6. Vorlesung: Minimalformen
|
|
|
- Britta Koch
- vor 9 Jahren
- Abrufe
Transkript
1 6. Vorlesung: Minimalformen Wiederholung Minterme Maxterme Disjunktive Normalform (DN) Konjunktive Normalform (KN) Minimalformen KV-Diagramme
2 fällt aus wegen Dozentenfachexkursion 2
3 Normalformen Normalformen dienen der Darstellung oolescher unktionen in einheitlicher orm. Jeder Term der Darstellung enthält alle Eingangsvariablen. ür die oolesche Algebra ist die konjunktive und die disjunktive Normalform von Interesse. 3
4 Minterm (Vollkonjunktion) Ein Minterm ist eine Konjunktion, die alle Eingangsvariablen, nicht negiert oder negiert, enthält. ür eine oolesche unktion mit n Eingangsvariablen existieren daher genau 2 n Minterme. ür exakt eine Kombination der Zustände der Eingangsvariablen nimmt ein Minterm den Zustand wahr bzw. an. ür alle anderen Kombinationen liefert der Minterm. 4
5 Minterme für zwei Eingänge X X m m m m itte notieren Sie die algebraische Darstellung für alle vier Minterme. X X m m m m X X X X X X X X
6 Maxterm (Volldisjunktion) Ein Maxterm ist eine Disjunktion, die alle Eingangsvariablen, nicht negiert oder negiert, enthält. ür eine oolesche unktion mit n Eingangsvariablen existieren daher genau 2 n Maxterme. ür exakt eine Kombination der Zustände der Eingangsvariablen nimmt ein Maxterm den Zustand falsch bzw. an. ür alle anderen Kombinationen liefert der Maxterm. 6
7 Maxterme für zwei Eingänge X X M M M M itte notieren Sie die algebraische Darstellung für alle vier Maxterme. X X M M M M X X X X X X X X
8 Konvention ür die Indizierung der Min- bzw. Maxterme ist die Anwendung einer Konvention üblich. Die Zustände der Eingangsvariablen werden als inärdarstellung einer Dezimalzahl interpretiert. eispiel: X =, X =, X = () (6)
9 Übung itte notieren Sie die algebraische Darstellung für den Term M 3 und die Darstellung für den Term m 7 einer ooleschen unktion mit drei Eingangsvariablen. M (,,) = X X X m (,,) = X X X
10 Disjunktive Normalform X X2 Y Wie kann die XOR-unktion mit Mintermen dargestellt werden? m = X X2 m2 = X X2 Y = ( X X ) ( X X ) 2 2
11 XOR im Digitalsimulator Disjunktive Normalform
12 Disjunktive Normalform (DN) Eine beliebige oolesche unktion Y kann durch eine disjunktive Verknüpfung der Minterme realisiert werden, die für die Kombinationen der Eingangsvariablen eine erzeugen, für welche Y = gilt. Diese eschreibung einer ooleschen unktion wird als DN bezeichnet. 2
13 Übung X X2 X3 Y itte bilden Sie die DN für Y und zeichnen Sie den Schaltungsaufbau. Y = m m3 m5 m6 = ( X X X ) ( X X X ) ( X X X ) ( X X X )
14 Übung (ortsetzung) X X2 X3 Y Y = ( X X X ) ( X X X ) ( X X X ) ( X X X )
15 Konjunktive Normalform X X2 Y Wie kann die XOR-unktion mit Maxtermen dargestellt werden? M = X X2 M 3 = X X2 Y = ( X X ) ( X X ) 2 2 5
16 XOR im Digitalsimulator Konjunktive Normalform 6
17 Konjunktive Normalform (KN) Eine beliebige oolesche unktion Y kann durch eine konjunktive Verknüpfung der Maxterme realisiert werden, die für die Kombinationen der Eingangsvariablen eine erzeugen, für welche Y = gilt. Diese eschreibung einer ooleschen unktion wird als KN bezeichnet. 7
18 Übung X X2 X3 Y itte bilden Sie die KN für Y und zeichnen Sie den Schaltungsaufbau. Y = M M2 M4 M7 = ( X X X ) ( X X X ) ( X X X ) ( X X X )
19 Übung (ortsetzung) X X2 X3 Y Y = ( X X X ) ( X X X ) ( X X X ) ( X X X )
20 2 Übung Y A C D Y A C D Y A C D itte notieren Sie die DN für die oben spezifizierte oolesche unktion. Y = m +m 3 +m 4 +m 8 +m 9 +m +m 4
