleich) b bz B( az ) z z b bz b bz B( a z ) o az ) A za z z za za bobz b ba z o a za DSP-8-IIR 29 A

30 ( ) ( ) z a B Y z z b ba b b [ ] o y a [ ] [ ] a a b b A az Aa [ ] DSP-8-IIR 3

31 Rücktrasformatio (M<N). Faktorisierug der Neerpolyoms vo H( z) ( k ) für,2,..., 2. Partialbruchzerlegug H( z) k pz k N k ( )( k ) k 3. Rücktrasformatio N N h [ ] Ap [ ] k A k k pz AH z pz k z p k DSP-8-IIR 3

32 Wichtige Trasformatiospaare ax [ ] bx [ ] ax ( z) bx ( z) 2 2 [ ] z ( ) x X z y [ ] x [ ] h [ ] Y( z) X( z) H( z) [ ] [ - ] a [ ] z az DSP-8-IIR 32

33 X( z) X( z) 2.z 2.z z z z z (.5 )(.8 ) A B.5z.8z 2.z.5 z B(.5 z ) 5 ) 2 X( z)(. z A.8z.5z.8z z.5 z.5 2.z B X z z.8 z ( )(.5 ) z.8 x [ ] 2(.5) [ ] (.8) [ ] DSP-8-IIR 33

34 A = [ ]; B = [ -2.]; [R,P,K] = residuez(b,a) R' = - 2 P' = K = [].5 Impulse Respose impz(b,a) Amplitude (samples) DSP-8-IIR 34

35 Frequezgag IIR-Filter Frequezgag bei FIR-Filter M M jˆk jˆ y[ ] bkx[ k] bke Ae k k = H( ˆ ) Frequezgag mit z-trasformatio H ˆ jˆ ( ) He ( ) Hz ( ) ze z.b.: H( z) b az jˆ He ( ) jˆ jˆ jˆ y H e e e jˆ Ae jˆ b ae jˆ jˆ b [ ] ( ) ae DSP-8-IIR 35

36 Steady state - trasiet respose eigeschwugeer Zustad - Übergagsatwort Plötzlich agelegte komplexe Expoetialfolge: jˆ x [ ] e [ ] X( z) e b Yz ( ) ( ) ( ) jˆ HzXz j ˆ az e z Nach der Partialbruchzerlegug erhalte wir: Y( z) ba b a e ae jˆ jˆ jˆ az e z DSP-8-IIR 36 z

37 Y( z) ba b a e ae jˆ jˆ jˆ az e z ba jˆ [ ] a ˆ [ ] e [ ] j jˆ y a e kligt ab, we stabil b a e steady state a u[ ] -az DSP-8-IIR 37

38 b = ; a =. 9.9 [ ] ( ) y =. 9 δ.2 [ ] j π =.9 e j ( ) e.9 δ [ ] j.2π j.297 j. 2π y [ ] 2 = e δ.2 [ ].5533 e e δ [ ] j π = = +.9e =.5533 cos(.2π +.297) δ [ ] + j.5533 si(.2π +.297) y [ ] = y [ ] + y [ ] 2 δ [ ] DSP-8-IIR 38

39 Impulse Respose Amplitude b = a = -.9 DSP-8-IIR 39

40 Istabiles System Pole bei a =. DSP-8-IIR 4

41 IIR-Systeme 2. Ordug y [ ] ay [ ] ay [ 2] bx [ ] bx [ ] bx [ 2] 2 o 2 Y( z) a z Y( z) a z Y( z) b X( z) bz X( z) b z X( z) o 2 bo bz bz H( z) az az 2 DSP-8-IIR 4

42 Pole ud Nullstelle H( z) Y( z) b bz bz bz bzb X( z) az az z az a Ei Polyom des Grades N hat N Wurzel. We die Koeffiziete des Polyoms reell sid, da sid die Wurzel etweder reell oder kojugiert komplex. DSP-8-IIR 42

43 Impulsatwort Y( z) b bz bz H( z) X( z) az az H( z) b A A a pz pz b h A p A p 2 [ ] [ ] [ ] 2 2 [ ] a 2 DSP-8-IIR 43

44 H( z) H( z) Reelle Pole z z ( z )( z ) ( z ) ( z ) h [ ] 3 [ ] 2 [ ] We p ud p reell sid, da besteht die Impulsatwort 2 aus zwei Fuktioe der Form p. k DSP-8-IIR 44

45 B =[]; A =,-, impz(b,a) Impulse Respose Amplitude (samples) DSP-8-IIR 45

46 Kojugiert komplexe Pole DSP-8-IIR 46

47 Komplexe Pole auf dem Eiheitskreis + z + z H( z) = = ( e z )( e z ).442z + z jπ /4 jπ /4 2 2 H( z).366e.366e = + j.78 j.78 jπ /4 jπ /4 ( e z ) ( e z ) ( π /4) j ( π /4) h [ ] =.366 e e δ [ ] e e δ [ ] j.78 j.78 j π h [ ] = cos.78 δ [ ] 4 DSP-8-IIR 47

48 Pole kojugiert komplex auf dem Eiheitskreis Secod-Order Oscillator DSP-8-IIR 48

49 Komplexe Pole ierhalb des Eiheitskreises H( z) + z + z = = z+.5 z ( e z )( e z ) 2 jπ /4 jπ /4 2 2 j.249 j e.58e = + ( e z ) ( e z ) jπ /4 jπ / Imagiary Part B = [ ]; A = [ -.5] zplae(b,a) Real Part DSP-8-IIR 49

50 π h [ ] = 2.58 cos Impulse Respose 2 Amplitude z H( z) = z +.5z (samples) DSP-8-IIR 5

