Darstellung periodischer Funktionen durch Fouriersche Reihen

Größe: px
Ab Seite anzeigen:

Download "Darstellung periodischer Funktionen durch Fouriersche Reihen"

Transkript

1 Aus Fuschau 6-8/957. Digitalisiert 9/6 vo Eie Grud für mit freudlicher Geehmigug der Fuschau-Redatio. Die atuelle Ausgabe der FUNKSCHAU fide Sie uter (Im Origial -spaltig) Darstellug periodischer Futioe durch Fouriersche Reihe DK 57.5 Mth 3. Ausgabe 4 Blätter A. Numerische Methode für empirisch gefudee Kurve. Allgemeies Gegebe ist ei periodischer Kurveverlauf. Die Periode ist. Eie Periode wird i Teile zerlegt, so daß ei Teil die Breite π 8 =, d. h. im Wielmaß hat. π (Bild ) => Beat sid also die Ordiate oder Amplitude a de eizele Stelle x, x, x,... Verlagt ist: eie Futio zu bestimme, dere Kurveverlauf sich der gegebee Kurve möglichst weit aähert. Die Futio soll vo der allgemeie Form sei: f(x) = a +a l cos x + a cos x + a 3 cos 3x... () + b si x + b si x + b3 si 3 x... oder abgeürzt f ( x) a a cos x b si x (a) Die Aufgabe besteht also dari, die Koeffiziete a, a, a, a 3,... b, b, b 3,... zu bestimme. Setzt ma diese Koeffiziete i die Gleichug () ei, so soll der Kurveverlauf der so gebildete Futio dem gegebee Kurvezug (Bild ) möglichst getreu etspreche. Dieses Verfahre diet z. B. i der Tofrequeztechi ud Eletroausti dazu, um aus Oszillogramme auf de Gehalt a Grudwelle ud Oberwelle zu schließe ud Klirrfatore zu ermittel.. Die Koeffizietebestimug Zahl der Teile, i die der Kurvezug zerlegt wird A sich a für eie beliebige Zahl gesetzt werde; ormalerweise verwedet ma aber zur Rechugsvereifachug dafür eie durch teilbare Zahl, meistes = 4 oder 6, also = 8 oder. Bei eier Teilug i acht Abschitte liege da die Meßpute, bezoge auf die Grudwelle, bei, 45, 9,35, 8, 5, 7, 35, 36 ud bei eier er-teilugbei, 3, Bild Eileitug des Kurvezuges i acht Ordiate y bis y 8

2 6, 9,, 5, 8,, 4, 7, 3,33, 36. Es werde mit Rücsicht auf die pratische Bedeutug ur diese zwei Eiteiluge hier ausführlich behadelt. Zum Schluß werde die allgemeie Formel für eie beliebige Uterteilug agegebe (Abschitt A 6). 3. Bestimmug der Koeffiziete bei Teilug i acht Abschitte Aus der Kurve oder Tabelle werde die acht Ordiate y, y, y 3, y 4, y 5, y 6, y 7 ud y8 etomme. Aus diese bildet ma folgede Summe ud Differeze: Aus diese Summe (, ') ud Differeze (, ) bereche sich die Koeffiziete ach folgede Formel: 8 a + 8 a + 4 4a 4b ' + ' 4a 4 b ' 4a 4b ' ' 3 3 Mit diese so errechete Werte wird die Futio f (x) gebildet: f (x) = a + a cos x + a cos x + a3 cos 3 x + a4 cos 4 x + b si x + b si x + b3 si 3 x 4. Bestimmug der Koeffiziete bei Teilug i zwölf Abschitte Wie i Abschitt 3 werde aus de zwölf Ordiate y... y folgede Summe ud Differeze gebildet: Aus diese Summe (, ') ud Differeze (, ') bereche sich die Koeffiziete ach folgede Gleichuge: a + a a 3 6b = ' 3 ' ' 3 6a 3 6b = 3 ' 3 ' 6a3 6b 3= ' ' 3 6a4 3 6b 4 = 3 ' 3 ' 6a5 3 6b 5= ' 3 ' ' 3 Mit diese Koeffiziete wird die Futio f (x) gebildet: f (x) = a + a cos x + a cos x +a 3 cos 3 x + a 4 cos 4 x + a 5 cos 5 x + a 6 cos 6 x + b si x + b si x + b 3 si 3 x + b 4 si 4 x + b 5 si 5 x

3 5. Zahlebeispiel Gegebee Ordiate: y =,38 y =,75, y 3 =,4 y 4 = 8,4, y 5 = 8,58 y 6 =,4, y 7 = 3,, y 8 = 8,76 Daraus bereche sich die Koeffiziete: 8a = + + =,7 6,4 +,7 = 4.96 a =,87 4a = + =6,8 +,77* 3,58 = 33,4 a = 8,37 4a = =,7,7 = a = 4a3 = 6,8,77*3,58 =,3 a 3 =,3 8 a + =,7 + 6,4 +,7 = 7,84 a 4 =,3 4 4b ' + ' =,77 * ( 5,66) 4, = 8, b =,3 4 b ' = b = 4b3 ' ' =,77* ( 5,66) + 4, =, b 3 =,3 Damit lautet die Futio f (x): f (x) =,87 + 8,37 cos x +,3 cos 3 x +,3 cos 4 x,3 si x +,3 si 3 x 6. Allgemeie Formel für die Koeffiziete a) Der K o e f f i z i e t a a y Mit ϱ sid die eizele Teilpute auf der x-achse bezeichet. ist die Azahl aller Teilpute 3

4 (i B i d 3 also = ). yϱ sid die Amplitude a de eizele Teilpute ϱ. b) D i e K o e f f i z i e t e aμ (aber icht für μ = ), also a, a, a 3... a y cos x Die Bedeutug vo, ud yϱ siehe uter a), für cos μ xϱ ist eizusetze: ud zwar bei Berechug vo a a a3 cos xϱ cos xϱ cos 3 xϱ Dabei läuft ϱ vo... (ach obigem Beispiel), jedoch sid die eizele Abszissewerte i dem zugehörige Wiel eizusetze. x 8 Wir erhalte also für cos μ, xϱ, ud zwar bei Berechug des Koeffiziete a ud eier er Teilug folgede Werte: cos 3, cos 6, cos 9, cos... c) D e r K o e f f i z i e t a a y ( ) Die Bedeutug vo,, ϱ ud yϱ siehe uter a). d) D i e K o e f f i z i e t e b b y si x Die Bedeutug vo,, yϱ siehe uter a). Die Glieder si μ xϱ werde geau wie die Glieder cos μxϱ berechet. Bei Berechug des Koeffiziete b ud eier Teilug i acht Abschitte erhalte wir folgede Werte für si μ xϱ: si x = si 45 = si x 5 = si 5 = si x = si 9 = si x 6 = si 7 = si x 3 = si 35 = si x 7 = si 35 = si x 4 = si 8 = si x 8 = si 36 = B. Zerlegug gebräuchlicher Kurvezüge I viele Fälle liege u i der Nachrichtetechi aber auch Kurvezüge vor, die sich och relativ eifach aalytisch darstelle lasse.. Beispiele: Rechtecurve (tritt auf beim Multivibrator) Beispiel: er Teilug x = 3, x = 6, x3 = 9... Sägezahurve (tritt aufbeim Kippgeerator) Bild 4 bis 7 Siushalbwelle (tritt auf bei Eiweggleichrichtug) Umgelappte Siusschwigug (tritt auf bei Zweiweggleichrichtug) 4