21 Minimierungsverfahren Jede oolesche unktion kann wahlweise in disjunktiver oder konjunktiver Normalform dargestellt werden (DN bzw. KN). Diese Darstellungen können so vereinfacht werden, dass man die disjunktive bzw. konjunktive Minimalform erhält (DM bzw. KM). Zur Minimierung können drei verschiedene Verfahren zur Anwendung kommen: oolesche Algebra, Algorithmische Verfahren, Graphische Verfahren. 2
22 Minimierung: oolesche Algebra Eine gegebene Normalform kann mit Hilfe der Kürzungs- und Rechenregeln der ooleschen Algebra minimiert werden. Dieses Vorgehen ist im allgemeinen schwierig und wird daher nur in Ausnahmefällen angewandt. 22
23 Algorithmische Verfahren ei algorithmischen Verfahren werden die Min- bzw. Maxterme der ersten Stufe sukzessive zusammengefasst. Diese Verfahren eignen sich zur Realisierung in Software. Dies wird bspw. für den ASIC Entwurf eingesetzt. Der bekannteste Algorithmus ist das Quine-McCluskey-Verfahren. 23
24 Graphische Verfahren ür die Anwendung von graphischen Verfahren werden oolesche unktionen so graphisch dargestellt, dass Terme zeichnerisch zusammengefasst werden können. Das bekannteste Verfahren ist die Minimierung mit Hilfe von Karnaugh- Veitch-Diagrammen. 24
25 KV-Diagramm M. Karnaugh (952) und E.W. Veitch (953) entwickelten Verfahren zur graphischen Minimierung. Die Kombination beider Verfahren ist als Karnaugh-Veitch-Diagramm bekannt, das meist abgekürzt als KV-Diagramm bezeichnet wird. ei diesem Verfahren können Minterme oder Maxterme zusammengefasst werden. 25
26 Konstruktion KV-Diagramm A Y Y Y Y A
27 eispiel: ODER (Übung) A Y Y A 27
28 Vereinfachungen für 2 Variablen A Y Y2 Y3 Y4 Y5 Y5 A Y 5 = Y Y3 A Y Y3 A Y2 = Y2 Y4 = A Y4 A = = 28 A A
29 Übung A Y Y A A ( A) ( A) ( A) = ( A) (( ( A A)) DM = ( A) = ( ) ( A ) = A 29
30 eispiel: KM A Y Y A A KM 3
31 KV-Diagramm für 3 Eingangsvariablen C A Y A Spiegelachse C 3
32 Torus-Topologie Die Nachbarschaft von eldern im KV- Diagramm basiert auf der Torus-Topologie. Dies bedeutet, dass elder in der untersten Reihe Nachbarn der elder in der obersten Reihe sind. Gleiches gilt für die elder der rechten und linken Seite. 32
33 Torus-Topologie (eispiel) A C 33
34 Übung: DM A C A DN = m +m 3 +m 5 DM? C ( A ) ( A C) = A ( C) 34
5. Vorlesung: Normalformen
5. Vorlesung: Normalformen Wiederholung Vollständige Systeme Minterme Maxterme Disjunktive Normalform (DNF) Konjunktive Normalform (KNF) 1 XOR (Antivalenz) X X X X X X ( X X ) ( X X ) 1 2 1 2 1 2 1 2 1
Technische Grundlagen der Informatik
Technische Grundlagen der Informatik WS 2008/2009 6. Vorlesung Klaus Kasper WS 2008/2009 Technische Grundlagen der Informatik Inhalt Wiederholung Boolesche Gesetze Boolesche Kürzungsregeln Antivalenz und
Schaltfunktion, Definition
Schaltfunktion, Definition Sei S = { 0,1}. Dann heißt eine Abbildung f: S n S eine Schaltfunktion. = f(x n-1,x n-2,...,,, ), x n-1, x n-2,...,,, S x i X = (x n-1,x n-2,...,,, ) Eingangsvariable Eingangsvektor
03 Boolesche Algebra. Technische Grundlagen der Informatik
03 Boolesche Algebra Technische Grundlagen der Informatik Automation Systems Group E183-1 Institute of Computer Aided Automation Vienna University of Technology email: [email protected] Inhalt Operationen
Satz von De Morgan A B A + B A + B A B A. Transistoren: A B U a A 0 0 Vcc Vcc Vcc V 0
Satz von De Morgan A + = A A A + A + A A 0 0 0 1 1 1 1 0 1 1 0 1 1 0 1 0 1 0 0 1 0 1 1 1 0 0 0 0 Transistoren: A U a A 0 0 Vcc 1 0 1 Vcc 1 1 0 Vcc 1 1 1 0 V 0 eispiel: Schaltung zur Erkennung gültiger
Minimierung von logischen Schaltungen
Minimierung von logischen Schaltungen WAS SIND LOGISCHE SCHALTUNGEN Logische Verknüpfungszeichen: & = Logisches Und-Verknüpfung (Konjunktion). V = Logische Oder-Verknüpfung (Disjunktion). - = Nicht (Negation).
