Rechnerorganisation I Zusammenfassung

Größe: px
Ab Seite anzeigen:

Download "Rechnerorganisation I Zusammenfassung"

Transkript

1 Universität der Bundeswehr München Fakultät für Informatik Institut für Technische Informatik Rechnerorganisation I Zusammenfassung Tobias Kiesling [email protected]

2 2. Boole sche Algebra Boole sche Algebra Boole sche Algebra: Menge M = {a, b, c,..., e, n} mit Operationen,, In Boole scher Algebra gelten die Huntington schen Axiome: Kommutativgesetz: a b = b a a b = b a Distributivgesetz: a (b c) = (a b) (a c) a (b c) = (a b) (a c) Neutrale Elemente: a e = a (e - 1-Element) a n = a (n - 0-Element) Inverses Element: Für alle a M existiert a ( a nicht ) mit: a a = n a a = e Zusammenfassung Rechnerorganisation I Folie 1

3 2. Boole sche Algebra Schaltalgebra Spezielle binäre boole sche Algebra mit Werten 0 und 1 und Operationen (und), (oder) und (nicht). Aus Huntington schen Axiomen ableitbare Gesetze: Assoziativitätsgesetz: (a b) c = a (b c) (a b) c = a (b c) Idempotenzgesetz: a a = a a a = a Absorptionsgesetz: a (a b) = a De Morgan sche Gesetze: a b = a b a b = a b Vollständige Operatorensysteme {,, }, { }, { },... Boole sche Aussage hat Wahrheitswert wahr oder falsch. Zusammenfassung Rechnerorganisation I Folie 2

4 3. Schaltnetze Normalisierung/Minimierung Normalformen zur kanonischen Darstellung von Ausdrücken: Disjunktive Normalform (DNF): Disjunktion aus Mintermen Konjunktive Normalform (KNF): Konjunktion aus Maxtermen Minimalformen zur Minimierung der Kosten, Laufzeit und Bausteinvielfalt Minimierung durch: Algebraische Umformungen (Anwendungen der Gesetze der Boole schen Algebra) Graphische Verfahren (KV-Diagramme) Tabellarische Verfahren (Quine-McClusky) Unvollständig spezifizierte Funktionen: Nicht alle Möglichkeiten für die Belegung der Eingangsvariablen treten auf. Kann zur Minimierung genutzt werden. Zusammenfassung Rechnerorganisation I Folie 3

5 3. Schaltnetze Minimierung mittels KV-Diagrammen Bsp.: Minimierung von f(a, b, c, d) = abd abc abcd abcd abcd. a b c d Identifikation der Implikanten, Primimplikanten und Kernimplikanten. Minimalform wird aus Kernimplikanten und minimal überdeckenden Primimplikanten gebildet. Zusammenfassung Rechnerorganisation I Folie 4

6 3. Schaltnetze Minimierung mittels Quine-McClusky Identifikation und Codierung der Minterme Aufstellen der 1. Quine schen Tabelle Wiederholte Zusammenfassung von Implikanten Ergebnis: alle Primimplikanten Aufstellen der 2. Quine schen Tabelle Festellen der Überdeckung der Minterme durch Primimplikanten Ergebnis: Kernimplikanten und Überdeckung durch restliche Primimplikanten Aufstellen der Minimalformen mit Hilfe der 2. Quine schen Tabelle Zusammenfassung Rechnerorganisation I Folie 5

7 3. Schaltnetze Multiplexer/Demultiplexer Multiplexer: 2 n Dateineingänge, n Steuereingänge, 1 Datenausgang Belegung der Steuereingänge bestimmt auf Ausgang durchzuschaltendenden Dateneingang. Kann direkt verwendet werden zur Implementierung von Schaltfunktionen mit n + 1 Eingangsvariablen n Eingangsvariablen werden auf die Steuereingänge des MUX gelegt. Bestimmung der Belegung eines Dateneinganges in Abhängigkeit von der entsprechenden Belegung der Steuereingänge. Demultiplexer: 1 Dateneingang, n Steuereingänge, 2 n Datenausgänge Belegung der Steuereingänge bestimmt den Ausgang auf den der Dateneingang durchzuschalten ist. MIN-Terme Realisierung von Schaltfunktionen mittels DNF Zusammenfassung Rechnerorganisation I Folie 6

