Systemtheorie. Vorlesung 18: Spektren periodischer Signale. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Größe: px
Ab Seite anzeigen:

Download "Systemtheorie. Vorlesung 18: Spektren periodischer Signale. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann"

Transkript

1 Systemtheorie Vorlesug 8: Spektre periodischer Sigale Fakultät für Elektro- ud Iformatiostechik, Mafred Strohrma

2 Spektre vo Sigale Eiführug Sigale köe auf uterschiedliche Arte beschriebe werde Zeitbereich Laplace-Bereich Frequezbereich wird als weitere Beschreibugsform für Sigale ud Systeme vorgestellt Beschreibug vo Sigale über ei sogeates Spektrum Beschreibug vo Systeme über eie sogeate Frequezgag Vorteile der Beschreibug im Frequezbereich Physikalische Eigeschafte wie die farbliche Zusammesetzug des Lichtes oder die Zusammesetzug eies Toes aus verschiedee Schwiguge köe im Frequezbereich trasparet ud übersichtlich dargestellt werde Ausgagssigal vo Systeme, die über eie Differetialgleichug mit kostate Koeffiziete beschriebe werde, lässt sich für harmoische Eigagssigale vergleichsweise aschaulich beschreibe Fakultät für Elektro- ud Iformatiostechik, Mafred Strohrma 2

3 Spektre vo Sigale Spektrale Zusammesetzug vo Licht Begriff des Spektrums ist mit Licht verbude, Licht ist der Teil des elektromagetische Spektrums, der durch das meschliche Auge direkt wahrgeomme werde ka Welleläge-Bereich des Lichtspektrums reicht vo ugefähr 38 bis 78 m, Frequezbereich vo ca bis Hz Fakultät für Elektro- ud Iformatiostechik, Mafred Strohrma 3

4 Itesität Spektre vo Sigale Spektrale Zusammesetzug vo Licht Sichtbare Lichtspektrum ist die Mege aller vom Auge uterscheidbare Spektralfarbe, sie überlager sich im Auge ud führe zu eiem Farbeidruck des betreffede Körpers Uterschiedliche Lichtquelle habe eie uterschiedliche spektrale Zusammesetzug Vergleich des Spektrums vo Lichts für Soelicht sowie des Lichts eier Neo- Lampe ud eier Haloge-Lampe Obwohl das meschliche Auge alle drei verwedete Lichtquelle weitgehed als weiße Lichtquelle wahrimmt, uterscheide sie sich i ihrem Spektrum Soelicht Neo-Lampe Haloge-Lampe Welleläge / m Sie habe charakteristische Spektralliie, die die Lichtitesität bei defiierte Frequeze beschreibe Fakultät für Elektro- ud Iformatiostechik, Mafred Strohrma 4

5 Beispiel: Spektre vo Sigale Spektroskopie Spektroskopie als Awedugsfall für Spektralaalyse Zur Charakterisierug vo Materialie wird eie Probe vo Licht durchstrahlt ud das Spektrum des Lichtes vor ud ach der Probe bestimmt Eizele Spektralliie repräsetiere das Licht eier geau defiierte Frequez, das vo eiem Atom oder Molekül aufgrud eies quatemechaische Übergags abgegebe oder absorbiert werde ka Spektrum des Lichtes vor der Probe Spektrum des Lichtes ach der Probe I Abhägigkeit des vorliegede Stoffes werde charakteristische Spektralateile vo dem ursprüglich kotiuierliche Spektrum absorbiert, ach der Absorptio fehle sie i dem Spektrum Fakultät für Elektro- ud Iformatiostechik, Mafred Strohrma 5

6 Spektrum Gitarre Spektrum Flöte Beispiel: Spektre vo Sigale Vergleich vo uterschiedliche Istrumete Idetisch gestimmte Musikistrumete gebe de Kammerto a mit derselbe Frequez wieder Trotzdem uterscheidet sich der To a eier Gitarre ud der To eier Querflöte vo seiem Klag her Deutlich zu erkee ist bei beide Spektre ei Maximum bei der Grudschwigug mit der Frequez f = 44 Hz Töe habe zusätzlich Spektralateile, isbesodere Oberschwiguge mit Frequeze kf, die Ursache für die uterschiedliche akustische Eidrücke der Istrumete sid Frequez f / Hz Frequez f / Hz Fakultät für Elektro- ud Iformatiostechik, Mafred Strohrma 6

7 Spektre vo Sigale Reaktio vo Systeme auf harmoische Areguge Nebe physikalische Grüde gibt es mathematische Grüde, Sigale für systemtheoretische Aufgabestelluge im Spektralbereich zu beschreibe Vorteil wird a eiem RC-Glied aufgezeigt, Beschreibug mit der Übertragugsfuktio Gs U s U s R C s A = = E + Kausale harmoische Aregug E jt = u t U e t E Berechug des Ausgagssigals im Laplace-Bereich UE R C UE UA ( s) = UE = + + R C s s j + j R C + R C s + j R C s j Fakultät für Elektro- ud Iformatiostechik, Mafred Strohrma 7

8 Spektre vo Sigale Reaktio vo Systeme auf harmoische Areguge Rücktrasformatio führt zu dem Ausgagssigal t U U ua t e t e t + j R C + j R C e RC e jt = + U U e t e t + j R C + R C t e RC e j( t+( ) ) = Ausgagssigal besteht aus eiem Eischwigateil ud eier harmoische Schwigug kostater Amplitude, Amplitude ud Phase ergebe sich aus de Gleichuge U A = U E + R C arcta( R C) = Für de Fall eier harmoische Aregug müsse demach ur das Verhältis der Ei- ud Ausgagsamplitude sowie die Phaseverschiebug bestimmt werde, beide Größe sid vo der Kreisfrequez abhägig Fakultät für Elektro- ud Iformatiostechik, Mafred Strohrma 8

9 Spektre vo Sigale Reaktio vo Systeme auf harmoische Areguge Vorgehe ist vergleichbar zur Wechselstromtechik Amplitudegag als Verhältis der Amplitude vo Ei- ud Ausgagssigal A = U U A E ( ) ( ) Phasegag als Phaseverschiebug zwische Ei- ud Ausgagssigal = A E Wird ei LTI-System mit eiem harmoische Sigal ageregt, atwortet es ach diese Vorüberleguge mit eiem harmoische Sigal gleicher Frequez, Äderug der Amplitude ud Phase ka vergleichsweise eifach beschriebe werde Wird ei Sigal x(t) i viele harmoische Schwiguge uterschiedlicher Frequez zerlegt ud für jeder dieser Schwiguge das Ausgagssigal ach dieser Methode berechet, ergibt sich das Ausgagsigal y(t) bei lieare Systeme aus der Überlagerug der eizele Systematworte Überlegug führt zur Fourier-Reihe ud Fourier-Trasformatio Fakultät für Elektro- ud Iformatiostechik, Mafred Strohrma 9