6. Tutorium Digitaltechnik und Entwurfsverfahren
6. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 13 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft
DuE-Tutorien 16 und 17
Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Tutorienwoche 6 am 0.2.200 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft
Teil 1: Digitale Logik
Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Analoge und digitale Hardware bei
Normalformen von Schaltfunktionen
Disjunktive Normalform (DNF) Vorgehen: 2. Aussuchen der Zeilen, in denen die Ausgangsvariable den Zustand 1 hat 3. Die Eingangsvariablen einer Zeile werden UND-verknüpft a. Variablen mit Zustand 1 werden
f ist sowohl injektiv als auch surjektiv.
Bemerkungen: Wir erinnern uns an folgende Definitionen: Eine Funktion f : U V heißt injektiv, wenn gilt: ( x, y U)[x y f(x) f(y)] Eine Funktion f : U V heißt surjektiv, wenn gilt: ( y V x U)[y = f(x)]
Technische Informatik I
Rechnerstrukturen Dario Linsky Wintersemester 200 / 20 Teil 2: Grundlagen digitaler Schaltungen Überblick Logische Funktionen und Gatter Transistoren als elektronische Schalter Integrierte Schaltkreise
GETE DIGITAL TECHNIK CODIERUNG BCD: BINARY CODED DIGITAL. Hr. Houska
GETE DIGITAL TECHNIK Hr. Houska CODIERUNG Codes werden dazu verwendet, um Zahlen, Buchstaben und Zeichen in ander Darstellungsformen zu verwenden. So repräsentieren unterschiedliche Codes die verschiedenen
Boolesche Algebra (1)
Boolesche Algebra (1) Definition 1: Sei B = Σ 2 = {0,1} das Alphabet mit den Elementen 0 und 1. Seien auf B die 3 Operatoren einer Algebra wie folgt definiert für x,y aus B: x+y := Max(x,y), x y := Min(x,y),
Eingebettete Systeme
Einführung in Eingebettete Systeme Vorlesung 7 Bernd Finkbeiner 03/12/2014 [email protected] Prof. Bernd Finkbeiner, Ph.D. [email protected] 1 Schaltfunktionen! Schaltfunktion:
Design und Implementierung eines Tools zur Visualisierung der Schaltfunktionsminimierung
Design und Implementierung eines Tools zur Visualisierung der Schaltfunktionsminimierung mit KV-Diagrammen Design and implementation of an e-learning tool for minimization of boolean functions based on
Grundlagen der Informationsverarbeitung:
Grundlagen der Informationsverarbeitung: Schaltungsentwurf und Minimierungsverfahren Prof. Dr.-Ing. habil. Ulrike Lucke Durchgeführt von Prof. Dr. rer. nat. habil. Mario Schölzel Maximaler Raum für Titelbild
Einführung in die technische Informatik
Einführung in die technische Informatik hristopher Kruegel [email protected] http://www.auto.tuwien.ac.at/~chris Logische Schaltungen System mit Eingängen usgängen interne Logik die Eingänge auf
DIGITALTECHNIK 06 SCHALTUNGS- SYNTHESE UND ANALYSE
Seite 1 von 23 DIGITALTECHNIK 06 SCHALTUNGS- SYNTHESE UND ANALYSE Inhalt Seite 2 von 23 1 SCHALTUNGS- SYNTHESE UND ANALYSE... 3 1.1 NORMALFORM... 5 1.2 UND NORMALFORM... 5 1.3 ODER NORMALFORM... 7 1.4
Arbeitsblatt Logische Verknüpfungen Schaltnetzsynthese
Einleitung Zur Aktivitätsanzeige der 3 Gehäuselüfter (Signale a - c) eines PC-Systems soll eine Logikschaltung entwickelt werden, die über drei Signalleuchten (LEDs) anzeigt, ob ein beliebiger (LED1 x),
Verwendung eines KV-Diagramms
Verwendung eines KV-Diagramms Ermittlung einer disjunktiven Normalform einer Schaltfunktion Eine Disjunktion von Konjunktionen derart, dass jeder Konjunktion ein Block in dem KV-Diagramm entspricht, der
Informationsverarbeitung auf Bitebene
Informationsverarbeitung auf Bitebene Dr. Christian Herta 5. November 2005 Einführung in die Informatik - Informationsverarbeitung auf Bitebene Dr. Christian Herta Grundlagen der Informationverarbeitung
1. Boolesche Algebra und Schaltalgebra