5 Für diese ud eie Reihe aderer ählicher Kurve braucht ma die umerische Rechug (Abschitt A) icht durchzuführe. Hier lasse sich aus vorliegede Futioe der Kurve die Koeffiziete der Fouriersche Reihe bereche.. Regel über die Koeffiziete Geerell a ma sich dazu folgedes mere: Ist die Futio ugerade, das heißt ist f( x)= f(x), Beispiel: (Bild 8) da ethält die Reihe ur si - Glieder. Ist die Futio gerade, das heißt ist f ( x) = f (x), Beispiel: (Bild 9) da ethält die Reihe eie si - Glieder. Hat die Kurve eie weitere Symmetrieliie [z. B. f (x) = f ( x)], Beispiel: (Bild ) falle i der Fourier-Reihe, die ur aus si-glieder besteht, alle die fort, dere Argumet ei geradzahliges Vielfaches vo x ist. Es bleibe also ur si x, si 3 x, si 5 x usw. Oder zum Beispiel: (Bild ) Hier falle i der Reihe, i der die si-glieder fehle, alle die cos- Glieder weg, dere Argumet ei ugeradzahliges Vielfaches vo x ist. Es bleibe übrig ur: d, cos x, cos 4 x cos 6 x Grafisches Beispiel: Rechtecurve Addiert ma a Had der Reihe für eie Rechtecurve die Grudwelle ud die Oberwelle grafisch, sieht ma ohe weiteres ei, daß die obe aufgezählte Gesetzmäßigeite über de Fortfall bestimmter Gliedergruppe ihre Berechtigug habe. Formel für die Rechtecurve (Bild ): f x 4h si 3x si 5x si x a) Rechtecurve b). Aäherug si x 5

6 cos x muß wegfalle, da er für x = de Wert hat, währed ja die Futio für x = durch Null gehe soll. si x (i b gestrichelt eigezeichet) muß wegfalle, da jede der beide Halbwelle durch Summatio vo si x ud si x sehr usymmetrisch würde. c). Aäherug d) 3. Aäherug si 3x si x 3 si 3x si 5x si x 3 5 Bild 4 Bild 5 4. Berechug der Fourier-Reihe Ei periodischer Schwigugsvorgag läßt sich gewöhlich durch eie Summe vo harmoische Schwiguge (Grudwelle, Oberwelle ud Gleichstromglied [f = ]) ersetze. Das heißt, die periodische Futio f (x) a durch f (x) = a + a cos x + a cos x + a3 cos 3x... + b si x + b si x + b3 si 3x... dargestellt werde. Es ist also otwedig, die Koeffiziete dieser Reihe: a, a...a, b...b zu bestimme. a) Euler-Fourier-Formel zur Bestimmug der Fourier-Koeffiziete. a f x dx a f x cos x dx b f x si x dx (=,, 3, 4, ) b) Darstellug der Fourier-Reihe i omplexer Schreibweise Die Koeffiziete a öe bestimmt werde durch: ix a f x e dx c) Beispiel für die Berechug ach 4a, d.h. mit de Euler-Fouriersche Formel. Gegebe sei eie umgelappte Siusschwigug (Bi ld 6 ) f x ae ix Für de Bereich... ist f (x) = si x Für de Bereich... ist f (x) = + si x Da berechet sich a ach B 4a i folgeder Weise h h h h a f x dx si x dx si x dx cos x cos x ( ) h Etspreched ergibt sich ach B 4a: h h a f x cos x dx si x cosx dx si x cosx dx 6

7 h si x cos x dx si x cos x dx h si x xdx si x x dx si x x dx si x x dx h cos x cos x cos x cos x Da cos ( ) = cos, a vereifacht werde: a a x h cos cos x x h cos cos x Daraus bereche sich die a-koeffiziete wie folgt: 4 h a etfällt ach Bild a 3 4 h a3 etfällt ach Bild a4 3 5 Die b-koeffiziete, d. h. die si-glieder, etfalle ach Bild 9. Deshalb lautet die Gleichug für f (x) h 4h cos x cos 4x cos6 x f x d) BeispielfürdieBerechugachAbschitt4b, d.h. für die omplexe Schreibweise. Gegebe seie ach Bil d 7 Halbwelleimpulse Die Impulsfrequez (Wiederholugsfrequez) hat eie Periode vo x =, die die Impulsform selbst bestimmede Frequez fi hat eie ürzere Periode, ud zwar gilt: a * = a * 4 = a a gibt also a, um wie viel die Periode vo fi ürzer ist als die der Wiederholugsfrequez. Für f(x) gilt also: f (x) = h * cos x/ Kotrolle: Für x = f (x) = cos / = cos / = wie laut Zeichug Bild 7 gefordert ist. Für die Fouriersche Reihe ergibt sich da: i x ix x ix f x a e ud für a f ( x) e dx a h cos e dx Nach Mth /a, Abschitt C gilt: Damit wird: cos 7 e i e i

8 a ix ix ix ix h h e e a e e dx 4 4 i i i i i i h e e e e 4 i i i si i si si si h h 4 4 i i i h cos cos Siehe Futechische Arbeitsblätter Mth / h cos h cos a = 4 ud a h h 4 Die ebestehede Gleichug () a da h cos ix h h cos ix wie folgt geschriebe werde: f x e e 4 4 d.h. die Summe vo Gl. wird i drei Summade aufgelöst ud zwar: a) =... ; b) = ; c) = Setzt ma u im erste Summade für de Wert, da erhält ma für ih Gleichug 3, we folgedes beachtet wird; läuft vo bis, da geht vo bis, oder, was das gleiche ist, vo bis. Der erste Summad vo () lautet da: Damit wird: h cos h cos e e 4 4 i x ix () (3) h h cos ix ix h h cos f x e e cos x 4 4 h 4h cos cos x 4 8

9

10

11 5. Graphische Darstellug vo Grud- ud Oberwelle zwar ist das Auswerte der i Abschitt C gegebee Formel icht schwierig, aber machmal zu zeitraubed. Außerdem geügt i viele Fälle ei Überblic über de Verlauf der Amplitudebegrezugsurve, um beurteile zu öe, welche Oberwelle och zu berücsichtige sid bzw. vo welcher Harmoische ab die Oberwelleamplitude als uiteressat gelte öe. Es ist deshalb i de rechte Spalte der auf Blatt 3a ud 4 folgede Formelzusammestellug für die wichtige Kurve über der Ordugszahl der Harmoische der zugehörige Amplitudewert aufgetrage. Bei de periodische Futioe zu de Kurve Nr. 5, 6, 7, 8, 9,,, 3, 4 erfolgt die Abahme sehr rasch. Da die leie Amplitudewerte i der graphische Darstellug schwer ablesbar sid, brigt die folgede T a b e l l e (Blatt 4a) die errechete Amplitudewerte. Tabelle der Amplitudewerte für die Kurve 5 bis 4 D. Ahag Weiteres Beispiel für die Berechug ach B4b, d.h. für die omplexe Schreibweise: Gegebe seie ach Bild 8 Dreiecimpulse. Die Gleichug eier Gerade lautet: y = ax + b () Für die rechte Flae des Dreiecs ach Bild 8 gilt: y = h für x = () y = für x = (3) () ud (3) acheiader i () eigesetzt lasse a ud b x bestimme: y h x Etspreched folgt für die lie Dreiecsflae y h h x ix h x ix Für die Fouriersche Reihe ergibt sich u: a e dx e dx ix ix ix h h h e dx xe dx x e d