10 Sigal Fourier-Reihe Defiitio der komplexe Fourier-Reihe Ausgagspukt für eie Fourier-Reihe ist der Versuch, ei periodisches Sigal x(t) durch eie Überlagerug vo harmoische Schwiguge zu beschreibe N = N = 5 N = 25 x(t) j x t A e = t Approximatio des Sigals x(t) erfolgt über eie Summe vo harmoische Fuktioe mit der Kreisfrequez ud Vielfache der Kreisfrequez Koeffiziete A der harmoische Schwiguge werde als Fourier- Koeffiziete bezeichet, sie gebe a, mit welchem Gewicht die uterschiedliche harmoische Fuktioe eigehe Zeit t Fakultät für Elektro- ud Iformatiostechik, Mafred Strohrma

11 Fourier-Reihe Defiitio der komplexe Fourier-Reihe Koeffiziete A komplex, sie besitze eie Betrag ud eie Phase Kreisfrequez ergibt sich aus der Periodedauer T des periodische Sigals = 2 T Approximatio des periodische Sigals x(t) ist icht perfekt, es ergibt sich eie Abweichug zwische dem Sigal ud der Approximatio Komplexe Fourier-Koeffiziete c werde so bestimmt, dass der mittlere quadratische Fehler T /2 j t E( A) = A e x ( t ) dt = T /2 2 miimal wird, dazu müsse die partielle Ableituge des Fehlers ach de zu bestimmede Koeffiziete zu ull werde Fakultät für Elektro- ud Iformatiostechik, Mafred Strohrma

12 Fourier-Reihe Defiitio der komplexe Fourier-Reihe Aus dieser Bedigug ergibt sich eie Bestimmugsgleichug für die komplexe Fourier-Koeffiziete A T /2 j t A = x t e dt T T /2 der komplexe Fourier-Reihe j x t A e = t Fourier-Reihe besitzt ach ihrer Defiitiosgleichug uedlich viele Summade, zur umerische Approximatio periodischer Fuktioe wird jedoch häufig eie edliche Summe verwedet Werde die Summade mit de Idizes - N N verwedet, ergibt sich eie Fourier-Reihe der Ordug N N N j = x t A e = N t Fakultät für Elektro- ud Iformatiostechik, Mafred Strohrma 2

13 Sigal Beispiel: Fourier-Reihe Defiitio der komplexe Fourier-Reihe Das i T = 4 periodische Sigal x(t) soll über eie Fourier-Reihe approximiert werde x t für - 2 t = t / 2 für t 2 Bereche Sie die Fourier-Koeffiziete T /2 j t A = x t e dt T T /2 der komplexe Fourier-Reihe Hiweis a t a at at t e dt = e Zeit t Fakultät für Elektro- ud Iformatiostechik, Mafred Strohrma 3

14 Sigal Beispiel: Fourier-Reihe Defiitio der komplexe Fourier-Reihe Fourier-Koeffiziete ergebe sich zu ( ) ( ) A = + j 2 2 N = N = 5 N = 25 x(t) bzw. für = T / = = = = T /2 t A x t dt dt T Koeffiziet A etspricht dem Mittelwert über eie volle Periode Güte der Approximatio steigt mit zuehmeder Ordug N der Fourier-Reihe Zeit t Fakultät für Elektro- ud Iformatiostechik, Mafred Strohrma 4

15 Betrag A Beispiel: Fourier-Reihe Defiitio der komplexe Fourier-Reihe Spektrum des periodische Sigals x(t) setzt sich aus de komplexe Fourier-Koeffiziete zusamme, sie habe eie Betrag ud eie Phase.3.2 Betrag der Fourier-koeffiziete Betrag immt mit steigedem Betrag des Idex ab. Je scheller die Fourier-Koeffiziete gege ull gehe, desto besser ka das periodische Sigal x(t) mit der Fourier-Reihe approximiert werde Phasewikel sid puktsymmetrisch, was auf kojugiert komplexe Fourier-Koeffiziete hiweist, Fourier-Koeffiziete A ud A - eies reelle Sigals sid immer kojugiert komplex zueiader Phase Idex /2 -/2 Phase der Fourier-Koeffiziete Idex Fakultät für Elektro- ud Iformatiostechik, Mafred Strohrma 5

16 Sigal Sigal Beispiel: Fourier-Reihe Defiitio der komplexe Fourier-Reihe Darstellug eizele Grudschwiguge ud ihre Überlagerug Es werde immer zwei Expoetialfuktioe zu eier Kosius-Fuktio zusammegefasst.5 Eizele harmoische Schwiguge = Da die Fourier-Koeffiziete A ud A - eies reelle Sigals immer kojugiert komplex zueiader sid, ergibt sich x t = A e + A e jt jt = + j j A e e A e e j t j t = 2 A cos t + Eizele harmoische Schwiguge habe uterschiedliche Amplitude ud Phase, Spektrum des Sigals muss deshalb immer zwei Iformatioe beihalte: Betrag ud Phase Zeit t.5 Überlagerug der Schwiguge Sigal x(t) Approximatio N = Zeit t Fakultät für Elektro- ud Iformatiostechik, Mafred Strohrma 6

17 Sigal x(t) Fourier-Reihe Defiitio der komplexe Fourier-Reihe Mit dem Begriff des Spektrums wird die Aschauug verbude, welche harmoische Schwiguge i die Geerierug eies Sigals eigehe Kosiusförmige Sigal darf ur eie Schwigug aufweise - Kosiusförmiges Sigal Kosius-Fuktio ka über die Eulersche Formel als Summe vo zwei kojugiert komplexe Expoetialfuktioe dargestellt werde x t = cos t = e + e = A e j t j t j t 2 = Damit laute die Fourier-Koeffiziete A = A = 2 Fourier-Koeffiziet A Zeit t Fourier-Koeffiziete des kosiusförmiges Sigals Idex Fakultät für Elektro- ud Iformatiostechik, Mafred Strohrma 7

18 Zusammefassug: Fourier-Reihe Defiitio der komplexe Fourier-Reihe Defiitio Mathematische Beschreibug Approximatiosgleichug j = x t A e = t Komplexe Fourier-Koeffiziete T /2 j t A = x t e dt T T /2 Mittelwert c A T /2 = T T /2 x t dt Approximatiosgleichug vom Grad N N N j = x t A e = N t Fakultät für Elektro- ud Iformatiostechik, Mafred Strohrma 8

19 Fourier-Reihe Defiitio der komplexe Fourier-Reihe Visualisierug der Fourier-Reihe als Applikatio Lik auf Applikatio i Systemtheorie Olie verfügbar Zwei Arte der Darstellug Reelle Fourier-Reihe Komplexe Fourier-Reihe, Darstellug vo Betrag ud Phase der Fourier-Koeffiziete Applikatio erlaubt de Vergleich vo Fourier- Reihe zweier Sigale, um die Recheregel der Fourier-Trasformatio plausibilisiere zu köe Fakultät für Elektro- ud Iformatiostechik, Mafred Strohrma 9