8 3. Schaltnetze ROM/PLA/PAL Realisierung von Schaltfunktionen mittels ROM: Eingangsbelegung wirkt als Adressierung für einen Speicher (ROM) Speicher enthält die Werte der Ausgangsvariablen für die Eingangsvariablenkombination. Damit Implementierung der DNFs der Schaltfunktionen. Demultiplexer wird zur Adressierung des Speichers verwendet. PLA-Bausteine: Implementierung der DMFs der Ausgangsfunktionen UND-Matrix stellt die Disjunktionsterme der DMFs dar. ODER-Matrix wählt die Disjunktionsterme für alle Ausgangsfunktionen aus. Bündelminimierung der Ausgangsfunktionen PAL: ODER-Matrix ist vom Hersteller vorgegeben UND-Matrix ist Benutzer-programmierbar Zusammenfassung Rechnerorganisation I Folie 7

9 3. Schaltnetze Hazards Bisher: idealisierte Betrachtung der Schaltnetze ohne Zeitverzögerung Verzögerungen treten in der Realität v.a. bei Schaltzeiten der Bausteine auf. Dadurch kann es zu unerwünschten Effekten kommen: Bei einer Änderung der Eingangsbelegung die zu keiner Änderung der Ausgangsbelegung führen soll kommt ein kurzzeitiger Wechsel einer Ausgangsvariablen vor (statischer Hazardfehler). Bei einer Änderung der Eingangsbelegung die zu einer Änderung der Ausgangsbelegung führen soll kommt bei einer Ausgangsvariablen mehr als ein Wechsel vor (dynamischer Hazardfehler). Funktionshazard ist die Möglichkeit des Auftretens eines Hazardfehlers für eine Schaltfunktion. Strukturhazard ist die Möglichkeit des Auftretens eines Hazardfehlers für ein bestimmtes Schaltnetz. Strukturhazards können behoben werden, Funktionshazards nicht. Zusammenfassung Rechnerorganisation I Folie 8

10 4. Schaltwerke Schaltwerke Bisherige Betrachtung: Schaltnetze, d.h. Schaltungen deren Ausgabe direkt von der Eingabe abhängig war. Schaltwerke: der vergangene Zustand des Systems wird berücksichtigt Zum Halten eines Zustands werden Zwischenspeicher benötigt. Realisierung durch Rückkopplung Klassifikation nach Ein-/Ausgabebeziehung: Mealy-Automaten: Ausgabe ist vom Zustand und von der Eingabe abhängig Moore-Automaten: Ausgabe ist nur vom Zustand abhängig Klassifikation nach Zeitpunkt der Zustandsänderungen asynchrone Schaltwerke: Zustandsänderung zu jeder Zeit möglich. synchrone Schaltwerke: Zustandsänderung nur zu ganz bestimmten Zeitpunkten (i.a. durch Takt festgelegt). Zusammenfassung Rechnerorganisation I Folie 9

11 4. Schaltwerke Schaltungsanalyse Systematik zur Schaltungsanalyse: 1. Identifikation des Typs der Schaltung (Schaltnetz oder Schaltwerk / synchron oder asynchron) 2. Identifikation der Eingabe-, Ausgabe- und Zustandsvariablen 3. Auftrennen der Rückkopplungen und Analyse des entstehenden Schaltnetzes: Identifikation des Automatentyps (Mealy/Moore) Aufstellen der Ausgangs- und Zustandsübergangsfunktionen 4. Festellen des Übergangsverhaltens in einer Funktionstabelle 5. Erstellung des Zustandsübergangsdiagramms 6. Interpretation der Funktion der Schaltung Zusammenfassung Rechnerorganisation I Folie 10

12 4. Schaltwerke Taktsteuerung Steuerung der Zustandsspeicher in einem synchronen Schaltwerk mittels Takt. Belegung der Ausgangssignale ist nicht nur von Eingangsvariablen und Zustand abhängig sondern auch vom Takt. Formen der Taktsteuerung: Pegelsteuerung: Änderungen des Zustandes sind nur möglich wenn das Taktsignal 1 ist bei positiver Pegelsteuerung, bzw. 0 bei negativer Pegelsteuerung. Taktflankensteuerung: Änderungen des Zustandes sind nur möglich während des Taktsignal von 0 auf 1 wechselt bei positiver Flankensteuerung, bzw. von 1 auf 0 bei negativer Flankensteuerung. Zweiflankensteuerung: Bei jeder Taktflanke (steigend oder fallend) kann sich der Zustand ändern. Zusammenfassung Rechnerorganisation I Folie 11