12 ix ix Für xe dx a geschriebe werde : e dx. i i i h e e h ix h ix a e dx e dx i i i i i h h e h e si i i i i i i h h e e si i i i h cos cos si h h si h i i h h si cos si h h si h cos si h cos Setzt ma zur Bestimmug vo a =, so wird der Ausdruc =. Ma muß deshalb Zähler ud h si Neer ach differeziere. h h Setzt ma och si x = x (für leie Argumete), so erhält ma: a h cos h h cos f x e e ix Setzt ma im erste Summade (s. B 4d) für -, so erhält ma: h h cos f ( x) cos x ix Mth 3/4a

Funktechnische Arbeitsblätter

Funktechnische Arbeitsblätter Aus Funkschau 6-8-/96. Digitalisiert /4 von Eike Grund für http://www.radiomuseum.org mit freundlicher Genehmigung der Funkschau-Redaktion. Die aktuellen Ausgaben der FUNKSCHAU finden Sie unter http://www.funkschau.de

Mehr

+ a 3 cos (3ωt) + b 3 sin (3ωt)

+ a 3 cos (3ωt) + b 3 sin (3ωt) Fourier-Reihe Wir gehe aus vo eier gegebee periodische Fuktio f (t). Die Fuktio hat die Fudametalperiode ( Schwigugsdauer ) ud damit die Grud-Kreisfrequez ω = π. Zeit t Periode Die Fuktio f (t) soll zerlegt

Mehr

D-HEST, Mathematik III HS 2015 Prof. Dr. E. W. Farkas R. Bourquin und M. Sprecher. Lösung 1

D-HEST, Mathematik III HS 2015 Prof. Dr. E. W. Farkas R. Bourquin und M. Sprecher. Lösung 1 D-HEST, Mathematik III HS 15 Prof. Dr. E. W. Farkas R. Bourqui ud M. Sprecher Lösug 1 Das erste Kapitel der Vorlesug behadelt die Theorie der Fourier-Reihe. Bearbeite Sie bitte folgede Frage olie bis Diestag,

Mehr

Streifzug durch die Welt der Binome und darüber hinaus

Streifzug durch die Welt der Binome und darüber hinaus www.mathemati-etz.de Copyright, Page 1 of 6 Streifzug durch die Welt der Biome ud darüber hiaus Die biomische Formel sid ützliche Istrumete, welche i viele Gebiete der Mathemati gewibriged eigesetzt werde

Mehr

Index. Majorante, 24 Minorante, 23. Partialsumme, 17

Index. Majorante, 24 Minorante, 23. Partialsumme, 17 Folge, Reihe Idex Kovergezkriterie Hauptkriterium, Leibiz-Kriterium, Majoratekriterium, 4 Mioratekriterium, otwediges Kriterium, 0 Quotietekriterium, teleskopierede Summe, Wurzelkriterium, Majorate, 4

Mehr

Binomialkoeffizienten und Binomischer Satz 1 Der binomische Lehrsatz

Binomialkoeffizienten und Binomischer Satz 1 Der binomische Lehrsatz Ihaltsverzeichis Biomialoeffiziete ud Biomischer Satz 1 Der biomische Lehrsatz wird als eie gaze Zahl vorausgesetzt, für die gilt: 0. a ud b werde als reelle Zahle vorausgesetzt, die icht Null sid. Bemerug:

Mehr

Höhere Analysis. Lösungen zu Aufgabenblatt 6. Die Funktion f sei auf ( π, π] definiert durch f(x) = x und wird 2π-periodisch fortgesetzt.

Höhere Analysis. Lösungen zu Aufgabenblatt 6. Die Funktion f sei auf ( π, π] definiert durch f(x) = x und wird 2π-periodisch fortgesetzt. Fachbereich Iformatik Sommersemester 8 Prof. Dr. Peter Becker Höhere Aalysis Lösuge zu Aufgabeblatt 6 Aufgabe (Fourierreihe) 3+5 Pukte Die Fuktio f sei auf (, π] defiiert durch f(x) x ud wird π-periodisch

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

STUDIENMATERIAL Teil 9 für Studenten der Elektrotechnik/Informationstechnik UNENDLICHE REIHEN

STUDIENMATERIAL Teil 9 für Studenten der Elektrotechnik/Informationstechnik UNENDLICHE REIHEN Techische Uiversität Chemitz Fakultät für Mathematik Zahlereihe STUDIENMATERIAL Teil 9 für Studete der Elektrotechik/Iformatiostechik UNENDLICHE REIHEN Utersuche für folgede uedliche Reihe jeweils die

Mehr

Aufgaben zur Übung und Vertiefung

Aufgaben zur Übung und Vertiefung Aufgabe zur Übug ud Vertiefug ARITHMETISCHE ZAHLENFOLGEN Berufliches Gymasium / Uterstufe () Stelle Sie fest, welche der gegebee Folge arithmetisch sid: Bestimme Sie zuächst die erste füf Folgeglieder,

Mehr

1. Zahlenfolgen und Reihen

1. Zahlenfolgen und Reihen . Zahlefolge ud Reihe We ma eie edliche Mege vo Zahle hat, ka ma diese i eier bestimmte Reihefolge durchummeriere: {a,a 2,...,a }. Ma spricht vo eier edliche Zahlefolge. Fügt ma immer mehr Zahle hizu,

Mehr

( ), der genau auf der Geraden ( ) 2 ( ) #( ) 8. Lineare Regression. = f i. Nach der Summe der kleinsten. mx i

( ), der genau auf der Geraden ( ) 2 ( ) #( ) 8. Lineare Regression. = f i. Nach der Summe der kleinsten. mx i 8. Lieare Regressio 8.1. Die Methode der kleiste Quadrate Regressiosgerade bzw. Ausgleichsgerade sid eie Auswertug vo statistische Messdate. Ziel dieses Verfahres ist es, Beziehuge zwische zwei Merkmale

Mehr

Lösungen zum Thema Folgen und Reihen

Lösungen zum Thema Folgen und Reihen Schülerzirkel Mathematik Fakultät für Mathematik. Uiversität Regesburg Lösuge zum Thema Folge ud Reihe Lösug zu Aufgabe 1. a) (a ) N ist eie arithmetische Folge mit d = 11 ud damit ist a 75 = 7 + (75 1)

Mehr

Grundbegriffe der Differentialrechnung

Grundbegriffe der Differentialrechnung Wirtschaftswisseschaftliches Zetrum Uiversität Basel Mathematik für Ökoome 1 Dr. Thomas Zehrt Grudbegriffe der Differetialrechug Referez: Gauglhofer, M. ud Müller, H.: Mathematik für Ökoome, Bad 1, 17.