20 Übugsaufgabe: Fourier-Reihe Defiitio der komplexe Fourier-Reihe Die Zeitfuktio x(t) mit der Periode T = 2 ist defiiert durch x t für t = für t Skizziere Sie das Schaubild vo x(t) i dem Itervall t = Bereche Sie die komplexe Fourier-Reihe vo x(t) bis zur 5. Ordug. Skizziere Sie die Fuktio ud die Approximatio über eie Fourier-Reihe. Fakultät für Elektro- ud Iformatiostechik, Mafred Strohrma 2

Systemtheorie. Vorlesung 22: Frequenzgang von Systemen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 22: Frequenzgang von Systemen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systetheorie Vorlesug 22: Fakultät für Elektro- ud Iforatiostechik, Mafred Strohra Grudlage Sigale köe über ihr Spektru beschriebe werde Etspreched ka lieare, zeitivariate Systee ei sogeater Frequezgag

Mehr

Übungen mit dem Applet Fourier-Reihen

Übungen mit dem Applet Fourier-Reihen Fourier-Reihe 1 Übuge mit dem Applet Fourier-Reihe 1 Mathematischer Hitergrud... Übuge mit dem Applet... 3.1 Eifluss der Azahl ud der Sprugstelle...3. Eifluss vo y-verschiebug ud Amplitude...4.3 Eifluss

Mehr

Theorie digitaler Systeme

Theorie digitaler Systeme Theorie digitaler Systee Vorlesug 9: Fakultät für Elektro- ud Iforatiostechik, afred Strohra Eiführug Lösug vo Differezegleichug it der z- Trasforatio führt zu algebraische Gleichuge i der koplexe Variable

Mehr

+ a 3 cos (3ωt) + b 3 sin (3ωt)

+ a 3 cos (3ωt) + b 3 sin (3ωt) Fourier-Reihe Wir gehe aus vo eier gegebee periodische Fuktio f (t). Die Fuktio hat die Fudametalperiode ( Schwigugsdauer ) ud damit die Grud-Kreisfrequez ω = π. Zeit t Periode Die Fuktio f (t) soll zerlegt

Mehr

Gruppe. . Das Aussehen des Dirac Impulses wird in Bild 1 veranschaulicht. δ(n)

Gruppe. . Das Aussehen des Dirac Impulses wird in Bild 1 veranschaulicht. δ(n) Übug &Praktikum zur digitale Nachrichtetechik Thema: Faltug Diskrete Faltug Wird ei zeitdiskretes Sigal ( T ) x mit Hile eies Sigalverarbeitugssystems oder eies Sigalverarbeitugsblocks weiter bearbeitet,

Mehr

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden Folge ud Reihe Folge Eie Folge ist eie Abbildug der atürliche Zahle N = {0, 1,,...} i die Mege der (zumidest i de meiste Fälle) reelle Zahle R. I diesem Fall ka ma sich eie Folge als Pukte i eiem Koordiatesystem

Mehr

6. Fourier-Transformation

6. Fourier-Transformation 6. Fourier-rasformatio Wir betrachte zuächst eie periodische Fuktio: f t+ f t. (6- Die Idee ist, das sie sich durch eie Überlagerug periodischer, harmoischer Schwiguge darstelle lässt. Aalogie: ( + cos(

Mehr

Gruppe

Gruppe Übug&Praktikum zu digitale Kommuikatiossysteme Thema: Faltug Diskrete Faltug Wird ei zeitdiskretes Sigal x T mit Hile eies Sigalverarbeitugssystems oder eies Sigalverarbeitugsblocks weiter bearbeitet,

Mehr

Bildverbesserung. Operationen im Frequenzraum

Bildverbesserung. Operationen im Frequenzraum Bildverbesserug Operatioe im Frequezraum Begriffsdefiitioe Der Ortsraum ist die übliche Repräsetatio vo Bilder. Jedem Bildpukt ist eie bestimmte Koordiate eideutig zugeordet. Der dazu duale Raum ist der

Mehr

4. Reihen Definitionen

4. Reihen Definitionen 4. Reihe 4.1. Defiitioe Addiere wir die Glieder eier reelle Zahlefolge (a k ), so heißt diese Summe S (uedliche) (Zahle-) Reihe S (Folge: Fuktio über N; Reihe: 1 Zahl): S := a 1 + a 2 + a 3 +... := Σ a

Mehr

ÜBUNG 3: SYSTEMFUNKTIONEN, FOURIER-SYNTHESE, HAMMING-FENSTER

ÜBUNG 3: SYSTEMFUNKTIONEN, FOURIER-SYNTHESE, HAMMING-FENSTER Elektrotechik ud Iformatiostechik Istitut für Nachrichtetechik, Vodafoe Chair Dr. Emil Matus - Digitale Sigalverarbeitugssysteme I/II - Übug 3 ÜBUNG 3: SYSTEMFUNKTIONEN, FOURIER-SYNTHESE, HAMMING-FENSTER.

Mehr

Zusammenfassung: Gleichungen und Ungleichungen

Zusammenfassung: Gleichungen und Ungleichungen Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud -ugleichuge 6 Für Eperte 9 Polyomgleichuge ud -ugleichuge Defiitio: Ei Term

Mehr

Höhere Mathematik 3. Kapitel 12 Differenzengleichungen, z-transformation. Prof. Dr.-Ing. Dieter Kraus

Höhere Mathematik 3. Kapitel 12 Differenzengleichungen, z-transformation. Prof. Dr.-Ing. Dieter Kraus Höhere Mathematik 3 Kapitel 1 Differezegleichuge, z-trasformatio Prof. Dr.-Ig. Dieter Kraus Höhere Mathematik 3 Kapitel 1 Ihaltsverzeichis 1 Differezegleichuge, -Trasformatio...1-1 1.1 Eiführug i Differezegleichuge...1-1

Mehr

7. Vorlesung Grundlagen der Schaltungstechnik : Operationsverstärker & Dynamik (KWSR + x) Skript: Ab Folie 258

7. Vorlesung Grundlagen der Schaltungstechnik : Operationsverstärker & Dynamik (KWSR + x) Skript: Ab Folie 258 7. Vorlesug Grudlage der Schaltugstechik : Operatiosverstärker & Dyamik (KWSR + x) Skript: Ab Folie 58 Vorlesug: Grudlage der Schaltugstechik - KWSR & Operatiosverstärkerschaltuge.. Die große Etappeziele

Mehr

Akustik. + Tonhöhe, Intervalle und Lautstärke. Die Tonhöhe wird physikalisch durch die Frequenz festgelegt. Kammerton a 1 f = 440 Hz