13 4. Schaltwerke Flip-Flops Zur Realisierung von Zustandsspeichern werden Flip-Flops verwendet. Jedes Flip-Flop kann ein Bit speichern. Flip-Flops sind selbst Schaltwerke die durch Rückkopplungen entstehen und ihren Zustand als Ausgabe haben. Verschiedene Arten von Flip-Flops: RS-Flip-Flop: Zwei Eingänge r und s; wenn r = 1, dann wird der Zustand auf 0 rückgesetzt; wenn s = 1, dann wird der Zustand auf 1 gesetzt; r = 1 und s = 1 ist nicht erlaubt; bei r = 0 und s = 0 wird der momentane Zustand weiter gespeichert. JK-Flip-Flop: Eine Variation des RS-Flip-Flops bei der eine Belegung beider Eingänge mit 1 erlaubt ist und zu einem Wechsel des Zustandes führt. D-Flip-Flop: Einfaches Flip-Flop mit einem Eingang; es wird immer der Wert als Zustand gespeichert der am Eingang anliegt. T-Flip-Flop: Ebenfalls ein Eingang; ist der Eingang auf 1, so wird der Zustand gewechselt, ansonsten beibehalten. Zusammenfassung Rechnerorganisation I Folie 12

14 4. Schaltwerke Schaltwerksentwurf Systematik des Schaltwerkentwurfs: 1. Problemanalyse: Schaltnetz/Schaltwerk, Festlegung von Eingabe und Ausgabe. 2. Erstellung des Zustandsübergangsdiagramms: Festlegung der Zustände und der Übergänge zwischen den Zuständen (Semantik!). 3. Zustandscodierung: Abbildung von Zuständen durch die Zustandsvariablen. 4. Ausgangs-/Übergangstabelle: Direkt aus dem Übergangsdiagramm zu erstellen. 5. Ansteuerung der Zustandsspeicher: Auswahl der zu verwendenden Flip-Flops und Ableitung der Ansteuerung aus Zustandsübergangstabelle. 6. Aufstellung und Minimierung der Ansteuer- und Ausgangsfunktionen. 7. Schaltbildentwurf Zusammenfassung Rechnerorganisation I Folie 13

15 5. Grundschaltungen Register/Zähler Registerspeicher: Lineare Anordnung von Zustandsspeichern Gemeinsame Adressierung Meist synchron gesteuert mit zentralem Takt Z.B. Realisierung mittels D-Flip-Flops Schieberegister: Unterstützung von Bit-Shift-Operationen Realisierung z.b. mittels in Serie geschalteter D-Flip-Flops Zähler: Synchroner Zähler: exponentiell steigender Schaltungsaufwand Asynchroner Zähler: geringerer Schaltungsaufwand aber langsamer und Gefahr von Hazards Zusammenfassung Rechnerorganisation I Folie 14

16 5. Grundschaltungen Rechnerarithmetik Addition Halbaddierer: Zwei zu addierende Bits als Eingabe, Addition der beiden als Ausgabe (mit Übertrag). Volladdierer: Eingabe wird um einen vorherigen Übertrag erweitert. Addierwerk beliebiger Größe kann durch hintereinanderschalten von 1-Bit- Volladdierern geschehen (Carry-Ripple-Addierwerk). Verbesserung der Leistung durch parallele Addition: Carry-Lookahead- Addierwerk Subtraktion wird direkt auf Addition zurück geführt (2-Komplement) Multiplikation: als Schaltwerk mit Addierern und Schieberegister, oder als Schaltnetz mit Addierern und AND-Bausteinen. Division: mittels Addierern und Schieberegistern. Zusammenfassung Rechnerorganisation I Folie 15

17 5. Grundschaltungen Minimales Rechenwerk Anforderungen an einfache ALU: Addition, Subtraktion, sowie logische und Verschiebe-Operationen Auswahl der Operanden aus verschiedenen Registern Speichern des Ergebnisses in einem Register Ausgabe von Zero, Sign, Overflow und Carry ALUs fixer Größe können zu beliebig großen ALUs zusammengeschlossen werden (Bitscheibenstruktur). Zusammenfassung Rechnerorganisation I Folie 16