Mehr

A. Zahleneinteilung. r a b

A. Zahleneinteilung. r a b Aus FUNKSCHAU 14/1953 (Blatt 1+) ud 17/1953 (Blatt 3), im Origial -spaltig. Digitalisiert 07/016 vo Eike Grud für http://www.radiomuseum.org mit freudlicher Geehmigug der FUNKSCHAU- Redaktio. Die aktuelle

Mehr

Zusammenfassung: Gleichungen und Ungleichungen

Zusammenfassung: Gleichungen und Ungleichungen Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud -ugleichuge 6 Für Eperte 9 Polyomgleichuge ud -ugleichuge Defiitio: Ei Term

Mehr

(gesprochen n über k ) sind für n k, n, k N0 wie folgt definiert: n n. (k + 1)!(n k 1)! (n + 1)!

(gesprochen n über k ) sind für n k, n, k N0 wie folgt definiert: n n. (k + 1)!(n k 1)! (n + 1)! Aufgabe.4 Die Verallgemeierug der biomische Formel für (x y ist der Biomische Lehrsatz: (x y x y, x, y R, N. (a Zeige Sie die Beziehug ( ( ( zwische de Biomialoeffiziete. (b Beweise Sie de Biomische Lehrsatz.

Mehr

Einheitswurzeln und Polynome

Einheitswurzeln und Polynome Eiheitswurzel ud Polyome Axel Schüler, Mathematisches Istitut, Uiv. Leipzig mailto:schueler@mathematik.ui-leipzig.de Grüheide, 1.3.2000 Kojugatio ud Betrag Spiegelt ma eie komplexe Zahl z = a+b i a der

Mehr

C. Eicher Analysis Study Center ETH Zürich HS Summen. k=1

C. Eicher Analysis Study Center ETH Zürich HS Summen. k=1 C Eicher Aaysis Study Ceter ETH Zürich HS 015 Summe Die Summe vo mehrere Zahe a 1, a,, a a mit Hife des Summezeiches geschriebe werde a 1 + a + + a a Hier heisst Laufvariabe oder Summatiosidex ud 1 bzw

Mehr

4. Der Weierstraßsche Approximationssatz

4. Der Weierstraßsche Approximationssatz H.J. Oberle Approximatio WS 213/14 4. Der Weierstraßsche Approximatiossatz Wir gebe i diesem Abschitt eie ostrutive Beweis des Weierstraßsche Approximatiossatzes, der mit de so geate Berstei-Polyome (Felix

Mehr

n=0 f(x) = log(1 + x) = n=1

n=0 f(x) = log(1 + x) = n=1 Potez - Reihe Machmal ist es praktisch eie Fuktio f() mir Hilfe ihrer Potezreihe auszudrücke. Eie Potezreihe um de Etwicklugspukt 0 sieht im Allgemeie so aus a ( 0 ) Fuktioe, für die eie Potezreihe eistiert,

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

Ganzrationale Funktionen

Ganzrationale Funktionen Gazratioale Fuktioe 9. Defiitio gazratioaler Fuktioe Im Folgede werde ebe lieare ud quadratische Fuktioe auch solche betrachtet, bei dee die Variable i der dritte, vierte oder auch i eier och höhere Potez

Mehr

FormelnfürdieAnzahlmöglicherQuadrateaufn*nSpielfeldern

FormelnfürdieAnzahlmöglicherQuadrateaufn*nSpielfeldern Modrago Formel Herleitug, Azahl Quadrate ud Differeze 01.doc 1 FormelfürdieAzahlmöglicherQuadrateauf*Spielfelder Mit Erläuteruge zur Ableitug der Formel vo Dr. Volker Bagert Berli, 11.03.010 Ihaltsverzeichis

Mehr

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden Folge ud Reihe Folge Eie Folge ist eie Abbildug der atürliche Zahle N = {0, 1,,...} i die Mege der (zumidest i de meiste Fälle) reelle Zahle R. I diesem Fall ka ma sich eie Folge als Pukte i eiem Koordiatesystem

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathemati PROF DRDR JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathemati für Iformatier I Witersemester 2003/2004 Aufgabeblatt 8 12 Dezember

Mehr

Testen statistischer Hypothesen

Testen statistischer Hypothesen Kapitel 9 Teste statistischer Hypothese 9.1 Eiführug, Sigifiaztests Sigifiaztest für µ bei der ormalverteilug bei beatem σ = : X i seie uabhägig ud µ, ) verteilt, µ sei ubeat. Stelle eie Hypothese über

Mehr

Arten von Gleichungen. (C) Gleichungen vom Grad n 3. (D) Exponentiale Gleichungen. ax² + bx + c = d [mit a 0]

Arten von Gleichungen. (C) Gleichungen vom Grad n 3. (D) Exponentiale Gleichungen. ax² + bx + c = d [mit a 0] Eiführug. GLEICHUNGEN UND GLEICHUNGSSYSTEME Arte vo Gleichuge (A) lieare Gleichuge/ Gleichugssysteme (LGS) (B) quadratische Gleichuge (C) Gleichuge vom Grad (D) Epoetiale Gleichuge (E) Wurzelgleichuge

Mehr

AT AB., so bezeichnet man dies als innere Teilung von

AT AB., so bezeichnet man dies als innere Teilung von Teilverhältisse Aus der Geometrie der Dreiecke ket ma die Aussage, dass der Schwerpukt T eies Dreiecks die Seitehalbierede im Verhältis : teilt. Für die Strecke AT ud TM gilt gemäß der Abbildug AT : TM

Mehr

24 Konvergente Teilfolgen und Cauchy-Kriterium

24 Konvergente Teilfolgen und Cauchy-Kriterium 120 IV. Uedliche Reihe ud Taylor-Formel 24 Kovergete Teilfolge ud Cauchy-Kriterium Lerziele: Kozepte: Teilfolge, Häufugswerte, Limes superior ud iferior, Cauchy-Folge Resultate: Satz vo Bolzao-Weierstraß,

Mehr

Kapitel IV: Unendliche Reihen

Kapitel IV: Unendliche Reihen Igeieurmathemati I WS 13/14 - Prof. Dr.. Mafred Leitz Kapitel IV: Uedliche Reihe 11: Uedliche Zahlereihe Kapitel IV: Uedliche Reihe 11 Uedliche Zahlereihe A Zum Begriff uedliche Zahlereihe B Uedliche Reihe

Mehr

Beweis des ausgezeichneten numerischen Theorems über die Koeffizienten der Binomialpotenzen

Beweis des ausgezeichneten numerischen Theorems über die Koeffizienten der Binomialpotenzen Beweis des ausgezeichete umerische Theorems über die Koeffiziete der Biomialpoteze Leohard Euler p We dieser Charakter q die Koeffiziete der Potez x q bezeichet, der aus der Etwicklug des Bioms + x p etsteht,