1 oolesche lgebra und Schaltalgebra Folie 1 1. oolesche lgebra und Schaltalgebra 1.1 Was ist Informatik? Definition des egriffs Informatik Die Informatik ist die Wissenschaft, die sich mit der systematischen
a. Welche der folgenden Terme können als Minterm, Maxterm, beides oder keines von beidem dargestellt werden:
Übungen zur Vorlesung Technische Informatik I, SS 2002 Hauck / Guenkova-Luy / Prager / hen Übungsblatt 1 oolesche lgebra /Kombinatorische Logik ufgabe 1: a. Welche der folgenden Terme können als Minterm,
8. Tutorium Digitaltechnik und Entwurfsverfahren
8. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 9 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft
DuE-Tutorien 17 und 18
DuE-Tutorien 17 und 18 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery TUTORIENWOCHE 7 AM 16.12.2011 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum
Boolesche (Schalt-) Algebra (1)
Boolesche (Schalt-) Algebra (1) Definition 1: Sei B = SS 2 = 0,1 das Alphabet mit den Elementen 0 und 1. Seien auf BB die folgenden 3 Operatoren definiert für xx, yy B: xx + yy max xx, yy xx yy min xx,
Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 14/15
Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 14/15 Prof. Dr Jian-Jia Chen Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund [email protected] http://ls1-www.cs.tu-.de Übersicht
Physikalisches Praktikum für Vorgerückte. an der ETH Zürich. vorgelegt von. Mattia Rigotti Digitale Elektronik
Physikalisches Praktikum für Vorgerückte an der ETH Zürich vorgelegt von Mattia Rigotti [email protected] 14.02.2003 Digitale Elektronik Versuchsprotokoll 1 Inhaltverzeichnis 1. Zusammenfassung...
2.4. Das Karnaugh Veitch Diagramm ( KV Diagramm )
2.4. Das Karnaugh Veitch Diagramm ( KV Diagramm ) Mit dem KV-Diagramm sollen Sie ein Verfahren kennen lernen, mit dem Funktionsgleichungen vereinfacht werden können. Dazu wird jeder Eingangskombination
Normalformen boolescher Funktionen
Normalformen boolescher Funktionen Jeder boolesche Ausdruck kann durch (äquivalente) Umformungen in gewisse Normalformen gebracht werden! Disjunktive Normalform (DNF) und Vollkonjunktion: Eine Vollkonjunktion
1. Logische Verknüpfungen
1. Logische Verknüpfungen 1.1 UND - Verknüpfung Mathematik: X = A Schaltzeichen: A & X Wahrheitstabelle: A X 0 0 0 0 1 0 1 0 0 1 1 1 Am Ausgang eines UND Gliedes liegt nur dann der Zustand 1, wenn an allen
kanonische disjunktive Normalform (KDNF, DKF) Disjunktion einer Menge von Mintermen mit gleichen Variablen
5.6 Normalformen (4) Noch mehr aber besonders wichtige Begriffe kanonische disjunktive Normalform (KDNF, DKF) Disjunktion einer Menge von Mintermen mit gleichen Variablen Beispiel: KDNF zur Funktion f(,,,
C.34 C Normalformen (4) 5.7 Hauptsatz der Schaltalgebra. 5.7 Hauptsatz der Schaltalgebra (2) 5.7 Hauptsatz der Schaltalgebra (3)
5.6 Normalformen (4) Noch mehr aber besonders wichtige Begriffe kanonische disjunktive Normalform (KDNF, DKF) Disjunktion einer Menge von Mintermen mit gleichen Variablen Beispiel: KDNF zur Funktion f(,,,
DuE-Tutorien 17 und 18
DuE-Tutorien 17 und 18 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery TUTORIENWOCHE 3 AM 18.11.2011 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum
Einführung in Computer Microsystems Sommersemester Vorlesung Dr.-Ing. Wolfgang Heenes
Einführung in Computer Microsystems Sommersemester 2010 10. Vorlesung Dr.-Ing. Wolfgang Heenes 16. Juni 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 1 Inhalt 1. Literatur 2. Minimierung
Boolesche (Schalt-) Algebra (8)
Boolesche (Schalt-) Algebra (8) Karnaugh-Diagramm ist eine graphische Technik zur Darstellung und Vereinfachung von Booleschen Ausdrücken ist eine andere, zweidimensionale Darstellung von Wahrheitstabellen
Was bisher geschah: klassische Aussagenlogik