51 2 2(cos ) z z si [ ] 2 2(cos ) z z cos [ ] 2 2 (2rcos ) z rz r cos [ ] r si [ ] (si ) z (cos ) z ( rcos ) z ( rsi ) z (2rcos ) z rz 2 2 j.5ke.5ke Kr cos( k ) [ ] b bz Kr cos( k ) [ ] 2 2 2az r z j j j re z re z b r b 2 ab b a K ab b r a r r a DSP-8-IIR arccos arcta 2 2

52 PN-Video DSP-8-IIR 52

53 Filterdesig DSP-8-IIR 53

Höhere Mathematik 3. Kapitel 12 Differenzengleichungen, z-transformation. Prof. Dr.-Ing. Dieter Kraus

Höhere Mathematik 3. Kapitel 12 Differenzengleichungen, z-transformation. Prof. Dr.-Ing. Dieter Kraus Höhere Mathematik 3 Kapitel 1 Differezegleichuge, z-trasformatio Prof. Dr.-Ig. Dieter Kraus Höhere Mathematik 3 Kapitel 1 Ihaltsverzeichis 1 Differezegleichuge, -Trasformatio...1-1 1.1 Eiführug i Differezegleichuge...1-1

Mehr

Theorie digitaler Systeme

Theorie digitaler Systeme Theorie digitaler Systee Vorlesug 9: Fakultät für Elektro- ud Iforatiostechik, afred Strohra Eiführug Lösug vo Differezegleichug it der z- Trasforatio führt zu algebraische Gleichuge i der koplexe Variable

Mehr

ÜBUNG 3: SYSTEMFUNKTIONEN, FOURIER-SYNTHESE, HAMMING-FENSTER

ÜBUNG 3: SYSTEMFUNKTIONEN, FOURIER-SYNTHESE, HAMMING-FENSTER Elektrotechik ud Iformatiostechik Istitut für Nachrichtetechik, Vodafoe Chair Dr. Emil Matus - Digitale Sigalverarbeitugssysteme I/II - Übug 3 ÜBUNG 3: SYSTEMFUNKTIONEN, FOURIER-SYNTHESE, HAMMING-FENSTER.

Mehr

Gruppe. . Das Aussehen des Dirac Impulses wird in Bild 1 veranschaulicht. δ(n)

Gruppe. . Das Aussehen des Dirac Impulses wird in Bild 1 veranschaulicht. δ(n) Übug &Praktikum zur digitale Nachrichtetechik Thema: Faltug Diskrete Faltug Wird ei zeitdiskretes Sigal ( T ) x mit Hile eies Sigalverarbeitugssystems oder eies Sigalverarbeitugsblocks weiter bearbeitet,

Mehr

Gruppe

Gruppe Übug&Praktikum zu digitale Kommuikatiossysteme Thema: Faltug Diskrete Faltug Wird ei zeitdiskretes Sigal x T mit Hile eies Sigalverarbeitugssystems oder eies Sigalverarbeitugsblocks weiter bearbeitet,

Mehr

n=0 f(x) = log(1 + x) = n=1

n=0 f(x) = log(1 + x) = n=1 Potez - Reihe Machmal ist es praktisch eie Fuktio f() mir Hilfe ihrer Potezreihe auszudrücke. Eie Potezreihe um de Etwicklugspukt 0 sieht im Allgemeie so aus a ( 0 ) Fuktioe, für die eie Potezreihe eistiert,

Mehr

Systemtheorie. Vorlesung 18: Spektren periodischer Signale. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 18: Spektren periodischer Signale. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systemtheorie Vorlesug 8: Spektre periodischer Sigale Fakultät für Elektro- ud Iformatiostechik, Mafred Strohrma Spektre vo Sigale Eiführug Sigale köe auf uterschiedliche Arte beschriebe werde Zeitbereich

Mehr

Einheitswurzeln und Polynome

Einheitswurzeln und Polynome Eiheitswurzel ud Polyome Axel Schüler, Mathematisches Istitut, Uiv. Leipzig mailto:schueler@mathematik.ui-leipzig.de Grüheide, 1.3.2000 Kojugatio ud Betrag Spiegelt ma eie komplexe Zahl z = a+b i a der

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker I (Witersemester 00/004) Aufgabeblatt 7 (5. Dezember

Mehr

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n)

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n) Übugsaufgabe Aalysis I Aufgabe. Beweise oder widerlege Sie: a Jede i R kovergete Folge ist beschräkt. b Es gibt Cauchy-Folge im R, die icht kovergiere. c Beschräkte Folge sid koverget. d Folge mit eiem

Mehr

7. Vorlesung Grundlagen der Schaltungstechnik : Operationsverstärker & Dynamik (KWSR + x) Skript: Ab Folie 258

7. Vorlesung Grundlagen der Schaltungstechnik : Operationsverstärker & Dynamik (KWSR + x) Skript: Ab Folie 258 7. Vorlesug Grudlage der Schaltugstechik : Operatiosverstärker & Dyamik (KWSR + x) Skript: Ab Folie 58 Vorlesug: Grudlage der Schaltugstechik - KWSR & Operatiosverstärkerschaltuge.. Die große Etappeziele

Mehr

6. Vorlesung Grundlagen der analogen Schaltungstechnik : Operationsverstärker & Dynamik (KWSR + x)

6. Vorlesung Grundlagen der analogen Schaltungstechnik : Operationsverstärker & Dynamik (KWSR + x) 6. Vorlesug Grudlage der aaloge Schaltugstechik : Operatiosverstärker & Dyamik (KWSR + x) Die große Etappeziele i GST roter Fade Netzwerkaalyse mit gesteuerte Quelle icht mehr als 3 Gleichuge für jede