Mehr

= 1 für alle n 1. = f hinzu, erhält man das Gleichungssystem

= 1 für alle n 1. = f hinzu, erhält man das Gleichungssystem Formel o Biet (Beweis mit Liearer Algebra) Die Folge der Fiboacci-Zahle ( ) wird rekursi deiiert durch + + mit, ür alle Fügt ma zu dieser Formel die Gleichug hizu, erhält ma das Gleichugssstem + +, das

Mehr

a) Histogramm der Verteilung: Zunächst werden die gegebenen Messwerte in aufsteigender Reihenfolge sortiert:

a) Histogramm der Verteilung: Zunächst werden die gegebenen Messwerte in aufsteigender Reihenfolge sortiert: D Lösug zu Aufgabe 2: Histogra a) Histogra der Verteilug: Zuächst werde die gegebee Messwerte i aufsteigeder Reihefolge sortiert: i 2 3 4 5 6 7 8 9 2 3 4 5 4,574 4,589 4,593 4,599 4,6 4,67 4,68 4,69 4,6

Mehr

1. Folgen ( Zahlenfolgen )

1. Folgen ( Zahlenfolgen ) . Folge ( Zahlefolge Allgemeies Beispiel für eie regelmäßige Folge: /, /3, /4, /5, /6,... Das erste Glied ist a =/ Das ist das Glied mit dem Ide Das zweite Glied ist a =/3 Das ist das Glied mit dem Ide

Mehr

Übungen mit dem Applet Fourier-Reihen

Übungen mit dem Applet Fourier-Reihen Fourier-Reihe 1 Übuge mit dem Applet Fourier-Reihe 1 Mathematischer Hitergrud... Übuge mit dem Applet... 3.1 Eifluss der Azahl ud der Sprugstelle...3. Eifluss vo y-verschiebug ud Amplitude...4.3 Eifluss

Mehr

Vorkurs Grundlagen für das Mathematikstudium Lösungen 2: Binomialreihen, Exponential- und Logarithmusfunktion

Vorkurs Grundlagen für das Mathematikstudium Lösungen 2: Binomialreihen, Exponential- und Logarithmusfunktion Uiversität Zürich, 3. September 0 Vorurs Grudlage für das Mathematistudium Lösuge : Biomialreihe, Expoetial- ud Logarithmusfutio Lösug zu Aufgabe Seie x, y > 0 ud a > 0. Da gilt: a log a z z für alle z

Mehr

= a n: Wurzelexponent x: Radikand oder Wurzelbasis a: Wurzelwert Bei der ersten Wurzel wird einfach das Wurzelzeichen weggelassen.

= a n: Wurzelexponent x: Radikand oder Wurzelbasis a: Wurzelwert Bei der ersten Wurzel wird einfach das Wurzelzeichen weggelassen. Wurzelgesetze Gesetzmäßigkeite Grudlage Das Wurzelziehe (oder Radiziere) ist die Umkehrug des Potezieres. Daher sid die Wurzelgesetze de Potezgesetze sehr ählich. Die Wurzel aus eier positive Zahl ergibt

Mehr

LGÖ Ks VMa 12 Schuljahr 2017/2018

LGÖ Ks VMa 12 Schuljahr 2017/2018 LGÖ Ks VMa Schuljahr 7/8 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Experte 8 Polyomgleichuge ud -ugleichuge

Mehr

Tutorium Mathematik ITB1(B), WI1(B)

Tutorium Mathematik ITB1(B), WI1(B) Tutorium Mathematik ITB(B), WI(B) Aufgabeblatt F Aufgabe zum Kapitel Fuktioe Prof Dr Peter Plappert Fachbereich Grudlage Aufgabe : Bestimme Sie jeweils de maimal mögliche Defiitiosbereich D ma a) f ( =

Mehr

Zusammenfassung: Gleichungen und Ungleichungen

Zusammenfassung: Gleichungen und Ungleichungen LGÖ Ks VMa Schuljahr 6/7 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Eperte 8 Polyomgleichuge ud -ugleichuge

Mehr

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10. 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.000, 1 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Defiitio: Eie

Mehr

Taylorentwicklung. Manfred Hörz. Polynomfunktionen sind sehr leicht zu differenzieren und zu integrieren und sind wieder Polynomfunktionen: k a k

Taylorentwicklung. Manfred Hörz. Polynomfunktionen sind sehr leicht zu differenzieren und zu integrieren und sind wieder Polynomfunktionen: k a k Tayloretwiclug Mafred Hörz Die Liearombiatio vo Potezfutioe et ma Polyomfutioe oder gazratioale Futioe P ( : P (=a +a +a +...+a = a, heißt der Grad der Polyomfutio, a die Koeffiziete der Polyomfutio. Beispiel

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Methode der kleiste Quadrate KAPITEL 5: REGRESSIONSRECHNUNG Die Methode der kleiste Quadrate (MklQ) ist ei Verfahre zur Apassug eier Fuktio a eie Puktwolke. Agewadt wird sie beispielsweise, um eie Gesetzmäßigkeit

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 04..05 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 6. Übugsblatt Aufgabe

Mehr

Taylorreihen und ihre Implementierung mit JAVA Ac

Taylorreihen und ihre Implementierung mit JAVA Ac Taylorreihe ud ihre Implemetierug mit JAVA Ac 206-208 Taylorpolyome sid gazratioale Futioe T(), welche eie bestimmte adere Futio f() i der Umgebug eier vorgegebee Stelle 0 approimiere. å T ( ) = a ( -

Mehr

6. Fourier-Transformation

6. Fourier-Transformation 6. Fourier-rasformatio Wir betrachte zuächst eie periodische Fuktio: f t+ f t. (6- Die Idee ist, das sie sich durch eie Überlagerug periodischer, harmoischer Schwiguge darstelle lässt. Aalogie: ( + cos(

Mehr

Taylorreihen und ihre Implementierung mit JAVA: n 0

Taylorreihen und ihre Implementierung mit JAVA: n 0 Taylorreihe ud ihre Implemetierug mit JAVA: Taylorpolyome sid gazratioale Futioe T(), welche eie bestimmte adere Futio f() i der Umgebug eier vorgegebee Stelle approimiere. å T ( ) = a ( - ) = a + a (

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004 Lösuge zu Aufgabeblatt 7

Mehr

Rotationsvolumina Auf den Spuren von Pappus und Guldin

Rotationsvolumina Auf den Spuren von Pappus und Guldin Rotatiosvolumia Auf de Spure vo Pappus ud Guldi Gegebe sei ei Kreis mit Radius r, desse Mittelpukt um a aus dem Ursprug eies kartesische Koordiatesystems i Richtug der Ordiate verschobe sei. Die Kreisfläche

Mehr

5 Das Bode Diagramm. Frequenzkennlinienverfahren

5 Das Bode Diagramm. Frequenzkennlinienverfahren 6a Das Bode Diagramm. Frequezkeliieverfahre Ahag zum Kapitel Das Bode Diagramm. Frequezkeliieverfahre. Darstellug i Reihe geschalteter Glieder im Bode-Diagramm..a Kostruktio des Amplitudegages mittels