Klausur-Nachbesprechung

Klausur-Nachbesprechung Universität der Bundeswehr München Rechnerorganisation I Fakultät für Informatik HT 23 Institut für Technische Informatik Blatt Klausur-Nachbesprechung Aufgabe -: Multiple Choice Geben Sie für die folgenden

Mehr

DuE-Tutorien 17 und 18

DuE-Tutorien 17 und 18 DuE-Tutorien 17 und 18 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery TUTORIENWOCHE 3 AM 18.11.2011 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

5. Vorlesung: Normalformen

5. Vorlesung: Normalformen 5. Vorlesung: Normalformen Wiederholung Vollständige Systeme Minterme Maxterme Disjunktive Normalform (DNF) Konjunktive Normalform (KNF) 1 XOR (Antivalenz) X X X X X X ( X X ) ( X X ) 1 2 1 2 1 2 1 2 1

Mehr

DuE-Tutorien 17 und 18

DuE-Tutorien 17 und 18 DuE-Tutorien 17 und 18 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery TUTORIENWOCHE 11 AM 27.01.2012 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Boolesche Algebra (1)

Boolesche Algebra (1) Boolesche Algebra (1) Definition 1: Sei B = Σ 2 = {0,1} das Alphabet mit den Elementen 0 und 1. Seien auf B die 3 Operatoren einer Algebra wie folgt definiert für x,y aus B: x+y := Max(x,y), x y := Min(x,y),

Mehr

Synthese und Analyse Digitaler Schaltungen

Synthese und Analyse Digitaler Schaltungen Synthese und Analyse Digitaler Schaltungen von Prof. Dr.-Ing. habil. Gerd Scarbata Technische Universität Ilmenau 2., überarbeitete Auflage Oldenbourg Verlag München Wien V Inhaltsverzeichnis Seite Boolesche

Mehr

3 Verarbeitung und Speicherung elementarer Daten

3 Verarbeitung und Speicherung elementarer Daten 3 Verarbeitung und Speicherung elementarer Daten 3.1 Boolsche Algebra Definition: Eine Boolsche Algebra ist eine Menge B mit den darauf definierten zweistelligen Verknüpfungen (+,*) sowie der einstelligen

Mehr

Eingebettete Systeme

Eingebettete Systeme Einführung in Eingebettete Systeme Vorlesung 7 Bernd Finkbeiner 03/12/2014 [email protected] Prof. Bernd Finkbeiner, Ph.D. [email protected] 1 Schaltfunktionen! Schaltfunktion:

Mehr

Aufgabe 1 Minimieren Sie mit den Gesetzen der Booleschen Algebra 1.1 f a ab ab 1 = + + Aufgabe 2. Aufgabe 3

Aufgabe 1 Minimieren Sie mit den Gesetzen der Booleschen Algebra 1.1 f a ab ab 1 = + + Aufgabe 2. Aufgabe 3 Logischer Entwurf Digitaler Systeme Seite: 1 Übungsblatt zur Wiederholung und Auffrischung Aufgabe 1 Minimieren Sie mit den Gesetzen der Booleschen Algebra 1.1 f a ab ab 1 = + + 1.2 f ( ) ( ) ( ) 2 = c

Mehr

Ergänzen Sie die Werte für y in dem unten angegebenen Ausschnitt der Schaltbelegungstabelle. Falsche Antworten führen zu Punktabzug.

Ergänzen Sie die Werte für y in dem unten angegebenen Ausschnitt der Schaltbelegungstabelle. Falsche Antworten führen zu Punktabzug. Aufgabe 1 Gegeben sei folgende Schaltfunktion: y = a / b / c / d. Ergänzen Sie die Werte für y in dem unten angegebenen Ausschnitt der Schaltbelegungstabelle. Falsche Antworten führen zu Punktabzug. d

Mehr

Teil 1: Digitale Logik

Teil 1: Digitale Logik Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Analoge und digitale Hardware bei