Akustik. + Tonhöhe, Intervalle und Lautstärke. Die Tonhöhe wird physikalisch durch die Frequenz festgelegt. Kammerton a 1 f = 440 Hz Akustik Tohöhe, Itervalle ud Lautstärke Die Tohöhe wird physikalisch durch die Frequez festgelegt. Kammerto a 1 f = 440 Hz 1 Tohöhe, Itervalle ud Lautstärke Physikalisch wird ei Itervall durch ei Frequezverhältis

Mehr

LGÖ Ks VMa 12 Schuljahr 2017/2018

LGÖ Ks VMa 12 Schuljahr 2017/2018 LGÖ Ks VMa Schuljahr 7/8 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Experte 8 Polyomgleichuge ud -ugleichuge

Mehr

Zusammenfassung: Gleichungen und Ungleichungen

Zusammenfassung: Gleichungen und Ungleichungen LGÖ Ks VMa Schuljahr 6/7 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Eperte 8 Polyomgleichuge ud -ugleichuge

Mehr

44. Lektion: Stehende Wellen

44. Lektion: Stehende Wellen 44. Lektio: Stehede Welle H. Zabel 38. Lektio: Schwiguge 1 15.Schwiguge Lerziel Stehede Welle etstehe aus der Überlagerug vo laufede Welle a feste oder lose Ede. Die Superpositio vo eilaufeder ud reflektierter

Mehr

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10. 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.000, 1 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Defiitio: Eie

Mehr

Index. Majorante, 24 Minorante, 23. Partialsumme, 17

Index. Majorante, 24 Minorante, 23. Partialsumme, 17 Folge, Reihe Idex Kovergezkriterie Hauptkriterium, Leibiz-Kriterium, Majoratekriterium, 4 Mioratekriterium, otwediges Kriterium, 0 Quotietekriterium, teleskopierede Summe, Wurzelkriterium, Majorate, 4

Mehr

n=0 f(x) = log(1 + x) = n=1

n=0 f(x) = log(1 + x) = n=1 Potez - Reihe Machmal ist es praktisch eie Fuktio f() mir Hilfe ihrer Potezreihe auszudrücke. Eie Potezreihe um de Etwicklugspukt 0 sieht im Allgemeie so aus a ( 0 ) Fuktioe, für die eie Potezreihe eistiert,

Mehr

8. Die Exponentialfunktion und die trigonometrischen Funktionen

8. Die Exponentialfunktion und die trigonometrischen Funktionen 8. Die Expoetialfuktio ud die trigoometrische Fuktioe 8.1 Defiitio der Expoetialfuktio Fudametallemma: Für jede Folge w mit dem Grezwert w gilt: lim 1 w k 0 k w. k! Defiitio der Expoetialfuktio : k 2 3

Mehr

x beschrieben wird. Die Abtastung zu diskreten Zeitpunkten wird im

x beschrieben wird. Die Abtastung zu diskreten Zeitpunkten wird im 6 Faltug Zur Beschreibug eies Nachrichteverarbeitugssystems oder Nachrichteverarbeitugsblocks verwedet ma die sogeate Impulsatwort. Es werde digital arbeitede Systeme betrachtet, bei dee ei Sigal ur zu

Mehr

3. Taylorformel und Taylorreihen

3. Taylorformel und Taylorreihen Prof Dr Siegfried Echterhoff Aalysis Vorlesug SS 9 3 Taylorformel ud Taylorreihe Sei I R ei Itervall ud sei f : I R eie Fuktio Ziel: Wolle utersuche, wa sich die Fuktio f i eier Umgebug vo eiem Pukt I

Mehr

STUDIENMATERIAL Teil 9 für Studenten der Elektrotechnik/Informationstechnik UNENDLICHE REIHEN

STUDIENMATERIAL Teil 9 für Studenten der Elektrotechnik/Informationstechnik UNENDLICHE REIHEN Techische Uiversität Chemitz Fakultät für Mathematik Zahlereihe STUDIENMATERIAL Teil 9 für Studete der Elektrotechik/Iformatiostechik UNENDLICHE REIHEN Utersuche für folgede uedliche Reihe jeweils die

Mehr

Folgen und Reihen. 23. Mai 2002

Folgen und Reihen. 23. Mai 2002 Folge ud Reihe Reé Müller 23. Mai 2002 Ihaltsverzeichis 1 Folge 2 1.1 Defiitio ud Darstellug eier reelle Zahlefolge.................. 2 1.1.1 Rekursive Defiitio eier Folge......................... 3 1.2

Mehr

Anwendungen der Wahrscheinlichkeit II. Markovketten

Anwendungen der Wahrscheinlichkeit II. Markovketten Aweduge der Wahrscheilichkeit II 1. Fragestelluge Markovkette Markovkette sid ei häufig verwedetes Modell zur Beschreibug vo Systeme, dere Verhalte durch eie zufällige Übergag vo eiem Systemzustad zu eiem

Mehr

Gleichungen und Ungleichungen. Mathematische Grundlagen. Beispiel. Beispiel. Lösung einer quadratischen Gleichung:

Gleichungen und Ungleichungen. Mathematische Grundlagen. Beispiel. Beispiel. Lösung einer quadratischen Gleichung: Gleichuge ud Ugleichuge Mathematische Grudlage Das Hadout ist Bestadteil der Vortragsfolie zur Höhere Mathemati; siehe die Hiweise auf der Iteretseite wwwimgui-stuttgartde/lstnumgeomod/vhm/ für Erläuteruge

Mehr

Optische Systeme (8. Vorlesung)

Optische Systeme (8. Vorlesung) Optische Systeme (8. Vorlesug) Martia Gerke..006 Uiversität Karlsruhe (TH) Ihalte der Vorlesug 8.. Grudlage der Welleoptik. Abbildede optische Systeme 3. Optische Messtechik 3. Spektroskopie 3. Materialcharakterisierug

Mehr

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w Prof. Dr. Moritz Kaßma Fakultät für Mathematik Witersemester 04/05 Uiversität Bielefeld Übugsaufgabe zu Aalysis Lösuge vo Blatt XII vom 5.0.5 Aufgabe XII. 3 Pukte) Beweise Sie, dass für alle R ud N die

Mehr

Übungen zur Analysis I WS 2008/2009

Übungen zur Analysis I WS 2008/2009 Mathematisches Istitut der Uiversität Heidelberg Prof. Dr. E. Freitag /Thorste Heidersdorf Übuge zur Aalysis I WS 008/009 Blatt 3, Lösugshiweise Die folgede Hiweise sollte auf keie Fall als Musterlösuge

Mehr

1.2. Taylor-Reihen und endliche Taylorpolynome

1.2. Taylor-Reihen und endliche Taylorpolynome 1.. aylor-reihe ud edliche aylorpolyome 1..1 aylor-reihe Wir köe eie Fuktio f() i eier Umgebug eies Puktes o gut durch ihre agete i o: t o () = f(o) + f (o) (-o) aäher: Wir sehe: Je weiter wir vo o weg