Mehr

c B Analytische Geometrie

c B Analytische Geometrie KITL 9 alytische Geometrie Gerade arameterdarstellug eier Gerade ie Gerade g ist bestimmt durch eie Richtug, gegebe durch eie Vektor c, c 0, ud eie ukt, der auf der Gerade liegt Ma et de ufpukt i ukt X

Mehr

4. Vektorräume mit Skalarprodukt

4. Vektorräume mit Skalarprodukt 4. Vektorräume mit Skalarprodukt Wiederholug: V=R x, y R: x= x x i x, y= y y, :R R R Skalarprodukt Stadardskalarprodukt lieare Abbildug mit 2 Argumete 4. Eigeschafte vo Skalarprodukte Def.: Es sei V ei

Mehr

Fakultät und Binomialkoeffizient Ac

Fakultät und Binomialkoeffizient Ac Faultät ud Biomialoeffiziet Ac 2013-2016 Die Faultät (atürliche Zahl): Die Faultät Faultät ist so defiiert:! = 1 2 3... ( - 1) ; 0! = 1 Die reursive Defiitio ist: Falls = 0, da! = 1; sost! = ( - 1)! JAVA-Methode(iterativ):

Mehr

Indizieren Sie die folgenden Summen und Produkte gemäß der Vorgabe um und schreiben Sie sie einmal explizit aus: 5

Indizieren Sie die folgenden Summen und Produkte gemäß der Vorgabe um und schreiben Sie sie einmal explizit aus: 5 FU Berli: WiSe 13-14 (Aalysis 1 - Lehr.) Übugsaufgabe Zettel 9 Aufgabe 37 Idiziere Sie die folgede Summe ud Produte gemäß der Vorgabe um ud schreibe Sie sie eimal explizit aus: 5 (a) + 1) 0( Lösug. Die

Mehr

Lösungsskizzen Mathematik für Informatiker 6. Aufl. Kapitel 4 Peter Hartmann

Lösungsskizzen Mathematik für Informatiker 6. Aufl. Kapitel 4 Peter Hartmann Lösugssizze Mathemati für Iformatier 6. Aufl. Kapitel 4 Peter Hartma Verstädisfrage 1. We Sie die Berechug des Biomialoeffiziete mit Hilfe vo Satz 4.5 i eiem Programm durchführe wolle stoße Sie schell

Mehr

( 1) n 1 n n n + 1. n=1

( 1) n 1 n n n + 1. n=1 Prof. Dr. L. Schwachhöfer Dr. J. Horst Fakultät Mathematik TU Dortmud Musterlösug zum 6. Übugsblatt zur Höhere Mathematik I P/ET/AI/IT/IKT/MP) WS 20/2 Aufgabe mittels Zeige Sie die Kovergez der Reihe )

Mehr

Musterlösung Vortragsübung Blatt 14 Vorwort. Variante der harmonischen Reihe.

Musterlösung Vortragsübung Blatt 14 Vorwort. Variante der harmonischen Reihe. Musterlösug Vortragsübug Blatt 4 Vorwort. Variate der harmoische Reihe. Folgede Aussage wird i der achfolgede Musterlösug ab ud a gebraucht ud öte sich für Sie auch außerhalb der HM durchaus als ützlich

Mehr

Reihen. Konvergenz. Folgen besonderer Art sind unendliche Summen. a k = a 1 + a 2 +..

Reihen. Konvergenz. Folgen besonderer Art sind unendliche Summen. a k = a 1 + a 2 +.. 6 Reihe Folge besoderer Art sid uedliche Summe a k = a + a 2 +... reeller oder komplexer Zahle, dee wir bereits i eiige Beispiele des Abschitts 5.4 begeget sid. Da ma icht sämtliche Glieder eier Folge

Mehr

Fakultät und Binomialkoeffizient Ac

Fakultät und Binomialkoeffizient Ac Faultät ud Biomialoeffiziet Ac 2013-2016 Die Faultät (atürliche Zahl): Die Faultät Faultät ist so defiiert:! = 1 2 3... ( - 1), wobei 0! = 1 Die reursive Defiitio ist: Falls = 0, da! = 1; sost! = ( - 1)!

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Von Kurven und Flächen. Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Von Kurven und Flächen. Das komplette Material finden Sie hier: Uterrichtsmaterialie i digitaler ud i gedruckter Form Auszug aus: Vo Kurve ud Fläche Das komplette Material fide Sie hier: School-Scout.de Das bestimmte Itegral ach Riema Eizelstude 69 Klasse 11 ud 12

Mehr

Übungsblatt Folgen, Reihen, Finanzmathematik

Übungsblatt Folgen, Reihen, Finanzmathematik Tutorium zu Mathematik für WFB Übugsblatt Folge, Reihe, Fiazmathematik Aufgabe (Grezwerte vo Folge) Bestimme Sie die Grezwerte der Folge ( ), N 4 b) c) d) e) si( ) f) a () g) a cos( ) Aufgabe (4 ) 4 b)

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Übungsblatt 5. (1 + x) n 1 + nx

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Übungsblatt 5. (1 + x) n 1 + nx D-MATH, D-PHYS, D-CHAB Aalysis I HS 2017 Prof. Mafred Eisiedler Übugsblatt 5 1. Die Beroullische Ugleichug besagt, dass für N 0 ud x R mit x 1 stets 1 + x 1 + x gilt. Wir wolle u aaloge Ugleichuge für

Mehr

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S Statistik mit Excel 2013 Peter Wies Theme-Special 1. Ausgabe, Februar 2014 W-EX2013S 3 Statistik mit Excel 2013 - Theme-Special 3 Statistische Maßzahle I diesem Kapitel erfahre Sie wie Sie Date klassifiziere

Mehr

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung 6. Übugsblatt Aufgabe mit Lösuge + Selbsttest-Auflösug Aufgabe 6: Utersuche Sie die Folge, dere Glieder ute für N agegebe sid, auf Beschräktheit, Mootoie ud Kovergez bzw. Beschräktheit, Mootoie ud Kovergez

Mehr

Demo-Text für Sammlung von Aufgaben. Vollständige Induktion. Höhere Analysis INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Demo-Text für   Sammlung von Aufgaben. Vollständige Induktion. Höhere Analysis INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Höhere Aalysis Vollstädige Idutio Sammlug vo Aufgabe Text Nr. 00 Stad 7. Jui 08 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Demo-Text für 00 Beispiele zur Vollstädige Idutio Vorwort Diese

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Istitut für Techologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 3/4 Prof. Dr. J. Schmalia Blatt 7 Dr. P. P. Orth Abgabe ud Besprechug 3..3. Tayloretwicklug I 5 + 5 + 5 + 5

Mehr

Anwendungen der Wahrscheinlichkeit II. Markovketten

Anwendungen der Wahrscheinlichkeit II. Markovketten Aweduge der Wahrscheilichkeit II 1. Fragestelluge Markovkette Markovkette sid ei häufig verwedetes Modell zur Beschreibug vo Systeme, dere Verhalte durch eie zufällige Übergag vo eiem Systemzustad zu eiem