Mehr

Systemorientierte Informatik 1

Systemorientierte Informatik 1 Systemorientierte Informatik. Grundlagen Digitaler Schaltungen.8 Schaltnetze aus Gattern und Leitungen.9 Boole sche Algebra. Minimierung Boole scher Funktionen. CMOS Komplegatter Die nächste Funktion,

Mehr

Einführung in die technische Informatik

Einführung in die technische Informatik Einführung in die technische Informatik hristopher Kruegel [email protected] http://www.auto.tuwien.ac.at/~chris Logische Schaltungen System mit Eingängen usgängen interne Logik die Eingänge auf

Mehr

Schaltfunktion, Definition

Schaltfunktion, Definition Schaltfunktion, Definition Sei S = { 0,1}. Dann heißt eine Abbildung f: S n S eine Schaltfunktion. = f(x n-1,x n-2,...,,, ), x n-1, x n-2,...,,, S x i X = (x n-1,x n-2,...,,, ) Eingangsvariable Eingangsvektor

Mehr

Verwendung eines KV-Diagramms

Verwendung eines KV-Diagramms Verwendung eines KV-Diagramms Ermittlung einer disjunktiven Normalform einer Schaltfunktion Eine Disjunktion von Konjunktionen derart, dass jeder Konjunktion ein Block in dem KV-Diagramm entspricht, der

Mehr

03 Boolesche Algebra. Technische Grundlagen der Informatik

03 Boolesche Algebra. Technische Grundlagen der Informatik 03 Boolesche Algebra Technische Grundlagen der Informatik Automation Systems Group E183-1 Institute of Computer Aided Automation Vienna University of Technology email: [email protected] Inhalt Operationen

Mehr

Grundlagen der Digitaltechnik

Grundlagen der Digitaltechnik Grundlagen der Digitaltechnik Eine systematische Einführung von Prof. Dipl.-Ing. Erich Leonhardt 3., bearbeitete Auflage Mit 326 Bildern, 128 Tabellen, zahlreichen Beispielen und Übungsaufgaben mit Lösungen

Mehr

Lösung 3.1 Schaltalgebra - Schaltnetze (AND, OR, Inverter)

Lösung 3.1 Schaltalgebra - Schaltnetze (AND, OR, Inverter) Lösung 3.1 Schaltalgebra - Schaltnetze (AND, OR, Inverter) Folgende Darstellung der Funktionen als Zusammenschaltung von AND-, OR- und Invertergattern ist möglich: a) F = X ( Y Z) b) F = EN ( X Y) ( Y

Mehr

Inhaltsverzeichnis. 1 Boolesche Algebra, Schaltalgebra - Begriffsbestimmung 1. 2 Operationssystem der Schaltalgebra 4. 3 Boolesche Funktionen 6

Inhaltsverzeichnis. 1 Boolesche Algebra, Schaltalgebra - Begriffsbestimmung 1. 2 Operationssystem der Schaltalgebra 4. 3 Boolesche Funktionen 6 Inhaltsverzeichnis 1 Boolesche Algebra, Schaltalgebra - Begriffsbestimmung 1 2 Operationssystem der Schaltalgebra 4 3 Boolesche Funktionen 6 4 Boolesche Funktionen kombinatorischer Schaltungen 8 4.1 Begriffsbestimmung

Mehr

Informationsverarbeitung auf Bitebene

Informationsverarbeitung auf Bitebene Informationsverarbeitung auf Bitebene Dr. Christian Herta 5. November 2005 Einführung in die Informatik - Informationsverarbeitung auf Bitebene Dr. Christian Herta Grundlagen der Informationverarbeitung

Mehr

12. Tutorium Digitaltechnik und Entwurfsverfahren

12. Tutorium Digitaltechnik und Entwurfsverfahren 12. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 13 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

zugehöriger Text bei Oberschelp/Vossen: 2.1-2.3

zugehöriger Text bei Oberschelp/Vossen: 2.1-2.3 Spezielle Schaltnetze Übersicht in diesem Abschnitt: Vorstellung einiger wichtiger Bausteine vieler elektronischer Schaltungen, die sich aus mehreren Gattern zusammensetzen ("spezielle Schaltnetze") und

Mehr

GTI ÜBUNG 12. Komparator und Addierer FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG JAN SPIECK 1