Mehr

Monotonie einer Folge

Monotonie einer Folge Mootoie eier Folge 1 E Mootoe Folge We jedes Folgeglied eier Folge größer oder gleich dem vorhergehede Folgeglied ist a 1 a ℕ so et ma die Folge mooto steiged (oder mooto wachsed). Die geometrische Folge

Mehr

Konvergenzradius von Taylorreihen

Konvergenzradius von Taylorreihen HTBLA Neufelde Peter Fischer pe.fischer@at.u Kovergezradius vo Taylorreihe Mathematische / Fachliche Ihalte i Stichworte: Taylorreihe, Kovergezradius, bestädige Kovergez Kurzzusammefassug Zuerst wird der

Mehr

. Mit dem Unit Hydrograph (U) und gegebenen Niederschlägen (P) kann der Direktabfluss für jeden Zeitpunkt n berechnet werden. Dies erfolgt nach:

. Mit dem Unit Hydrograph (U) und gegebenen Niederschlägen (P) kann der Direktabfluss für jeden Zeitpunkt n berechnet werden. Dies erfolgt nach: Kursuterlage zum BSc Studiegag Geographie, FSU Jea, Modul 4 Die Eiheitsgagliie, Uit Hydrograph Eiheitsgagliie (Uit Hydrograph) Defiitio der Eiheitsgagliie Die Eiheitsgagliie (egl. uit hydrograph, Sherma

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n,

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n, f : a P UNIVERSIÄ DES SAARLANDES FACHRICHUNG 6. MAHEMAIK Prof. Dr. Rolad Speicher M.Sc. obias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 202 Musterlösug zu Blatt Aufgabe. Zeige Sie durch Abwadlug

Mehr

Funktionenreihen. 1-E1 Ma 2 Lubov Vassilevskaya

Funktionenreihen. 1-E1 Ma 2 Lubov Vassilevskaya Fuktioereihe Erst durch Newto wurde die Theorie uedlicher Reihe zu eiem eigestädige Forschugsgebiet i der Mathematik, das da i Britaie besodere Beachtug ud weitere Etwicklug durch Brook Taylor ud Coli

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Übungsblatt 8. b n := 1 n. a k. k=1

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Übungsblatt 8. b n := 1 n. a k. k=1 D-MATH, D-PHYS, D-CHAB Aalysis I HS 2017 Prof. Mafred Eisiedler Übugsblatt 8 1. Bereche Sie de Grezwert lim a für die Folge (a ) gegebe durch a) a = (2 1/ ) 10 (1 + 1/ 2 ) 10 1 1/ 2 1/, b) a = + 1, c)

Mehr

6. Vorlesung Grundlagen der analogen Schaltungstechnik : Operationsverstärker & Dynamik (KWSR + x)

6. Vorlesung Grundlagen der analogen Schaltungstechnik : Operationsverstärker & Dynamik (KWSR + x) 6. Vorlesug Grudlage der aaloge Schaltugstechik : Operatiosverstärker & Dyamik (KWSR + x) Die große Etappeziele i GST roter Fade Netzwerkaalyse mit gesteuerte Quelle icht mehr als 3 Gleichuge für jede

Mehr

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $ Mathematik für Iformatiker B, SS 202 Doerstag 4.6 $Id: reihe.tex,v.9 202/06/4 3:59:06 hk Exp $ 7 Reihe 7.4 Kovergezkriterie für Reihe 7.4. Alterierede Reihe Wir hatte gesehe das die harmoische Reihe divergiert,

Mehr

8. Die Exponentialfunktion und die trigonometrischen Funktionen. 8.1 Definition der Exponentialfunktion

8. Die Exponentialfunktion und die trigonometrischen Funktionen. 8.1 Definition der Exponentialfunktion 8. Die Expoetialfuktio ud die trigoometrische Fuktioe 8. Defiitio der Expoetialfuktio Fudametallemma: Für jede Folge w mit dem Grezwert w gilt: w lim + = k = 0 k w. k! Defiitio der Expoetialfuktio : k

Mehr

Elektronische Bauelemente

Elektronische Bauelemente Elektroische Bauelemete Für Studete des FB ET / IT Prof. M. Hoffma Hadout 3 Atommodelle Hiweis: Bei de Hadouts hadelt es sich um ausgewählte Schlüsselfolie ud Zusammefassuge. Die Hadouts repräsetiere icht

Mehr

Kapitel 6 Differenzierbarkeit

Kapitel 6 Differenzierbarkeit Kapitel 6 Differezierbarkeit Ihalt 6.1 6.1Die Defiitio 6.2 6.2Die Eigeschafte 6.3 6.3Extremwerte Seite 2 Was heißt differezierbar? Differezierbare Fuktioe sid sid glatte Fuktioe. Wir Wir beschreibe diese

Mehr

Höhere Analysis. Lösungen zu Aufgabenblatt 6. Die Funktion f sei auf ( π, π] definiert durch f(x) = x und wird 2π-periodisch fortgesetzt.

Höhere Analysis. Lösungen zu Aufgabenblatt 6. Die Funktion f sei auf ( π, π] definiert durch f(x) = x und wird 2π-periodisch fortgesetzt. Fachbereich Iformatik Sommersemester 8 Prof. Dr. Peter Becker Höhere Aalysis Lösuge zu Aufgabeblatt 6 Aufgabe (Fourierreihe) 3+5 Pukte Die Fuktio f sei auf (, π] defiiert durch f(x) x ud wird π-periodisch

Mehr

6. Vorlesung Grundlagen der analogen Schaltungstechnik : Operationsverstärker & Dynamik (KWSR + x)

6. Vorlesung Grundlagen der analogen Schaltungstechnik : Operationsverstärker & Dynamik (KWSR + x) 6. Vorlesug Grudlage der aaloge Schaltugstechik : Operatiosverstärker & Dyaik (KWSR + x) 9..6 Die große Etappeziele i GST roter Fade Netzwerkaalyse it gesteuerte Quelle icht ehr als 3 Gleichuge für jede

Mehr

3. Anwendungen der Differentialrechnung

3. Anwendungen der Differentialrechnung Talorsche Formel ud Mittelwertsatz 4 Aweduge der Differetialrechug Talorsche Formel ud Mittelwertsatz Die Gleichug der Tagete = f ( ( a die Kurve = f( im Pukt (, liefert eie grobe Näherug für die Fuktio

Mehr

( ), der genau auf der Geraden ( ) 2 ( ) #( ) 8. Lineare Regression. = f i. Nach der Summe der kleinsten. mx i

( ), der genau auf der Geraden ( ) 2 ( ) #( ) 8. Lineare Regression. = f i. Nach der Summe der kleinsten. mx i 8. Lieare Regressio 8.1. Die Methode der kleiste Quadrate Regressiosgerade bzw. Ausgleichsgerade sid eie Auswertug vo statistische Messdate. Ziel dieses Verfahres ist es, Beziehuge zwische zwei Merkmale

Mehr

So lösen Sie die Gleichung für den Korrelationskoeffizienten

So lösen Sie die Gleichung für den Korrelationskoeffizienten 8. Lieare Regressio 8.1. Die Methode der kleiste Quadrate Regressiosgerade bzw. Ausgleichsgerade sid eie Auswertug vo statistische Messdate. Dabei sid Datepukte ( x 1, y 1 ),( x 2, y 2 ), ( x, y ) gegebe.