Mehr

9. Übungsblatt Aufgaben mit Lösungen

9. Übungsblatt Aufgaben mit Lösungen 9. Übugsblatt Aufgabe mit Lösuge Aufgabe 1: Gegebe sei die folgede Differetialgleichug 15u(x) + 3xu (x) + x u (x) = 8x 3, x > 0. (a) Gebe Sie ei reelles Fudametalsystem der zugehörige homogee Differetialgleichug

Mehr

Bildverbesserung. Operationen im Frequenzraum

Bildverbesserung. Operationen im Frequenzraum Bildverbesserug Operatioe im Frequezraum Begriffsdefiitioe Der Ortsraum ist die übliche Repräsetatio vo Bilder. Jedem Bildpukt ist eie bestimmte Koordiate eideutig zugeordet. Der dazu duale Raum ist der

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8. Übugsblatt Aufgabe mit Lösuge Aufgabe 36: Bestimme Sie alle z C, für die die folgede Potezreihe kovergiere: z z a, b! +, c z +. = = Lösug 36: Wir bezeiche de Kovergezradius mit r. a Wir wede das Quotietekriterium

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathemati PROF DRDR JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathemati für Iformatier I Witersemester 2003/2004 Aufgabeblatt 8 12 Dezember

Mehr

D-ITET Analysis I HS 2018 Prof. Alessandra Iozzi. Musterlösung 6. und berechnen. = lim. = lim. n n. = lim

D-ITET Analysis I HS 2018 Prof. Alessandra Iozzi. Musterlösung 6. und berechnen. = lim. = lim. n n. = lim D-ITET Aalysis I HS 2018 Prof. Alessadra Iozzi Musterlösug 6 1. a) Wir setze a := 1 (3+1) 4 ud bereche a a +1 = 1. ( 3( + 1) + 1 1 3 + 1 3 + 4 3 + 1 ( 3 + 4 ) 4 3 + 1 Der Limes existiert isbesodere ud

Mehr

4. Reihen Definitionen

4. Reihen Definitionen 4. Reihe 4.1. Defiitioe Addiere wir die Glieder eier reelle Zahlefolge (a k ), so heißt diese Summe S (uedliche) (Zahle-) Reihe S (Folge: Fuktio über N; Reihe: 1 Zahl): S := a 1 + a 2 + a 3 +... := Σ a

Mehr

Kapitel VII: Der Körper der komplexen Zahlen

Kapitel VII: Der Körper der komplexen Zahlen Lieare Algebra II SS 011 - Prof Dr Mafred Leit 3 Der Körper der komplexe Zahle 3 Der Körper der komplexe Zahle A Die Mege der komplexe Zahle B Grudrechearte im Bereich der komplexe Zahle C Realteil Imagiärteil

Mehr

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 =

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 = Aufgabe 1: (6 Pukte) Zeige Sie für alle N die Formel: 1 2 + 2 3 + 3 4 +... + ( + 1) = ( + 1)( + 2). 3 Lösug: Beweis durch vollstädige Iduktio. Iduktiosafag: Für = 1 gilt: 1 2 = 2 = 1(1 + 1)(1 + 2) 3 Iduktiosschritt:

Mehr

LGÖ Ks VMa 12 Schuljahr 2017/2018

LGÖ Ks VMa 12 Schuljahr 2017/2018 LGÖ Ks VMa Schuljahr 7/8 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Experte 8 Polyomgleichuge ud -ugleichuge

Mehr

Analysis 1 für Informatiker und Statistiker Beispielslösungen, Woche 13

Analysis 1 für Informatiker und Statistiker Beispielslösungen, Woche 13 Mathematisches Istitut der LMU WS 016/17 Prof. Dr. S. Morozov Olie am: Dr. H. Hogreve 1. 01. 017 Aalysis 1 für Iformatiker ud Statistiker Beispielslösuge, Woche 1 1.1 (a Um festzustelle, ob die utestehede

Mehr

Warum z-transformation?

Warum z-transformation? -Transformation Warum -Transformation? Die -Transformation führt Polynome und rationale Funktionen in die Analyse der linearen eitdiskreten Systeme ein. Die Faltung geht über in die Multiplikation von

Mehr

Der Satz von Stone-Weierstraß. 1 Approximationssatz von Weierstraß

Der Satz von Stone-Weierstraß. 1 Approximationssatz von Weierstraß Der Satz vo Stoe-Weierstraß Vortrag zum Prosemiar Aalysis, 28.06.2010 Valetia Gerber, Sabria Kielma Aus der Vorlesug Aalysis I ud II kee wir das Kozept des Approximieres. Us wurde die Begriffe Taylor-

Mehr

Zusammenfassung: Gleichungen und Ungleichungen

Zusammenfassung: Gleichungen und Ungleichungen Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud -ugleichuge 6 Für Eperte 9 Polyomgleichuge ud -ugleichuge Defiitio: Ei Term

Mehr

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 4 LÖSUNGEN MAT/MAT3 ANALYSIS I HERBSTSEMESTER 00 PROF. DR. AMILLO DE LELLIS Aufgabe. Etscheide Sie für folgede Folge (wobei N \ {0}), ob diese koverget sid, ud bereche sie gegebeefalls ihre

Mehr

2 Asymptotische Schranken

2 Asymptotische Schranken Asymptotische Schrake Sowohl die Laufzeit T () als auch der Speicherbedarf S() werde meist durch asymptotische Schrake agegebe. Die Kostate c i, welche i der Eiführug deiert wurde, sid direkt vo der Implemetatio

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr R Köig Dr M Prähofer Zetralübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik Mathematik für Physiker (Aalysis ) MA90 Witersem 07/8 Lösugsblatt 4 http://www-m5matumde/allgemeies/ma90 07W (007)

Mehr

Komplexe Zahlen. Lernziele dieses Abschnitts sind:

Komplexe Zahlen. Lernziele dieses Abschnitts sind: KAPITEL 1 Komplexe Zahle Lerziele dieses Abschitts sid: (1) Aalytische ud geometrische Darstellug komplexer Zahle, () Grudrechearte fur komplexe Zahle, (3) Kojugatio ud Betrag komplexer Zahle, (4) Losug

Mehr

Gebrochenrationale Funktionen

Gebrochenrationale Funktionen Gebrocheratioale Fuktioe Aufgabe Bestimme de Defiitiosbereich der Fuktio f() = ösug: Hier ist der maimale Defiitiosbereich icht R, de im der Neer wird für = Null ud ma würde durch Null teile. Aus diesem

Mehr

Systemtheorie. Vorlesung 22: Frequenzgang von Systemen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 22: Frequenzgang von Systemen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systetheorie Vorlesug 22: Fakultät für Elektro- ud Iforatiostechik, Mafred Strohra Grudlage Sigale köe über ihr Spektru beschriebe werde Etspreched ka lieare, zeitivariate Systee ei sogeater Frequezgag

Mehr

Für eine n n-matrix A müssen wir die Gleichung. lösen. Falls (A λi) invertierbar ist, dann ist. Dann ist aber λ kein Eigenwert.

Für eine n n-matrix A müssen wir die Gleichung. lösen. Falls (A λi) invertierbar ist, dann ist. Dann ist aber λ kein Eigenwert. Geschlossees Leotief-Modell Ei Leotief-Modell für eie Volkswirtschaft heißt geschlosse, we der Kosum gleich der Produktio ist, d.h. we Kapitel 5 Eigewerte V x = x Es hadelt sich dabei um eie Spezialfall

Mehr

Grenzwerte von Folgen. 1-E Ma 1 Lubov Vassilevskaya

Grenzwerte von Folgen. 1-E Ma 1 Lubov Vassilevskaya Grezwerte vo Folge -E Ma Lubov Vassilevskaya Berechug vo Grezwerte: Aufgabe Die Berechug vo Grezwerte ka oft ziemlich umstädlich sei. Die etwickelte Regel vereifache oft solche Berechuge. Diese Regel beruhe

Mehr

Aufgabe 1-1: Aufgabe 1-2: Aufgabe 1-3: Aufgabe 1-4:

Aufgabe 1-1: Aufgabe 1-2: Aufgabe 1-3: Aufgabe 1-4: 1. Übug zur Höhere Mathematik 1 Abgabe: KW 4 Aufgabe 1-1: Es seie a,b mit a 0, b 0. Beweise Sie ab a b a b a b Aufgabe 1-: Beweise Sie durch vollstädig Iduktio k 1 (k 1) k 0 0 k 1!, 0, 0? 1,? d), 0, 0?

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 5. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 5. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Istitut für Aalysis Dr A Müller-Rettkowski Dr T Gauss WS 00/ Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 04..05 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 6. Übugsblatt Aufgabe

Mehr

KAPITEL 1. Komplexe Zahlen. 1.1 Lernziele im Abschnitt: Komplexe Zahlen Was sind komplexe Zahlen? Komplexe Zahlenebene...

KAPITEL 1. Komplexe Zahlen. 1.1 Lernziele im Abschnitt: Komplexe Zahlen Was sind komplexe Zahlen? Komplexe Zahlenebene... KAPITEL 1 Komplexe Zahle 1.1 Lerziele im Abschitt: Komplexe Zahle...................... 1. Was sid komplexe Zahle?............................. 1. Komplexe Zahleebee............................... 1. Grudrechearte

Mehr

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2014

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2014 Herzlich Willkomme zur Vorlesug Aalysis I SoSe 2014 Prof. Dr. Berd Dreseler Lebediges Lere: Aufgabe Ich Wir 2 Reelle Zahle 2.1 Körperstruktur vo (K1) Additio ud Multiplikatio kommutativ: a b b a, ab ba.

Mehr

Zusammengesetzte Funktionen

Zusammengesetzte Funktionen Nr7-2204 Zusmmegesetzte Fuktioe Aus Fuktioe g ud h werde eue Fuktioe gebildet: ) f = gh, mit f() = g() h() ; Summe b) f = g-h, mit f() = g() - h() ; Differez c) f = g h, mit f() = g() h() ; Produkt d)

Mehr

Zusammenfassung: Gleichungen und Ungleichungen

Zusammenfassung: Gleichungen und Ungleichungen LGÖ Ks VMa Schuljahr 6/7 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Eperte 8 Polyomgleichuge ud -ugleichuge

Mehr

D-HEST, Mathematik III HS 2015 Prof. Dr. E. W. Farkas R. Bourquin und M. Sprecher. Lösung 1

D-HEST, Mathematik III HS 2015 Prof. Dr. E. W. Farkas R. Bourquin und M. Sprecher. Lösung 1 D-HEST, Mathematik III HS 15 Prof. Dr. E. W. Farkas R. Bourqui ud M. Sprecher Lösug 1 Das erste Kapitel der Vorlesug behadelt die Theorie der Fourier-Reihe. Bearbeite Sie bitte folgede Frage olie bis Diestag,

Mehr

4. Übungsblatt Aufgaben mit Lösungen

4. Übungsblatt Aufgaben mit Lösungen 4. Übugsblatt Aufgabe mit Lösuge Aufgabe 6: Bestimme Sie alle Häufugspukte der Folge mit de Folgeglieder a) a 2 + cosπ), b) b i) i j, ud gebe Sie jeweils eie Teilfolge a, die gege diese Häufugspukte kovergiert.