Mehr

Kapitel 10 VERTEILUNGEN

Kapitel 10 VERTEILUNGEN Kapitel 0 VERTEILUNGEN Fassug vo 3. Februar 2006 Prof. Dr. C. Porteier Prof. Dr. W. Groes Matheati für Huabiologe ud Biologe 39 0. Zufallsvariable 0. Zufallsvariable Häu g wird statt des Ergebisses! 2

Mehr

Klausur 3 Kurs 11ma3g Mathematik

Klausur 3 Kurs 11ma3g Mathematik 202-06-2 Klausur 3 Kurs ma3g Mathematik Lösug I eier Lotto-Ure befide sich 49 Kugel, die mit de Zahle vo bis 49 beschriftet sid. Eie eizige Kugel wird gezoge. Bereche Sie die Wahrscheilichkeit, dass diese

Mehr

Folgen und Reihen. 23. Mai 2002

Folgen und Reihen. 23. Mai 2002 Folge ud Reihe Reé Müller 23. Mai 2002 Ihaltsverzeichis 1 Folge 2 1.1 Defiitio ud Darstellug eier reelle Zahlefolge.................. 2 1.1.1 Rekursive Defiitio eier Folge......................... 3 1.2

Mehr

Aufgabensammlung aus Mathematik 1 UMIT, WS 2010/11

Aufgabensammlung aus Mathematik 1 UMIT, WS 2010/11 Aufgabesammlug aus Mathemati UMIT, WS 200/ I Aufgabe I detailliert gerechet Aalysis / K Zeige Sie, dass für N ud N, gilt: ( ) + = ( ) ( ) + Zusatzfrage: Uter welche Bediguge a ma zwei Biomialoeffiziete

Mehr

Abschlussprüfung 2012 an den Realschulen in Bayern

Abschlussprüfung 2012 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Abschlussprüfug 01 a de Realschule i Bayer Mathematik II Aufgabe B 1 Haupttermi B 1.0 Die Parabel p verläuft durch die Pukte P( 5 19) ud Q(7 5). Sie hat eie Gleichug der Form y

Mehr

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel Zahlefolge Teil 3 Reihe Reihe Arithmetische Reihe Geometrische Reihe Datei Nr. 4003 (Neu bearbeitet ud erweitert) Jui 005 Friedrich W. Buckel Iteretbibliothek für Schulmathematik Ihalt Defiitio eier Reihe

Mehr

Das Erstellen von Folgen mit der Last Answer Funktion

Das Erstellen von Folgen mit der Last Answer Funktion Schülerarbeitsblatt Wisseschaftlicher Recher EL-W5 WriteView Das Erstelle vo Folge mit der Last Aswer Fuktio 5 9 Die obige Folge wird ach eier eifache Regel gebildet: Zu jedem Glied wird addiert. Über

Mehr

5.7. Aufgaben zu Folgen

5.7. Aufgaben zu Folgen 5.7. Aufgabe zu Folge Aufgabe : Lieares ud beschräktes Wachstum Aus eiem Quadrat mit der Seiteläge dm gehe auf die rechts agedeutete Weise eue Figure hervor. Die im -te Schritt agefügte Quadrate sid jeweils

Mehr

b) Alle ganzen Zahlen die auf 0 enden sind durch 5 teilbar Spezialisierung: 120 endet auf ist durch 5 teilbar

b) Alle ganzen Zahlen die auf 0 enden sind durch 5 teilbar Spezialisierung: 120 endet auf ist durch 5 teilbar d) Die Beweismethode der vollstädige Iduktio Der Übergag vo allgemeie zu spezielle Aussage heisst Deduktio Beispiele: a) Allgemeie Aussage: Spezialisierug: Schluss: Alle Mesche sid sterblich Sokrates ist

Mehr

HTBLA VÖCKLABRUCK STET

HTBLA VÖCKLABRUCK STET HTBLA VÖCKLABRUCK STET Folge ud Reihe INHALTSVERZEICHNIS 1. EINFÜHRUNG... 3. DARSTELLUNG EINER FOLGE... 3 3. BEISPIELE... 4 4. ENDLICHE REIHE... 4 5. ARITHMETISCHE FOLGEN UND REIHEN... 4 6. GEOMETRISCHE

Mehr

Kapitel 6. Aufgaben. Verständnisfragen. Rechenaufgaben

Kapitel 6. Aufgaben. Verständnisfragen. Rechenaufgaben Kapitel 6 Aufgabe Verstädisfrage Aufgabe 6. Gegebe sei die Folge (x ) 2 mit x ( 2)/( + ) für 2. Bestimme Sie eie Zahl N N so, dass x ε für alle N gilt, we (a) ε 0, (b) ε 00 ist. Aufgabe 6.2 Stelle Sie

Mehr

Zahlenfolgen, Grenzwerte und Zahlenreihen

Zahlenfolgen, Grenzwerte und Zahlenreihen KAPITEL 5 Zahlefolge, Grezwerte ud Zahlereihe. Folge Defiitio 5.. Uter eier Folge reeller Zahle (oder eier reelle Zahlefolge) versteht ma eie auf N 0 erlarte reellwertige Futio, die jedem N 0 ei a R zuordet:

Mehr

Konvergenzradius von Taylorreihen

Konvergenzradius von Taylorreihen HTBLA Neufelde Peter Fischer pe.fischer@at.u Kovergezradius vo Taylorreihe Mathematische / Fachliche Ihalte i Stichworte: Taylorreihe, Kovergezradius, bestädige Kovergez Kurzzusammefassug Zuerst wird der

Mehr

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln 6 Kovergete Folge Lerziele: Kozepte: Grezwertbegriff bei Folge, Wachstumsgeschwidigkeit vo Folge Resultat: Mootoe beschräkte Folge sid koverget. Methode: Hero-Verfahre, Erweiterug vo Differeze vo Quadratwurzel

Mehr

Die vollständige Induktion - Lösungen 1. Aufgabe: Sind die folgenden Aussageformen in N allgemeingültig?

Die vollständige Induktion - Lösungen 1. Aufgabe: Sind die folgenden Aussageformen in N allgemeingültig? Start Mathematik Lektioe i Aalysis Aufgabe zur vollstädige Iduktio Die vollstädige Iduktio - Lösuge. Aufgabe: Sid die folgede Aussageforme i N allgemeigültig? a) We ei Vielfaches vo ist, da ist eie gerade

Mehr

Elementare Beweismethoden - Direkter Beweis, Widerspruchsbeweis, Vollständige Induktion -

Elementare Beweismethoden - Direkter Beweis, Widerspruchsbeweis, Vollständige Induktion - Th. Kuschel Prosemiar SS 06 Elemetare Beweismethode Seite vo 7 7.04.06 Elemetare Beweismethode - Direter Beweis, Widerspruchsbeweis, Vollstädige Idutio - 0. Vorbemerug zum Begriff des (allgemeie) Beweises

Mehr

a) Zeichnen sie ein Schaltbild des Versuches und beschriften sie dieses.

a) Zeichnen sie ein Schaltbild des Versuches und beschriften sie dieses. Der Hz-Schwigkreis besteht aus eier Spule hoher Iduktivität ud eiem Kodesator. Wird ei solcher Schwigkreis kurzfristig mit elektrischer Eergie versorgt, so führt er eie stark gedämpfte Schwigug aus. Aufgezeichet

Mehr

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $ Mathematik für Iformatiker B, SS 202 Doerstag 4.6 $Id: reihe.tex,v.9 202/06/4 3:59:06 hk Exp $ 7 Reihe 7.4 Kovergezkriterie für Reihe 7.4. Alterierede Reihe Wir hatte gesehe das die harmoische Reihe divergiert,

Mehr

Für eine n n-matrix A müssen wir die Gleichung. lösen. Falls (A λi) invertierbar ist, dann ist. Dann ist aber λ kein Eigenwert.