Mehr

Diesen Grenzwert nennt man partielle Ableitung von f nach x i und

Diesen Grenzwert nennt man partielle Ableitung von f nach x i und Bevor wir zum ächste Kapitel übergehe, werde wir de Begri eier Fuktio i mehrere Variable eiführe. Eie Fuktio vo Variable ist eie Vorschrift, die jedem Pukt (x 1,x,...,x ) eier Teilmege D des IR eie bestimmte

Mehr

Infinite Impulse Response-Filter Rekursivfilter DSP-8-IIR 1

Infinite Impulse Response-Filter Rekursivfilter DSP-8-IIR 1 Ifiite Impulse Respose-Filter Rekursivfilter DSP-8-IIR IIR-Filter. Ordug y [ ] ay [ ] bx o [ ] bx [ ] FIR-Teil x[] b v[] y[] x + + z - z - b a x Feed-forward Teil (FIR-Filter) x y[-] Feed-back Teil DSP-8-IIR

Mehr

Übung 8: Transformationen

Übung 8: Transformationen ZHAW, DSV, 008, Rumc, 1/7 Übug 8: Trasformatioe Aufgabe 1: (Wavelet) Basisfuktioe. Betrachte Sie die folgede 4 Basisfuktioe f m [], m = 1,...,4, sowie das Zeitsigal x[] = [9 7 3 5]. f 0 [] f 1 [] 0.5 0.5-0.5

Mehr

N G R C. 6.1 Definition und Darstellungsformen der komplexen Zahlen. Def.: Die formale Summe aus einer reellen Zahl a imaginären Zahl bj heißt

N G R C. 6.1 Definition und Darstellungsformen der komplexen Zahlen. Def.: Die formale Summe aus einer reellen Zahl a imaginären Zahl bj heißt 6 Komplexe Zahle Natürliche Zahle N {0,,,...} Gae Zahle G {...,-,-,0,,,...} Reelle Zahle Komplexe Zahle R (-,+ ) C N G R C 6. Defiitio ud Darstellugsforme der komplexe Zahle Def.: Die formale Summe aus

Mehr

Analysis I. Prof. Dr. H. Brenner Osnabrück WS 2014/2015. Vorlesung 20. Konvexe Funktionen

Analysis I. Prof. Dr. H. Brenner Osnabrück WS 2014/2015. Vorlesung 20. Konvexe Funktionen Prof. Dr. H. Breer Osabrück WS 2014/2015 Aalysis I Vorlesug 20 Kovexe Fuktioe Eie kovexe Teilmege. Eie ichtkovexe Teilmege. Defiitio 20.1. Eie Teilmege T R heißt kovex, we mit je zwei Pukte P, Q T auch

Mehr

3.3 Grenzwert und Stetigkeit

3.3 Grenzwert und Stetigkeit 50 KAPITEL 3. FUNKTIONEN 3.3 Grezwert ud Stetigkeit Wichtige Eigeschafte eier Fuktio f a eier Stelle 0 sid mit ihrem Verhalte bei beliebiger Aäherug a 0 verbude. Eier dieser Eigeschafte ist die Stetigkeit

Mehr

3 Elemente der Komplexitätstheorie Definitionen und ein Beispiel Nichtdeterminismus und das P-NP-Problem... 57

3 Elemente der Komplexitätstheorie Definitionen und ein Beispiel Nichtdeterminismus und das P-NP-Problem... 57 Ihaltsverzeichis 1 Berechebarkeit ud Algorithme 7 1.1 Berechebarkeit................................. 7 1.1.1 LOOP/WHILE-Berechebarkeit................... 8 1.1.2 Turig-Maschie...........................

Mehr

2. Zeitdiskrete Signale

2. Zeitdiskrete Signale Uiversity of Applied Sciece 2. Zeitdiskrete Sigale Defiitioe Elemetarsigale Impuls-Folge δ(): (Dirac-Folge, Delta-Folge, Eiheitsimpuls) δ ( ) : : MATLAB-Erzeugug: 5; ; (-:)'; d[zeros(++,)]; d(+); Prof.

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Agewadte Mathematik ud Programmierug Eiführug i das Kozept der objektorietierte Aweduge zu wisseschaftliche Reches mit C++ ud Matlab SS03 Orgaisatorisches Dozete Gruppe: Ago (.50), Ludger Buchma(.50) Webseite:

Mehr

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln 6 Kovergete Folge Lerziele: Kozepte: Grezwertbegriff bei Folge, Wachstumsgeschwidigkeit vo Folge Resultat: Mootoe beschräkte Folge sid koverget. Methode: Hero-Verfahre, Erweiterug vo Differeze vo Quadratwurzel

Mehr

Kompaktheit und gleichgradige Stetigkeit. 1 Einführung in die Kompaktheit in C 0

Kompaktheit und gleichgradige Stetigkeit. 1 Einführung in die Kompaktheit in C 0 Kompaktheit ud gleichgradige Stetigkeit Vortrag zum Prosemiar zur Aalysis, 14.06.2010 Mao Wiescherma Matthias Klupsch Dieser Vortrag beschäftigt sich mit Kompaktheit vo Teilräume vom Raum der stetige Abbilduge

Mehr

Demo-Text für INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. ANALYSIS Vollständige Induktion FRIEDRICH W.

Demo-Text für   INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.   ANALYSIS Vollständige Induktion FRIEDRICH W. ANALYSIS Vollstädige Iduktio Datei Nr. 40080 Stad 14. März 018 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 40080 Beweismethode: Vollstädige Iduktio Vorwort Die Methode der vollstädige Iduktio

Mehr

4. Der Weierstraßsche Approximationssatz

4. Der Weierstraßsche Approximationssatz H.J. Oberle Approximatio WS 213/14 4. Der Weierstraßsche Approximatiossatz Wir gebe i diesem Abschitt eie ostrutive Beweis des Weierstraßsche Approximatiossatzes, der mit de so geate Berstei-Polyome (Felix

Mehr

Tutoren: Jinming Lu, Konrad Schönleber

Tutoren: Jinming Lu, Konrad Schönleber Näherugsmethode Tutore: Jimig Lu, Korad Schöleber 9.0.09 Nur weige quatemechaische Probleme (z.b. der harmoische Oszillator dieser ist jedoch oft selbst eie Näherug) lasse sich exakt löse, es ist somit