Mehr

Diesen Grenzwert nennt man partielle Ableitung von f nach x i und

Diesen Grenzwert nennt man partielle Ableitung von f nach x i und Bevor wir zum ächste Kapitel übergehe, werde wir de Begri eier Fuktio i mehrere Variable eiführe. Eie Fuktio vo Variable ist eie Vorschrift, die jedem Pukt (x 1,x,...,x ) eier Teilmege D des IR eie bestimmte

Mehr

Index. Majorante, 24 Minorante, 23. Partialsumme, 17

Index. Majorante, 24 Minorante, 23. Partialsumme, 17 Folge, Reihe Idex Kovergezkriterie Hauptkriterium, Leibiz-Kriterium, Majoratekriterium, 4 Mioratekriterium, otwediges Kriterium, 0 Quotietekriterium, teleskopierede Summe, Wurzelkriterium, Majorate, 4

Mehr

und da die Fouriertransformation bijektiv auf S (R n ) folgt das Resultat.

und da die Fouriertransformation bijektiv auf S (R n ) folgt das Resultat. Lösug 1. a) Da A symmetrisch positiv defiit ist auch A 1 symmetrisch positiv defiit ud mit Kapitel. folgt Φ A (k) e 1 xt Ax. Mit dem Faltugssatz ist Φ A Φ B (k) Φ A (k) Φ B (k) Φ A+B (k) ud da die Fouriertrasformatio

Mehr

Exponentielles Wachstum

Exponentielles Wachstum Expoetielles Wachstum Expoetielles Wachstum BEISPIEL: Fiboacci-Folge Die Fiboacci-Zahle f Die Fiboacci-Zahle f f 1 = 1 f 2 = 1 Die Fiboacci-Zahle f f 1 = 1 f 2 = 1 f +1 = f + f 1 ( > 1) Die Fiboacci-Zahle

Mehr

Übungsaufgaben mit Lösungen. Mathematik I

Übungsaufgaben mit Lösungen. Mathematik I Fachhochschule Pforzheim - Eletrotechi / Iformatiostechi - Übugsaufgabe mit Lösuge zur Vorlesug Mathemati I Prof. Dr. Mazura ud Prof. Dr. Gohout) für Studete der Fachrichtuge Eletrotechi / Techische Iformati

Mehr

Nicht-Anwendbarkeit des Master- Theorems

Nicht-Anwendbarkeit des Master- Theorems Nicht-Awedbarkeit des Master- Theorems Beispiel: Betrachte die Rekursiosgleichug T () = 2T ( 2 ) + log. Es gilt sicherlich f () = Ω( log b a ) = Ω(), aber icht f () = Ω( log b a+ɛ ). Ma beachte, dass f

Mehr

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig.

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig. 1.3 Fuktioe Seie M ud N Mege f : M N x M : 1 y N : y fx et ma Fuktio oder Abbildug. Beachte: Zuordug ist eideutig. Bezeichuge: M : Defiitiosbereich N : Bildbereich Zielmege vo f Der Graph eier Fuktio:

Mehr

Leitfaden Bielefeld SS 2007 III-4

Leitfaden Bielefeld SS 2007 III-4 Leitfade Bielefeld SS 2007 III-4 8.2. Der allgemeie Fall. Satz. Sei N 1, sei ω eie primitive -te Eiheitswurzel ud K = Q[ω ]. Da gilt: (a) [K : Q] = φ(), (b) Φ ist irreduzibel, (c) O K = Z[ω ]. (d) Eie

Mehr

Aufgaben zur Analysis I

Aufgaben zur Analysis I Aufgabe zur Aalysis I Es werde folgede Theme behadelt:. Logik, Iduktio, Mege, Abbilduge 2. Supremum, Ifimum 3. Folge, Fuktioefolge 4. Reihe, Potezreihe 5. Mootoie ud Stetigkeit 6. Differetialrechug 7.

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VMa Schuljahr 6/7 Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 5 Für Experte 7 Defiitioe ud Beispiele

Mehr

DIFFERENTIALRECHNUNG

DIFFERENTIALRECHNUNG Prof. Dr. Da Euge Ulmet Folie / vo 5 FHT Esslige DIFFERENTIALRECHNUNG I) GRENZWERTE VON ZAHLENFOLGEN Übug )? lim 3 3 Lösug lim 3 3 3 Bemerkug Die folgede Gleichuge sid als Grezwerte zu verstehe: ud Ergäzug:

Mehr

8. Gewöhnliche Differentialgleichungen (ODE)

8. Gewöhnliche Differentialgleichungen (ODE) 8 Gewöhliche Differetialgleichuge (ODE) 81 Motivatio Eidimesioale (1d) Bewegug eies Teilches (Masse m, keie Reibug) im Potezial U() U() E klassisch: Ermittle die Bahkurve/Trajektorie (t) des Massepukts

Mehr

Übungen mit dem Applet Taylor-Entwickung von Funktionen

Übungen mit dem Applet Taylor-Entwickung von Funktionen Taylor-Etwickug vo Fuktioe Übuge mit dem Applet Taylor-Etwickug vo Fuktioe Ziele des Applets... Mathematischer Hitergrud... 3 Vorschläge für Übuge... 3 3. Siusfuktio si(...3 3. Cosiusfuktio cos(...4 3.3

Mehr

4. Die Menge der Primzahlen. Bertrands Postulat

4. Die Menge der Primzahlen. Bertrands Postulat O. Forster: Eiführug i die Zahletheorie 4. Die Mege der Primzahle. Bertrads Postulat 4.1. Satz (Euklid. Es gibt uedlich viele Primzahle. Beweis. Wir zeige, dass es zu jeder edliche Mege p 1, p 2,..., p

Mehr

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2013

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2013 Herzlich Willkomme zur Vorlesug Aalysis I SoSe 2013 Prof. Dr. Berd Dreseler Lebediges Lere: Aufgabe Ich Wir Überblick Mittelwertsatz Differetialrechug Natürliche Zahle Iduktiosprizip Kombiatorik Körper