Was bisher geschah: klassische Aussagenlogik klassische Aussagenlogik: Syntax, Semantik Äquivalenz zwischen Formeln ϕ ψ gdw. Mod(ϕ) = Mod(ψ) wichtige Äquivalenzen, z.b. Doppelnegation-Eliminierung, DeMorgan-Gesetze,
Allgemeingültige Aussagen
Allgemeingültige Aussagen Definition 19 Eine (aussagenlogische) Formel p heißt allgemeingültig (oder auch eine Tautologie), falls p unter jeder Belegung wahr ist. Eine (aussagenlogische) Formel p heißt
Übungen zur Vorlesung Grundlagen der Rechnerarchitektur
Universität Koblenz-Landau Übungen zur Vorlesung Grundlagen der Rechnerarchitektur - Sommersemester 2018 - Übungsblatt 2 Abgabe bis Montag, 28. Mai 2018, 23:59 Uhr als pdf via SVN Punkte Kürzel A1 (10)
Teil 1: Digitale Logik
Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Analoge und digitale Hardware bei
Darstellung von negativen binären Zahlen
Darstellung von negativen binären Zahlen Beobachtung für eine beliebige Binärzahl B, z.b. B=110010: B + NOT(B) ---------------------------------------------- = B + NOT(B) 1 + (Carry) ----------------------------------------------
TU5 Aussagenlogik II
TU5 Aussagenlogik II Daniela Andrade [email protected] 21.11.2016 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;)
Systemorientierte Informatik 1
Systemorientierte Informatik. Grundlagen Digitaler Schaltungen.8 Schaltnetze aus Gattern und Leitungen.9 Boole sche Algebra. Minimierung Boole scher Funktionen. CMOS Komplegatter Die nächste Funktion,
2.1 Boole sche Funktionen
. Grundlagen digitaler Schaltungen. Boole sche Funktionen Darstellung Boolescher Funktionen. Boole sche lgebra Sätze der Booleschen lgebra.3 Realisierung von Booleschen Funktionen Normalformen zweistufiger
Computersysteme. 2. Grundlagen Digitaler Schaltungen 2.10 Minimierung Boole scher Funktionen 2.11 CMOS Komplexgatter
Computersysteme 2. Grundlagen Digitaler Schaltungen 2.10 Minimierung Boole scher Funktionen 2.11 CMOS Komplexgatter 1 Die Einsen im KV-Diagramm werden zu Blöcken maximaler Größe zusammengefasst. Dabei
Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik
Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik WS 2013/14 Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 21. Oktober 2013 1/33 1 Boolesche
Erstellen von KV-Diagrammen. Fachschule für Mechatroniktechnik Kempten (Allgäu)
Erstellen von KV-Diagrammen Zeile A 00 0 0 Eine Eingangsvariable Es wird für jede Zeile der Funktionstabelle ein Kästchen aufgezeichnet. Die Zuordnung muss dabei wie nachfolgend abgebildet erfolgen. Die
Bisher. minimale DNF. logischen Formeln Booleschen Funktionen Schaltungen
Bisher Klassische Aussagenlogik (Syntax, Semantik) semantische Äquivalenz von Formeln äquivalentes Umformen von Formeln (syntaktisch) Normalformen: NNF, DNF, CNF, kanonische DNF und CNF Ablesen kanonischer
Grundlagen der Technischen Informatik
oolesche lgebra und Schaltalgebra Grundlagen der technischen Informatik Kapitel 1 oolesche lgebra und Schaltalgebra Prof. Dr.-Ing. xel Hunger Pascal. Klein, M.Sc. Prof. Dr.-Ing. xel Hunger oolesche lgebra
2.3 Logikoptimierung. Überblick digitale Synthese. Logikoptimierung
2.3 Logikoptimierung Logikoptimierung Überblick digitale Synthese Logikoptimierung Begriffe Mehrstufige Logik Zweistufige Logik:..Exakte Verfahen..Heuristische Verfahren..Expansion/ Reduktion..Streichen
Grundlagen der Informationverarbeitung
Grundlagen der Informationverarbeitung Information wird im Computer binär repräsentiert. Die binär dargestellten Daten sollen im Computer verarbeitet werden, d.h. es müssen Rechnerschaltungen existieren,
N Bit binäre Zahlen (signed)
N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101
Konjunktive und disjunktive Normalformen