Mehr

9. Übungsblatt Aufgaben mit Lösungen

9. Übungsblatt Aufgaben mit Lösungen 9. Übugsblatt Aufgabe mit Lösuge Aufgabe 1: Gegebe sei die folgede Differetialgleichug 15u(x) + 3xu (x) + x u (x) = 8x 3, x > 0. (a) Gebe Sie ei reelles Fudametalsystem der zugehörige homogee Differetialgleichug

Mehr

Lösungen zum Thema Folgen und Reihen

Lösungen zum Thema Folgen und Reihen Schülerzirkel Mathematik Fakultät für Mathematik. Uiversität Regesburg Lösuge zum Thema Folge ud Reihe Lösug zu Aufgabe 1. a) (a ) N ist eie arithmetische Folge mit d = 11 ud damit ist a 75 = 7 + (75 1)

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 6 Für Experte 8 Defiitioe ud Beispiele für Folge Defiitio Eie

Mehr

Problem der Lautstärke: riesiger Intensitätsbereich, den das menschliche Ohr auch tatsächlich in starkem Maße (1 : ) überstreicht.

Problem der Lautstärke: riesiger Intensitätsbereich, den das menschliche Ohr auch tatsächlich in starkem Maße (1 : ) überstreicht. 18. Akustik 18.1. Eileitug Akustik ist bis zu gewissem Grad am Mesche orietiert: Ifraschall 16 Hz hörbarer Schall 16 Hz 16 khz 1 Ultraschall v > 16 khz Problem der Lautstärke: riesiger Itesitätsbereich,

Mehr

Nicht-Anwendbarkeit des Master- Theorems

Nicht-Anwendbarkeit des Master- Theorems Nicht-Awedbarkeit des Master- Theorems Beispiel: Betrachte die Rekursiosgleichug T () = 2T ( 2 ) + log. Es gilt sicherlich f () = Ω( log b a ) = Ω(), aber icht f () = Ω( log b a+ɛ ). Ma beachte, dass f

Mehr

Physikalisches Anfaengerpraktikum. Beugung und Brechung

Physikalisches Anfaengerpraktikum. Beugung und Brechung Physikalisches Afaegerpraktikum Beugug ud Brechug Ausarbeitug vo Marcel Egelhardt & David Weisgerber (Gruppe 37) Mittwoch, 3. Februar 005 I Utersuchuge am Prismespektroskop 1. Versuch zur Bestimmug des

Mehr

Aufgaben zur Analysis I

Aufgaben zur Analysis I Aufgabe zur Aalysis I Es werde folgede Theme behadelt:. Logik, Iduktio, Mege, Abbilduge 2. Supremum, Ifimum 3. Folge, Fuktioefolge 4. Reihe, Potezreihe 5. Mootoie ud Stetigkeit 6. Differetialrechug 7.

Mehr

D-HEST, Mathematik III HS 2015 Prof. Dr. E. W. Farkas R. Bourquin und M. Sprecher. Lösung 1

D-HEST, Mathematik III HS 2015 Prof. Dr. E. W. Farkas R. Bourquin und M. Sprecher. Lösung 1 D-HEST, Mathematik III HS 15 Prof. Dr. E. W. Farkas R. Bourqui ud M. Sprecher Lösug 1 Das erste Kapitel der Vorlesug behadelt die Theorie der Fourier-Reihe. Bearbeite Sie bitte folgede Frage olie bis Diestag,

Mehr

Der Satz von Stone-Weierstraß. 1 Approximationssatz von Weierstraß

Der Satz von Stone-Weierstraß. 1 Approximationssatz von Weierstraß Der Satz vo Stoe-Weierstraß Vortrag zum Prosemiar Aalysis, 28.06.2010 Valetia Gerber, Sabria Kielma Aus der Vorlesug Aalysis I ud II kee wir das Kozept des Approximieres. Us wurde die Begriffe Taylor-

Mehr

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id,

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id, Kreisabbilduge Im Folgede sehe wir us eie gaz spezielle Klasse vo dyamische Systeme a: Abbilduge auf dem Kreis. Diese sid eifach geug, so dass wir sie och recht leicht aalysiere köe, habe aber adererseits

Mehr

4-1 Elementare Zahlentheorie

4-1 Elementare Zahlentheorie 4-1 Elemetare Zahletheorie 4. Dirichlet s Satz über Primzahle i arithmetische Progressioe. Satz (Dirichlet 1837). Seie a, k atürliche Zahle. Sid die Zahle a, k teilerfremd, so gibt es uedlich viele Primzahle

Mehr

5 Das Bode Diagramm. Frequenzkennlinienverfahren

5 Das Bode Diagramm. Frequenzkennlinienverfahren 6a Das Bode Diagramm. Frequezkeliieverfahre Ahag zum Kapitel Das Bode Diagramm. Frequezkeliieverfahre. Darstellug i Reihe geschalteter Glieder im Bode-Diagramm..a Kostruktio des Amplitudegages mittels

Mehr

n 2(a + bx i y i ) = 0 und i=1 n 2(a + bx i y i )x i = 0 i=1 gilt. Aus diesen beiden Gleichungen erhalten wir nach wenigen einfachen Umformungen

n 2(a + bx i y i ) = 0 und i=1 n 2(a + bx i y i )x i = 0 i=1 gilt. Aus diesen beiden Gleichungen erhalten wir nach wenigen einfachen Umformungen Regressio Dieser Text rekapituliert die i der Aalsis ud Statistik wohlbekate Methode der kleiste Quadrate, auch Regressio geat, zur Bestimmug vo Ausgleichsgerade Regressiosgerade ud allgemei Ausgleichpolome.

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr R Köig Dr M Prähofer Zetralübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik Mathematik für Physiker (Aalysis ) MA90 Witersem 07/8 Lösugsblatt 4 http://www-m5matumde/allgemeies/ma90 07W (007)

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Techische Uiversität Müche Fakultät für Iformatik Lehrstuhl für Effiziete Algorithme Dr. Hajo Täubig Tobias Lieber Sommersemester 2011 Übugsblatt 1 13. Mai 2011 Grudlage: Algorithme ud Datestrukture Abgabetermi:

Mehr

Übungen zum Ferienkurs Analysis 1, Vorlesung 2

Übungen zum Ferienkurs Analysis 1, Vorlesung 2 F. Hafer, T. Baldauf c Techische Uiversität Müche Übuge zum Feriekurs Aalysis, Vorlesug Witersemester 06/07. Richtig oder Falsch? Sid folgede Aussage richtig oder falsch? Korrigiere bzw. ergäze Sie falsche

Mehr

Dritter Zirkelbrief: Ungleichungen

Dritter Zirkelbrief: Ungleichungen Matheschülerzirkel Uiversität Augsburg Schuljahr 014/015 Dritter Zirkelbrief: Ugleichuge Ihaltsverzeichis 1 Grudlage vo Ugleichuge 1 Löse vo Ugleichuge 3 3 Mittel 4 4 Mittelugleichuge 5 5 Umordugsugleichug