Mehr

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen Thema Fit i Mathe Musterlösuge 1 April Klassestufe 10 Wurzelfuktioe Uter der -te Wurzel eier icht-egative Zahl (i Zeiche: ) versteht ma die icht-egative Zahl, die mal mit sich selber multipliziert, die

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 6 Für Experte 8 Defiitioe ud Beispiele für Folge Defiitio Eie

Mehr

1.2. Taylor-Reihen und endliche Taylorpolynome

1.2. Taylor-Reihen und endliche Taylorpolynome 1.. aylor-reihe ud edliche aylorpolyome 1..1 aylor-reihe Wir köe eie Fuktio f() i eier Umgebug eies Puktes o gut durch ihre agete i o: t o () = f(o) + f (o) (-o) aäher: Wir sehe: Je weiter wir vo o weg

Mehr

6. Vorlesung Grundlagen der analogen Schaltungstechnik : Operationsverstärker & Dynamik (KWSR + x)

6. Vorlesung Grundlagen der analogen Schaltungstechnik : Operationsverstärker & Dynamik (KWSR + x) 6. Vorlesug Grudlage der aaloge Schaltugstechik : Operatiosverstärker & Dyaik (KWSR + x) 9..6 Die große Etappeziele i GST roter Fade Netzwerkaalyse it gesteuerte Quelle icht ehr als 3 Gleichuge für jede

Mehr

Höhere Analysis. Lösungen zu Aufgabenblatt 6. Die Funktion f sei auf ( π, π] definiert durch f(x) = x und wird 2π-periodisch fortgesetzt.

Höhere Analysis. Lösungen zu Aufgabenblatt 6. Die Funktion f sei auf ( π, π] definiert durch f(x) = x und wird 2π-periodisch fortgesetzt. Fachbereich Iformatik Sommersemester 8 Prof. Dr. Peter Becker Höhere Aalysis Lösuge zu Aufgabeblatt 6 Aufgabe (Fourierreihe) 3+5 Pukte Die Fuktio f sei auf (, π] defiiert durch f(x) x ud wird π-periodisch

Mehr

11. Übungsblatt zur Vorlesung Mathematik I für Informatik

11. Übungsblatt zur Vorlesung Mathematik I für Informatik Fachbereich Mathematik Prof. Dr. Thomas Streicher Dr. Sve Herrma Dipl.-Math. Susae Pape. Übugsblatt zur Vorlesug Mathematik I für Iformatik Witersemester 9/./3. Jauar Gruppeübug Aufgabe G Itegratio) Bereche

Mehr

Monotonie einer Folge

Monotonie einer Folge Mootoie eier Folge 1 E Mootoe Folge We jedes Folgeglied eier Folge größer oder gleich dem vorhergehede Folgeglied ist a 1 a ℕ so et ma die Folge mooto steiged (oder mooto wachsed). Die geometrische Folge

Mehr

Mathematik für die Physik II, Sommersemester 2018 Lösungen zu Serie 6

Mathematik für die Physik II, Sommersemester 2018 Lösungen zu Serie 6 Mthemtik für die Physik II, Sommersemester 2018 Lösuge zu Serie 6 26 Utersuche die folgede Fuktioefolge uf puktweise beziehugsweise gleichmäßige Kovergez, d.h. bestimme jeweils ob diese vorliegt ud gebe

Mehr

Proseminar: Mathematisches Problemlösen. Ungleichungen 2. Pierre Schmidt. Vortragstermin: 19. Juni Fakultät für Mathematik

Proseminar: Mathematisches Problemlösen. Ungleichungen 2. Pierre Schmidt. Vortragstermin: 19. Juni Fakultät für Mathematik Prosemiar: Mathematisches Problemlöse Ugleichuge Pierre Schmidt Vortragstermi: 19. Jui 015 Übugsleiteri: Dr. Natalia Griberg Fakultät für Mathematik Karlsruher Istitut für Techologie Ihaltsverzeichis 1

Mehr

Michael Buhlmann Mathematik > Analysis > Newtonverfahren

Michael Buhlmann Mathematik > Analysis > Newtonverfahren Michael Buhlma Mathematik > Aalysis > Newtoverfahre Eie Abbildug {a }: N -> R, die jeder atürliche Zahl eie reelle Zahl a zuordet, heißt (uedliche (Zahle- Folge: -> a oder {a } εn, a das -te Folgeglied.

Mehr

Determinante und Resultante Azadeh Pasandi

Determinante und Resultante Azadeh Pasandi Determiate ud Resultate 07.01.2009 Azadeh Pasadi Defiitio ud Grudeigeschafte: sei U, V, W ud Vektor-Raum über Körper F ud beachte eie Abbildug f ( u,v ) vo kartesische Produkt: f: U x V W Diese Abbildug

Mehr

Werte von Dirichlet-Reihen

Werte von Dirichlet-Reihen Vortrag zum Semiar zur Fuktioetheorie,..8 Adrea Schmitz I eiem der vorhergehede Vorträge zur Riemasche Zetafuktio ζ wurde festgestellt, dass diese Fuktio für alle gerade Argumete s > ud für alle gazzahlige

Mehr

ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS

ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS vo Rolf Waldi 1 Kapitel I. Elemetare Zahletheorie 1 Grudlegede Regel ud Prizipie Es wird vorausgesetzt, daß der Leser mit gaze Zahle reche ka ud

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 1

Technische Universität München Zentrum Mathematik. Übungsblatt 1 Techische Uiversität Müche Zetrum Mathematik Mathematik (Elektrotechik) Prof. Dr. Ausch Taraz Dr. Michael Ritter Übugsblatt Hausaufgabe Aufgabe. Bestimme Sie de Kovergezbereich M der folgede Reihe für