GTI ÜBUNG 12. Komparator und Addierer FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG JAN SPIECK 1 GTI ÜBUNG 12 Komparator und Addierer FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG JAN SPIECK 1 AUFGABE 1 KOMPARATOR Beschreibung Entwickeln Sie eine digitale Schaltung, die zwei Bits a und b miteinander

Mehr

Lehrbuch Digitaltechnik

Lehrbuch Digitaltechnik Lehrbuch Digitaltechnik Eine Einführung mit VHDL von Prof. Dr. Jürgen Reichardt, Oldenbourg Verlag München Inhaltsverzeichnis Vorwort V 1 Einleitung 1 1.1 Die Hardwarebeschreibungssprache VHDL 3 1.2 Digitale

Mehr

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 14/15

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 14/15 Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 14/15 Prof. Dr Jian-Jia Chen Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund [email protected] http://ls1-www.cs.tu-.de Übersicht

Mehr

Vorlesung Rechnerstrukturen Winter 2002/03. 3b. Endliche Automaten. Modellierung und Realisierung von Steuerungen

Vorlesung Rechnerstrukturen Winter 2002/03. 3b. Endliche Automaten. Modellierung und Realisierung von Steuerungen Rechnerstrukturen 3b. Endliche Automaten Ziele Modellierung und Realisierung von Steuerungen Beispiele Autoelektronik: ABS-System Consumer: Kamera, Waschmaschine, CD-Player, Steuerung technischer Anlagen

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Arithmetische und bitweise Operatoren im Binärsystem Prof. Dr. Nikolaus Wulff Operationen mit Binärzahlen Beim Rechnen mit Binärzahlen gibt es die ganz normalen arithmetischen

Mehr

II. Grundlagen der Programmierung

II. Grundlagen der Programmierung II. Grundlagen der Programmierung II.1. Zahlenssteme und elementare Logik 1.1. Zahlenssteme 1.1.1. Ganze Zahlen Ganze Zahlen werden im Dezimalsstem als Folge von Ziffern 0, 1,..., 9 dargestellt, z.b. 123

Mehr

Teil III. Schaltnetze und ihre Optimierung

Teil III. Schaltnetze und ihre Optimierung Teil III Schaltnetze und ihre Optimierung 1 Teil III.1 Schaltnetze 2 Beispiel 1 Schaltnetz für xor mit {+,, } x y x y 0 0 0 0 1 1 1 0 1 1 1 0 DNF: x y = xy + xy 3 Beispiel 2 xor mittels nand-verknüpfung;

Mehr

kanonische disjunktive Normalform (KDNF, DKF) Disjunktion einer Menge von Mintermen mit gleichen Variablen

kanonische disjunktive Normalform (KDNF, DKF) Disjunktion einer Menge von Mintermen mit gleichen Variablen 5.6 Normalformen (4) Noch mehr aber besonders wichtige Begriffe kanonische disjunktive Normalform (KDNF, DKF) Disjunktion einer Menge von Mintermen mit gleichen Variablen Beispiel: KDNF zur Funktion f(,,,

Mehr

C.34 C Normalformen (4) 5.7 Hauptsatz der Schaltalgebra. 5.7 Hauptsatz der Schaltalgebra (2) 5.7 Hauptsatz der Schaltalgebra (3)

C.34 C Normalformen (4) 5.7 Hauptsatz der Schaltalgebra. 5.7 Hauptsatz der Schaltalgebra (2) 5.7 Hauptsatz der Schaltalgebra (3) 5.6 Normalformen (4) Noch mehr aber besonders wichtige Begriffe kanonische disjunktive Normalform (KDNF, DKF) Disjunktion einer Menge von Mintermen mit gleichen Variablen Beispiel: KDNF zur Funktion f(,,,

Mehr

6. Vorlesung: Minimalformen

6. Vorlesung: Minimalformen 6. Vorlesung: Minimalformen Wiederholung Minterme Maxterme Disjunktive Normalform (DN) Konjunktive Normalform (KN) Minimalformen KV-Diagramme 24..26 fällt aus wegen Dozentenfachexkursion 2 Normalformen

Mehr

Boolesche (Schalt-) Algebra (1)

Boolesche (Schalt-) Algebra (1) Boolesche (Schalt-) Algebra (1) Definition 1: Sei B = SS 2 = 0,1 das Alphabet mit den Elementen 0 und 1. Seien auf BB die folgenden 3 Operatoren definiert für xx, yy B: xx + yy max xx, yy xx yy min xx,