Mehr

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa 20 I. Zahle, Kovergez ud Stetigkeit 4 Kovergete Folge 4. Dezimalzahle ud Itervallschachteluge. a) Reelle Zahle werde meist als Dezimalzahle dargestellt, etwa 7,304 = 0+7 +3 0 +0 00 +4 000. Edliche Dezimalzahle

Mehr

Stochastisches Integral

Stochastisches Integral Kapitel 11 Stochastisches Itegral Josef Leydold c 26 Mathematische Methode XI Stochastisches Itegral 1 / 2 Lerziele Wieer Prozess ud Browsche Bewegug Stochastisches Itegral Stochastische Differetialgleichug

Mehr

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2014

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2014 Herzlich Willkomme zur Vorlesug Aalysis I SoSe 2014 Prof. Dr. Berd Dreseler Lebediges Lere: Aufgabe Ich Wir 2 Reelle Zahle 2.1 Körperstruktur vo (K1) Additio ud Multiplikatio kommutativ: a b b a, ab ba.

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VMa Schuljahr 6/7 Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 5 Für Experte 7 Defiitioe ud Beispiele

Mehr

(Einheit z.b.: E ; E

(Einheit z.b.: E ; E 1.4 Sigal ud Rausche* N0_Messusicherheit_a_BAeu.doc - 1/5 Empfidlicheit ud Nachweisgreze werde durch das Rausche des Messsstems begrezt. Uter Rausche versteht ma alle uerwüschte, statistisch schwaede Sigale,

Mehr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Lars Machiek Dipl.-Math. Sebastia Schwarz WS 206/207 03..206 Aalysis I Lösugsvorschläge zum 3. Übugsblatt Abgabe:

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 8/9 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum. Übugsblatt

Mehr

K. Felten: Internet Network infrastucture Fachhochschule Kiel, Fachbereich IuE

K. Felten: Internet Network infrastucture Fachhochschule Kiel, Fachbereich IuE Defiitio ach DIN4004 Als Zuverlässigkeit ( reliability ) gilt die Fähigkeit eier Betrachtugseiheit ierhalb vorgegebeer Greze dejeige durch de Awedugszweck bedigte Aforderuge zu geüge, die a das Verhalte

Mehr

Darstellung periodischer Funktionen durch Fouriersche Reihen

Darstellung periodischer Funktionen durch Fouriersche Reihen Aus Fuschau 6-8/957. Digitalisiert 9/6 vo Eie Grud für http://www.radiomuseum.org mit freudlicher Geehmigug der Fuschau-Redatio. Die atuelle Ausgabe der FUNKSCHAU fide Sie uter http://www.fuschau.de (Im

Mehr

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel Zahlefolge Teil 3 Reihe Reihe Arithmetische Reihe Geometrische Reihe Datei Nr. 4003 (Neu bearbeitet ud erweitert) Jui 005 Friedrich W. Buckel Iteretbibliothek für Schulmathematik Ihalt Defiitio eier Reihe

Mehr

Höhere Mathematik I für die Fachrichtung Physik

Höhere Mathematik I für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Sebastia Schwarz SS 5 7.9.5 Höhere Mathematik I für die Fachrichtug Physik Lösugsvorschläge zur Bachelor-Modulprüfug

Mehr

3 Funktion einer reellen Variablen

3 Funktion einer reellen Variablen - - 3 Fuktio eier reelle Variable 3. Abbildugsbegriff ud Fuktiosbegriff Fuktioe diee zur Darstellug ud Beschreibug vo Zusammehäge ud Abhägigkeite zwische zwei phsikalisch-techische Meßgröße 3.. Abbildugsbegriff

Mehr

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2 D-MATH Topologie FS 15 Theo Bühler Musterlösug 2 1. a) Per Defiitio ist A = {x : x berührt A}. I der Vorlesug wurde die Formel (X A) = ( A ) c gezeigt, also A = ( X A ) c. Daher ist A = A A = A (A ) c

Mehr

1 Lösungen zu Analysis 1/ 12.Übung

1 Lösungen zu Analysis 1/ 12.Übung Lösuge ausgewählter Beispiele zu Aalysis I, G. Bergauer, Seite Lösuge zu Aalysis / 2.Übug. Eileitug Gleichmäßige Kovergez ist eie starke Eigeschaft eier Fuktioefolge. Formuliert ma sie für Netze, statt

Mehr

1 Taylorpolynome und Taylorreihen

1 Taylorpolynome und Taylorreihen $Id: taylor.tex,v.6 08/04/8 :4:5 hk Exp $ $Id: itegral.tex,v.6 08/05/09 ::33 hk Exp $ Taylorpolyome ud Taylorreihe. Taylorreihe I der letzte Sitzug habe wir eigesehe, dass die Taylorreihe der Fuktio f

Mehr

(a) Richtig, die Varianz ist eine Summe quadratischer Größen.

(a) Richtig, die Varianz ist eine Summe quadratischer Größen. Aufgabe 1 (10 Pukte) Welche der folgede Aussage sid richtig? (a) Richtig, die Variaz ist eie Summe quadratischer Größe. (b) Falsch, die Abweichug ordialer Merkmale vom Media ist icht defiiert - also auch

Mehr

8. Gewöhnliche Differentialgleichungen (ODE)

8. Gewöhnliche Differentialgleichungen (ODE) 8 Gewöhliche Differetialgleichuge (ODE) 81 Motivatio Eidimesioale (1d) Bewegug eies Teilches (Masse m, keie Reibug) im Potezial U() U() E klassisch: Ermittle die Bahkurve/Trajektorie (t) des Massepukts

Mehr

Wallis-Produkt, Gammafunktion und n-dimensionale Kugeln

Wallis-Produkt, Gammafunktion und n-dimensionale Kugeln Wallis-Produkt, Gammafuktio ud -dimesioale Kugel Thomas Peters Thomas Mathe-Seite www.mathe-seite.de 6. Oktober 3 Das Ziel dieses Artikels ist es, Formel für das Volume ud die Oberfläche vo -dimesioale

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Has Walser Mathematik für Naturwisseschafte Modul 0 Regressiosgerade ud Korrelatio Has Walser: Modul 0, Regressiosgerade ud Korrelatio ii Ihalt Die Regressiosgerade.... Problemstellug.... Berechug der

Mehr

Analysis II für M, LaG und Ph, WS07/08 Übung 2, Lösungsskizze

Analysis II für M, LaG und Ph, WS07/08 Übung 2, Lösungsskizze Gruppeübug Aalysis II für M, LaG ud Ph, WS7/8 Übug, Lösugsskizze G 4 (Zum warm werde). Begrüde die vo Physiker beliebte Näheruge si(x) x, cos(x) ud ta(x) x für kleie x R. Dies folgt direkt aus der Tayloretwicklug

Mehr