Konjunktive und disjunktive Normalformen Nachdem gesprochen wurde, wie man Boolesche Terme unter einer Belegung der Variablen interpretiert und dass somit jeder Boolesche Term eine Boolesche Funktion repräsentiert,
Boolesche Funktionen und Schaltkreise
Boolesche Funktionen und Schaltkreise Die Oder-Funktion (Disjunktion) und die Und-Funktion (Konjunktion), x y 0 0 0 0 1 1 1 0 1 1 1 1 x y 0 0 0 0 1 0 1 0 0 1 1 1 1 (Implikationsfunktion), ( umgekehrte
Technische Informatik I, SS03. Boole sche Algebra, Kombinatorische Logik
Übung zur Vorlesung Technische Informatik I, SS03 Ergänzung Übungsblatt 1 Boole sche Algebra, Kombinatorische Logik Guenkova, Schmied, Bindhammer, Sauer {guenkova@vs., schmied@vs., bindhammer@vs., dietmar.sauer@}
Einführung in. Logische Schaltungen
Einführung in Logische Schaltungen 1/7 Inhaltsverzeichnis 1. Einführung 1. Was sind logische Schaltungen 2. Grundlegende Elemente 3. Weitere Elemente 4. Beispiel einer logischen Schaltung 2. Notation von
Auswertung. Hinweise. Einführung in die Technische Informatik WS 2006/2007 Probeklausur. Aachen, 02. November 2006 SWS: V2/Ü2, ECTS: 4
Professor Dr.-Ing. Stefan Kowalewski Dipl.-Inform. Andreas Polzer Dipl.-Inform. Ralf Mitsching LEHRSTUHL INFORMATIK XI SOFTWARE FÜR EINGEBETTETE SYSTEME Aachen, 02. November 2006 SWS: V2/Ü2, ECTS: 4 Einführung
Digitaltechnik Grundlagen 4. Schaltalgebra
4. Schaltalgebra Prof. Dr.-Ing. Thorsten Uelzen Prof. Dr.-Ing. Thorsten Uelzen Version 1.0 von 02/2018 Gesetze und Rechenregeln - Die Schaltalgebra ist die Anwendung der allgemeineren Booleschen Algebra
Electronic Design Automation (EDA) Logikoptimierung
Electronic Design Automation (EDA) Logikoptimierung Überblick digitale Synthese Logikoptimierung Begriffe Mehrstufige Logik Zweistufige Logik: Exakte Verfahren... Heuristische Verfahren... Expansion/Reduktion...
Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 15/16
Rechnerstrukturen, Teil Vorlesung 4 SWS WS 5/6 Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund [email protected] http://ls-www.cs.tu-.de Übersicht. Organisatorisches 2.
Lehrveranstaltung: Digitale Systeme. KS-Praktikums-Vorbereitung Dipl.-Inf. Markus Appel , , ,
Lehrveranstaltung: Digitale Systeme KS-Praktikums-Vorbereitung Dipl.-Inf. Markus Appel 24.04.2012, 25.04.2012, 26.04.2012, 27.04.2012 Übersicht Kombinatorische Schaltungen n-bit-addierer Minimierungsverfahren
Digitalelektronik - Inhalt
Digitalelektronik - Inhalt Grundlagen Signale und Werte Rechenregeln, Verknüpfungsregeln Boolesche Algebra, Funktionsdarstellungen Codes Schaltungsentwurf Kombinatorik Sequentielle Schaltungen Entwurfswerkzeuge
Signalverarbeitung 1
TiEl-F000 Sommersemester 2008 Signalverarbeitung 1 (Vorlesungsnummer 260215) 2003-10-10-0000 TiEl-F035 Digitaltechnik 2.1 Logikpegel in der Digitaltechnik In binären Schaltungen repräsentieren zwei definierte
8 Boolesche Algebra. 8.1 Grundlegende Operationen und Gesetze
82 8 Boolesche Algebra Die Boolesche Algebra ist eine Algebra der Logik, die George Boole (1815 1864) als erster entwickelt hat. Sie ist die Grundlage für den Entwurf von elektronischen Schaltungen und
Kapitel 6 Programmierbare Logik. Literatur: Kapitel 6 aus Oberschelp/Vossen, Rechneraufbau und Rechnerstrukturen, 9. Auflage
Kapitel 6 Programmierbare Logik Literatur: Kapitel 6 aus Oberschelp/Vossen, Rechneraufbau und Rechnerstrukturen, 9. Auflage Kapitel 6: Programmierbare Logik und VLSI Seite Kapitel 6: Programmierbare Logik
11. Beschreiben Sie die disjunktive und die konjunktive Normalform eines logischen Ausdrucks!
Kapitel 3 Logik Verständnisfragen Sachfragen 1. Was ist eine logische Aussage? 2. Wie ist die Konjunktion und die Disjunktion definiert? 3. Beschreiben Sie das Exklusive Oder, die Implikation und die Äquivalenz!
Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung
Informatik III Christian Schindelhauer Wintersemester 2006/07 20. Vorlesung 12.01.2007 1 Komplexitätstheorie - Zeitklassen Die Komplexitätsklassen TIME DTIME, NTIME P NP Das Cook-Levin-Theorem Polynomial-Zeit-Reduktion
TU9 Aussagenlogik. Daniela Andrade
TU9 Aussagenlogik Daniela Andrade [email protected] 18.12.2017 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;) 2 /
Digital Design. Digital Design SS Prof. Dr. Richard Roth. 6 SWS SU und Übungen
SS 2005 Prof. Dr. Richard Roth 6 SWS SU und Übungen Richard Roth / FB Informatik und Mathematik Schaltungstechnische Grundlagen 1 Literatur zur Vorlesung DD [1] PERNARDS, P..; Digitaltechnik Hüthig, 1992
Digitaltechnik FHDW 1.Q 2007
Digitaltechnik FHDW 1.Q 2007 1 Übersicht 1-3 1 Einführung 1.1 Begriffsdefinition: Analog / Digital 2 Zahlensysteme 2.1 Grundlagen 2.2 Darstellung und Umwandlung 3 Logische Verknüpfungen 3.1 Grundfunktionen
Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen
Rückblick Erweiterte b-adische Darstellung von Kommazahlen 7,1875 dargestellt mit l = 4 und m = 4 Bits 66 Rückblick Gleitkommazahlen (IEEE Floating Point Standard 754) lassen das Komma bei der Darstellung
Grundlagen der Rechnerarchitektur
Grundlagen der Rechnerarchitektur [CS3100.010] Wintersemester 2014/15 Heiko Falk Institut für Eingebettete Systeme/Echtzeitsysteme Ingenieurwissenschaften und Informatik Universität Ulm Kapitel 2 Kombinatorische
Kombinatorische Logik, Schaltalgebra
Lothar Müller euth Hochschule erlin 1 Logische Zustände In der Digitaltechnik werden Informationen oder Signale verwendet, die nur 2 Zustände annehmen können. Mathematisch kennzeichnen wir sie unter Verwendung
Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen
Rückblick Erweiterte b-adische Darstellung von Kommazahlen 7,1875 dargestellt mit l = 4 und m = 4 Bits 66 Rückblick Gleitkommazahlen (IEEE Floating Point Standard 754) lassen das Komma bei der Darstellung
Störungen in Digitalsystemen
Störungen in Digitalsystemen Eine Lernaufgabe von Jost Allmeling Betreuer: Markus Thaler Inhalt und Lernziel: Die Studenten erkennen, dass man durch Einfügen von zusätzlichen Gattern Hazards vermeiden
Logik (Teschl/Teschl 1.1 und 1.3)
Logik (Teschl/Teschl 1.1 und 1.3) Eine Aussage ist ein Satz, von dem man eindeutig entscheiden kann, ob er wahr (true, = 1) oder falsch (false, = 0) ist. Beispiele a: 1 + 1 = 2 b: Darmstadt liegt in Bayern.
GTI ÜBUNG 6 NORMALFORM, MINIMALFORM UND DER ENTWICKLUNGSSATZ
1 GTI ÜBUNG 6 NORMALFORM, MINIMALFORM UND DER ENTWICKLUNGSSATZ Aufgabe 1 - Boolesche Algebra 2 Beweisen oder widerlegen Sie die folgenden Aussagen, ohne Wahrheitstabellen zu verwenden. Für Aussagen, die
Kapitel 3: Boolesche Algebra
Inhalt: 3.1 Grundlegende Operationen und Gesetze 3.2 Boolesche Funktionen u. u. ihre Normalformen 3.3 Vereinfachen von booleschen Ausdrücken 3.4 Logische Schaltungen 3.1 Grundlegende Operationen und Gesetze
C Beispiel: Siebensegmentanzeige. Typische Anzeige für Ziffern a. f g. e d. Gesucht: Schaltfunktion für die Ansteuerung des Segmentes d
6.3 Beispiel: Siebensegmentanzeige Typische Anzeige für Ziffern a f g b 0 1 2 3 4 5 6 7 8 9 e d c Schaltfunktionen zur Ansteuerung der Segmente Parameter: binär codierte Zahl bzw. Ziffer Gesucht: Schaltfunktion
1 Aussagenlogischer Kalkül
1 Aussagenlogischer Kalkül Ein Kalkül in der Aussagenlogik soll die Wahrheit oder Algemeingültigkeit von Aussageformen allein auf syntaktischer Ebene zeigen. Die Wahrheit soll durch Umformung von Formeln
DuE-Tutorien 4 und 6. Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery. WOCHE 4 AM