Mehr

4 Andreas Gathmann. x 2 +y 2 x 2 +y 2 x 2 +y 2

4 Andreas Gathmann. x 2 +y 2 x 2 +y 2 x 2 +y 2 4 Adreas Gathma 1. Komplexe Zahle Bevor wir mit der komplexe Aalysis begie, wolle wir uächst die grudlegede Defiitioe ud Eigeschafte der komplexe Zahle och eimal kur wiederhole. Defiitio 1.1. Die Mege

Mehr

Zusammenfassung: Komplexe Zahlen

Zusammenfassung: Komplexe Zahlen Zusmmefssug: Komplexe Zhle Ihltsvereichis Komplexe Zhleeee che mit komplexe Zhle Polrform komplexer Zhle 4 Wurel komplexer Zhle 6 Formel vo Crdo 8 Nullstelle ud Fktorisierug vo Polyome 9 Für Experte Komplexe

Mehr

Übungen zur Infinitesimalrechnung 2, H.-C. Im Hof 19. März Blatt 4. Abgabe: 26. März 2010, Nachmittag. e x2 dx + e x2 dx = 2 e x2 dx

Übungen zur Infinitesimalrechnung 2, H.-C. Im Hof 19. März Blatt 4. Abgabe: 26. März 2010, Nachmittag. e x2 dx + e x2 dx = 2 e x2 dx Übuge zur Ifiitesimalrechug, H.-C. Im Hof 9. März Blatt 4 Abgabe: 6. März, Nachmittag Aufgabe. Zeige e x dx π. Beweis. Wir bemerke als erstes, dass e x dx e x dx + e x dx e x dx formal sieht ma dies per

Mehr

1 Einführende Worte 2

1 Einführende Worte 2 Sara Adams Semiarvortrag Rekursive Fuktioe - WS 2004/05 1 Sara Adams Semiarvortrag Rekursive Fuktioe - WS 2004/05 2 1 Eiführede Worte Semiar Grudlegede Algorithme Auflösug vo Rekursioe 1.1 Beispiele Bevor

Mehr

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w Prof. Dr. Moritz Kaßma Fakultät für Mathematik Witersemester 04/05 Uiversität Bielefeld Übugsaufgabe zu Aalysis Lösuge vo Blatt XII vom 5.0.5 Aufgabe XII. 3 Pukte) Beweise Sie, dass für alle R ud N die

Mehr

Höhere Mathematik I für die Fachrichtung Physik

Höhere Mathematik I für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr Christoph Schmoeger Dipl-Math Sebastia Schwarz WS 4/5 45 Höhere Mathematik I für die Fachrichtug Physik Lösugsvorschläge zur Übugsklausur Aufgabe

Mehr

Das kollektive Risikomodell. 12. Mai 2009

Das kollektive Risikomodell. 12. Mai 2009 Kirill Rudik Das kollektive Risikomodell 12. Mai 2009 4.1 Eileitug Wir betrachte i diesem Kapitel die Gesamtforderuge im Laufe eies Jahres. Beim Abschluss eies Versicherugsvertrages weiß der Versicherer

Mehr

Kapitel 2. Terme. oder (x + 1)(x 1) = x 2 1

Kapitel 2. Terme. oder (x + 1)(x 1) = x 2 1 Kapitel 2 Terme Josef Leydold Auffrischugskurs Mathematik WS 207/8 2 Terme / 74 Terme Ei mathematischer Ausdruck wie B R q q (q ) oder (x + )(x ) x 2 heißt eie Gleichug. Die Ausdrücke auf beide Seite des

Mehr

Übersicht. Datenstrukturen und Algorithmen. Rekursionsgleichungen. Übersicht. Vorlesung 6: Mastertheorem (K4) Joost-Pieter Katoen

Übersicht. Datenstrukturen und Algorithmen. Rekursionsgleichungen. Übersicht. Vorlesung 6: Mastertheorem (K4) Joost-Pieter Katoen Übersicht Datestrukture ud Algorithme Vorlesug 6: (K) Joost-Pieter Katoe Lehrstuhl für Iformatik 2 Software Modelig ad Verificatio Group 1 Substitutiosmethode Rekursiosbäume http://moves.rwth-aache.de/teachig/ss-15/dsal/

Mehr

Lösungen zu Kapitel 4

Lösungen zu Kapitel 4 Lösuge zu Kapitel 4 Lösug zu Aufgabe : Die folgede Grezwerte köe aalog zu Beispiel 4.(c bestimmt werde: (a lim + = 3 3. (b Die Folge a ist diverget. (c lim + = 0. 3 (d lim ( + 3 = 0. (e lim ( + = 0. Lösug

Mehr

Positiv denken! Lösungen

Positiv denken! Lösungen Schülerzirkel Mathematik Fakultät für Mathematik. Uiversität Regesburg Positiv deke! Lösuge Aufgabe 1 (GMAMQM (ur für die Klasse 7/8) [ Pukte]). Seie a, b reelle Zahle. 1. Sei a 0 ud b 0. Zeige, dass a

Mehr

Komplexe Zahlen. Gauss (1831) stellte eine strenge Theorie zur Begründung der komplexen Zahlen auf.