Für eine n n-matrix A müssen wir die Gleichung. lösen. Falls (A λi) invertierbar ist, dann ist. Dann ist aber λ kein Eigenwert. Geschlossees Leotief-Modell Ei Leotief-Modell für eie Volkswirtschaft heißt geschlosse, we der Kosum gleich der Produktio ist, d.h. we Kapitel 5 Eigewerte V x = x Es hadelt sich dabei um eie Spezialfall

Mehr

Höhere Mathematik 3. Kapitel 12 Differenzengleichungen, z-transformation. Prof. Dr.-Ing. Dieter Kraus

Höhere Mathematik 3. Kapitel 12 Differenzengleichungen, z-transformation. Prof. Dr.-Ing. Dieter Kraus Höhere Mathematik 3 Kapitel 1 Differezegleichuge, z-trasformatio Prof. Dr.-Ig. Dieter Kraus Höhere Mathematik 3 Kapitel 1 Ihaltsverzeichis 1 Differezegleichuge, -Trasformatio...1-1 1.1 Eiführug i Differezegleichuge...1-1

Mehr

Eulersche Summationsformel

Eulersche Summationsformel Eulersche Summatiosformel ei Prosemiarvortrag Sve Grützmacher Betreut vo Dr. Kaste Cotets Vorwort Die eifache Formel 3 Die allgemeie Formel 5 4 Awedug 7 VORWORT Vorwort Dieser Prosemiarvortrag beschäftigt

Mehr

Parameter von Häufigkeitsverteilungen

Parameter von Häufigkeitsverteilungen Kapitel 3 Parameter vo Häufigkeitsverteiluge 3. Mittelwerte Mo Der Modus (:= häufigster Wert, Abk.: Mo) ist der Merkmalswert mit der größte Häufigkeit, falls es eie solche gibt. Er sollte ur bei eigipflige

Mehr

1. Man zeige, daß (IR n, d i ), i = 1, 2, metrische Räume sind, wenn für x = (x 1,..., x n ), y = (y 1,..., y n ) IR n die Abstandsfunktionen durch

1. Man zeige, daß (IR n, d i ), i = 1, 2, metrische Räume sind, wenn für x = (x 1,..., x n ), y = (y 1,..., y n ) IR n die Abstandsfunktionen durch Ma zeige, daß IR, d i ), i,, metrische Räume sid, we für x x,, x ), y y,, y ) IR die Abstadsfuktioe durch d x, y) x y, d x, y) x y ), d x, y) max x y gegebe sid Lösug: Ma muß für alle drei Fuktio d i x,

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Multiple-Choice-Tests zur Atomphysik. Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Multiple-Choice-Tests zur Atomphysik. Das komplette Material finden Sie hier: Uterrichtsmaterialie i digitaler ud i gedructer Form Auszug aus: Multiple-Choice-Tests zur Atomphysi Das omplette Material fide Sie hier: School-Scout.de 6. Multiple-Choice-Tests zur Atomphysi 1 vo 22

Mehr

Wallis-Produkt, Gammafunktion und n-dimensionale Kugeln

Wallis-Produkt, Gammafunktion und n-dimensionale Kugeln Wallis-Produkt, Gammafuktio ud -dimesioale Kugel Thomas Peters Thomas Mathe-Seite www.mathe-seite.de 6. Oktober 3 Das Ziel dieses Artikels ist es, Formel für das Volume ud die Oberfläche vo -dimesioale

Mehr

Konvergenz von Fourier-Reihen

Konvergenz von Fourier-Reihen Kovergez vo Fourier-Reihe Ausarbeitug zum Semiar zur Fourieraalysis, 3..27 obias Reimes Diese Ausarbeitug beschäftigt sich mit der Kovergez vo Fourier-Reihe. Hierzu werde im erste Abschitt eiige Vorbemerkuge

Mehr

Determinante und Resultante Azadeh Pasandi

Determinante und Resultante Azadeh Pasandi Determiate ud Resultate 07.01.2009 Azadeh Pasadi Defiitio ud Grudeigeschafte: sei U, V, W ud Vektor-Raum über Körper F ud beachte eie Abbildug f ( u,v ) vo kartesische Produkt: f: U x V W Diese Abbildug

Mehr

Arbeitsblatt 22: Rekursive Reihen Alkoholentzug

Arbeitsblatt 22: Rekursive Reihen Alkoholentzug Arbeitsblatt 22: Reursive Reihe Aloholetzug Erläuteruge ud Aufgabe Zeicheerlärug: [ ] - Drüce die etsprechede Taste des Graphirechers! [ ] S - Drüce erst die Taste [SHIFT] ud da die etsprechede Taste!

Mehr

Abschlussprüfung 200X Wahlteil Mathematik I Aufgabe A 1

Abschlussprüfung 200X Wahlteil Mathematik I Aufgabe A 1 Wahlteil Mathematik I Aufgabe A Name: Vorame: Klasse: Platzziffer: Pukte: / A.0 A. Gegebe ist die Fuktio f mit der Gleichug y (x3) 4,5 ( GI ). Begrüde Sie, warum ma bei der Fuktio f für x < 3 keie Fuktioswerte

Mehr

mathphys-online GANZRATIONALE FUNKTIONEN y-achse x-achse

mathphys-online GANZRATIONALE FUNKTIONEN y-achse x-achse GANZRATIONALE FUNKTIONEN 7 0 7 7 Gazratioale Futioe Ihaltsverzeichis Kapitel Ihalt Seite Eiührug. Das Pascal sche Dreiec. Verschobee Potezutioe Verlau der Graphe gazratioaler Futioe im Koordiatesystem.

Mehr

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man:

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man: Gleichmäßige Kovergez Wir betrachte im Folgede Abbilduge f : M N, wobei M eie Mege ud N ei metrischer Raum ist. Isbesodere iteressiere ud Folge f vo solche Abbilduge. Eie solche Folge bestimmt für jedes

Mehr

Konzentration und Disparität

Konzentration und Disparität Begleitede Uterlage zur Übug Deskriptive Statistik Michael Westerma Uiversität Esse Ihaltsverzeichis 6 Kozetratios- ud Disparitätsmessug................................ 2 6.1 Begriff ud Eileitug.......................................

Mehr