DuE-Tutorien 4 und 6 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery WOCHE 4 AM 13.11.2012 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum
, SS2012 Übungsgruppen: Do., Mi.,
VU Technische Grundlagen der Informatik Übung 3: Schaltnete 83.579, SS202 Übungsgruppen: Do., 9.04. Mi., 25.04.202 Aufgab: Vereinfachung mittels KV-Diagramm Gegeben ist folgende Wahrheitstafel: e 0 Z Z
6. Minimierung Boolescher Polynome
H.J. Oberle Boolesche Algebra WiSe 2006/07 6. Minimierung Boolescher Polynome An Beispiel (5.11) c) erkennt man, dass die DNF eines Booleschen Polynoms i. Allg. ungünstig in Bezug auf die Anzahl der Auftretenden
Rechnerstrukturen, Teil 1
Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 18/19 Prof. Dr. Jian- Jia Chen Fakultät für Informatik Technische Universität Dortmund jian- [email protected] http://ls12- www.cs.tu-.de Übersicht 1. Organisatorisches
Mathematische Grundlagen I Logik und Algebra
Logik und Algebra Dr. Tim Haga 21. Oktober 2016 1 Aussagenlogik Erste Begriffe Logische Operatoren Disjunktive und Konjunktive Normalformen Logisches Schließen Dr. Tim Haga 1 / 21 Präliminarien Letzte
Kapitel 2. Boolesche Algebra. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik
Kapitel 2 oolesche lgebra Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of pplied Sciences w Fakultät für Informatik Schaltalgebra, und sind Operatoren über der Menge {0,1} a b a b 0 0 0
Grundlagen der Technischen Informatik
Universität Duisburg-Essen PRAKTIKUM Grundlagen der Technischen Informatik VERSUCH 2 Schaltungssimulation und Schaltungsanalyse Name: Vorname: Betreuer: Matrikelnummer: Gruppennummer: Datum: Vor Beginn
Grundlagen der Technischen Informatik. 7. Übung
Grundlagen der Technischen Informatik 7. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 7. Übungsblatt Themen Aufgabe : Aufgabe : Aufgabe : Aufgabe : KMF, Nelson/Petrick-Verfahren Quine-McCluskey-Verfahren
Rechnerorganisation I Zusammenfassung
Universität der Bundeswehr München Fakultät für Informatik Institut für Technische Informatik Rechnerorganisation I Zusammenfassung Tobias Kiesling [email protected] 09.12.2003 2. Boole
Andreas Kunz, Ralf Moryson
15. SYMPOSIUM DESIGN FOR X NEUKIRCHEN, 14. UND 15. OKTOBER 2004 MINIMIERUNG DER PROZESSKETTE IN DER GROBPLANUNGSPHASE DER PRODUKTIONSPLANUNG Andreas Kunz, Ralf Moryson Zusammenfassung Das schnelle Erreichen
Aufgabe 1 Minimieren Sie mit den Gesetzen der Booleschen Algebra 1.1 f a ab ab 1 = + + Aufgabe 2. Aufgabe 3
Logischer Entwurf Digitaler Systeme Seite: 1 Übungsblatt zur Wiederholung und Auffrischung Aufgabe 1 Minimieren Sie mit den Gesetzen der Booleschen Algebra 1.1 f a ab ab 1 = + + 1.2 f ( ) ( ) ( ) 2 = c
Einführung in die Theoretische Informatik
Einführung in die Theoretische Informatik Woche 4 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung Zusammenfassung der letzten LV Modus Ponens A B B A MP Axiome für
Ersetzbarkeitstheorem
Ersetzbarkeitstheorem Die Abgeschlossenheit läßt sich auch folgendermaßen formulieren: Ersetzbarkeitstheorem Seien F und G Formeln mit F G. SeienH und H Formeln, so daß H aus H hervorgeht, indem ein Vorkommen
Technische Informatik I 4. Vorlesung. 2. Funktion digitaler Schaltungen... wertverlaufsgleiche Umformungen
Technische Informatik I 4. Vorlesung 2. Funktion digitaler Schaltungen... wertverlaufsgleiche Umformungen...... H.-D. Wuttke 09 Karnaugh-Veith Veith-Diagramme, 3. Struktur digitaler Schaltungen: Strukturdefinition,
Grundlagen der Informatik 2. Grundlagen der Digitaltechnik. 4. Minimierung digitaler Schaltfunktionen
Grundlagen der Informatik Grundlagen der Digitaltechnik. Minimierung digitaler Schaltfunktionen Prof. Dr.-Ing. Jürgen Teich Dr.-Ing. Christian Haubelt Lehrstuhl für Hardware-Software Software-Co-Design