Komplexe Zahlen. Gauss (1831) stellte eine strenge Theorie zur Begründung der komplexen Zahlen auf. Komplexe Zahle Problem: x 2 + 1 = 0 ist i R icht lösbar. Zur Geschichte: Cardao 1501-1576: Auflösug quadratischer ud kubischer Gleichuge. Empfehlug: Reche z.b. mit 1 wie mit gewöhliche Zahle. Descartes

Mehr

4. Vektorräume mit Skalarprodukt

4. Vektorräume mit Skalarprodukt 4. Vektorräume mit Skalarprodukt Wiederholug: V=R x, y R: x= x x i x, y= y y, :R R R Skalarprodukt Stadardskalarprodukt lieare Abbildug mit 2 Argumete 4. Eigeschafte vo Skalarprodukte Def.: Es sei V ei

Mehr

Taylorentwicklung. Manfred Hörz. Polynomfunktionen sind sehr leicht zu differenzieren und zu integrieren und sind wieder Polynomfunktionen: k a k

Taylorentwicklung. Manfred Hörz. Polynomfunktionen sind sehr leicht zu differenzieren und zu integrieren und sind wieder Polynomfunktionen: k a k Tayloretwiclug Mafred Hörz Die Liearombiatio vo Potezfutioe et ma Polyomfutioe oder gazratioale Futioe P ( : P (=a +a +a +...+a = a, heißt der Grad der Polyomfutio, a die Koeffiziete der Polyomfutio. Beispiel

Mehr

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I Uiversität des Saarlades Fakultät für Mathematik ud Iformatik Witersemester 2003/04 Prof. Dr. Joachim Weickert Dr. Marti Welk Dr. Berhard Burgeth Lösuge der Aufgabe zur Vorbereitug auf die Klausur Mathematik

Mehr

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung 6. Übugsblatt Aufgabe mit Lösuge + Selbsttest-Auflösug Aufgabe 6: Utersuche Sie die Folge, dere Glieder ute für N agegebe sid, auf Beschräktheit, Mootoie ud Kovergez bzw. Beschräktheit, Mootoie ud Kovergez

Mehr

Ganzrationale Funktionen

Ganzrationale Funktionen Gazratioale Fuktioe 9. Defiitio gazratioaler Fuktioe Im Folgede werde ebe lieare ud quadratische Fuktioe auch solche betrachtet, bei dee die Variable i der dritte, vierte oder auch i eier och höhere Potez

Mehr

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id,

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id, Kreisabbilduge Im Folgede sehe wir us eie gaz spezielle Klasse vo dyamische Systeme a: Abbilduge auf dem Kreis. Diese sid eifach geug, so dass wir sie och recht leicht aalysiere köe, habe aber adererseits

Mehr

Tutorium Mathematik I, M Lösungen

Tutorium Mathematik I, M Lösungen Tutorium Mathematik I, M Lösuge 16. November 2012 *Aufgabe 1. Ma utersuche die folgede Reihe auf Kovergez (a) ( 1) (1 ) (b) ( ) 2 +1 (c) (!) 3 10 (3)! (d) (e) (f) 2 +3 3 2 +1 3 ( 2 +1) 2 + 3 ( 2 +3) (g)

Mehr

Analysis II für M, LaG und Ph, WS07/08 Übung 2, Lösungsskizze

Analysis II für M, LaG und Ph, WS07/08 Übung 2, Lösungsskizze Gruppeübug Aalysis II für M, LaG ud Ph, WS7/8 Übug, Lösugsskizze G 4 (Zum warm werde). Begrüde die vo Physiker beliebte Näheruge si(x) x, cos(x) ud ta(x) x für kleie x R. Dies folgt direkt aus der Tayloretwicklug

Mehr

Klinische Signalverarbeitung Teil 2 SS 2015

Klinische Signalverarbeitung Teil 2 SS 2015 Kliische Sigalverarbeitug Teil 2 SS 25 Georg Dorffer Istitut für Artificial Itelligece, Zetrum für Mediziische Statistik, Iformatik ud Itelligete Systeme georg.dorffer at meduiwie.ac.at www.meduiwie.ac.at/user/georg.dorffer/lv/sigal.html

Mehr

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man:

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man: Gleichmäßige Kovergez Wir betrachte im Folgede Abbilduge f : M N, wobei M eie Mege ud N ei metrischer Raum ist. Isbesodere iteressiere ud Folge f vo solche Abbilduge. Eie solche Folge bestimmt für jedes

Mehr

N G R C. 6.1 Definition und Darstellungsformen der komplexen Zahlen. Def.: Die formale Summe aus einer reellen Zahl a imaginären Zahl bj heißt

N G R C. 6.1 Definition und Darstellungsformen der komplexen Zahlen. Def.: Die formale Summe aus einer reellen Zahl a imaginären Zahl bj heißt 6 Komplexe Zahle Natürliche Zahle N {0,,,...} Gae Zahle G {...,-,-,0,,,...} Reelle Zahle Komplexe Zahle R (-,+ ) C N G R C 6. Defiitio ud Darstellugsforme der komplexe Zahle Def.: Die formale Summe aus

Mehr

6. Fourier-Transformation

6. Fourier-Transformation 6. Fourier-rasformatio Wir betrachte zuächst eie periodische Fuktio: f t+ f t. (6- Die Idee ist, das sie sich durch eie Überlagerug periodischer, harmoischer Schwiguge darstelle lässt. Aalogie: ( + cos(

Mehr

Dynamische Programmierung Matrixkettenprodukt

Dynamische Programmierung Matrixkettenprodukt Dyamische Programmierug Matrixketteprodukt Das Optimalitätsprizip Typische Awedug für dyamisches Programmiere: Optimierugsprobleme Eie optimale Lösug für das Ausgagsproblem setzt sich aus optimale Lösuge

Mehr

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n.

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n. Reeller Vektorraum Kapitel Vektorräume Die Mege aller Vektore x mit Kompoete bezeiche wir mit x R =. : x i R, i x ud wird als -dimesioaler (reeller) Vektorraum bezeichet. Defiitio Ei Vektorraum V ist eie

Mehr

Seminar Digitale Signalverarbeitung

Seminar Digitale Signalverarbeitung Semiar Digitale Sigalverarbeitug Thema: Diskrete Sigale Alexader Werle Betreuer: Dr. Merte Joost 22. Jui 25 Sommersemester 25 INHALTSVERZEICHNIS INHALTSVERZEICHNIS Ihaltsverzeichis 1 Zeitdiskrete Sigale

Mehr