Mehr

Digital Design 4 Schaltwerke

Digital Design 4 Schaltwerke 4 Schaltwerke Schaltwerk: Ausgabevektor hängt nicht nur von Eingabevektor ab, sondern auch von allen bisherigen Eingaben. A(t n ) = f(e(t n ), E(t n-1 ), E(t n-2 ), E(t n-3 ),... E(t 0 ) dazu sind erforderlich:

Mehr

Digitaltechnik II SS 2007

Digitaltechnik II SS 2007 Digitaltechnik II SS 27 3. Vorlesung Klaus Kasper Inhalt MasterSlave FlipFlop Zustandsdiagram FlipFlop Zoo Flankensteuerung JKFlipFlop Zyklische Folgeschaltung Digitaltechnik 2 2 MasterSlave FlipFlop Diskutieren

Mehr

2. Tutorium Digitaltechnik und Entwurfsverfahren

2. Tutorium Digitaltechnik und Entwurfsverfahren 2. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 9 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

4.7 Mehr über Laufzeiteffekte in Schaltungen

4.7 Mehr über Laufzeiteffekte in Schaltungen 282 Hazards können besonders die Funktion von Schaltwerken stören. Sie werden dann Races (Rennen, Wettläufe) genannt. Dabei werden die falschen Werte der Ausgangsvariablen eines Schaltnetzes von Speichergliedern

Mehr

3.2 Verknüpfung von Variablen... 48 3.3 Sheffer- und Pierce-Funktion... 50 3.4 Übungen... 52

3.2 Verknüpfung von Variablen... 48 3.3 Sheffer- und Pierce-Funktion... 50 3.4 Übungen... 52 Inhaltsverzeichnis 1 Einführung 1 1.1 Analog - Digital Unterscheidung...1 1.1.1 Analoge Darstellung...2 1.1.2 Digitale Darstellung...3 1.1.3 Prinzip der Analog-Digital-Wandlung...4 1.2 Begriffsdefinitionen...5

Mehr

Digitaltechnik II SS 2007

Digitaltechnik II SS 2007 Digitaltechnik II SS 27 5. Vorlesung Klaus Kasper Inhalt Zyklische Folgeschaltung Asynchroner Zähler Synchroner Zähler Schaltungsanalyse Register Digitaltechnik 2 2 JKFlipFlop I Digitaltechnik 2 3 JKFlipFlop

Mehr

Digitaltechnik II SS 2007

Digitaltechnik II SS 2007 Digitaltechnik II SS 27 2. Vorlesung Klaus Kasper Inhalt Schaltnetz vs. Schaltwerk NAND SR-Flip-Flop NOR SR-Flip-Flop Master-Slave Flip-Flop Zustandsdiagramm Flip-Flop Zoo Schaltnetze vs. Schaltwerke Schaltnetz:

Mehr

Inhaltsverzeichnis. 1 Einleitung 1

Inhaltsverzeichnis. 1 Einleitung 1 vn 1 Einleitung 1 2 Codierung und Zahlensysteme... 3 2.1 Codes... 3 2.2 Dualcode....4 2.3 Festkonnna-Arithmetik im Dualsystem... 5 2.3.1 Ganzzahlige Addition im Dualsystem... 5 2.3.2 Addition von Festkommazahlen...

Mehr

Teil 1: Digitale Logik

Teil 1: Digitale Logik Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Analoge und digitale Hardware bei

Mehr

Physikalisches Praktikum für Vorgerückte. an der ETH Zürich. vorgelegt von. Mattia Rigotti Digitale Elektronik

Physikalisches Praktikum für Vorgerückte. an der ETH Zürich. vorgelegt von. Mattia Rigotti Digitale Elektronik Physikalisches Praktikum für Vorgerückte an der ETH Zürich vorgelegt von Mattia Rigotti [email protected] 14.02.2003 Digitale Elektronik Versuchsprotokoll 1 Inhaltverzeichnis 1. Zusammenfassung...

Mehr

COMPUTERGESTÜTZTES EXPERIMENTIEREN I P R A K T I K U M

COMPUTERGESTÜTZTES EXPERIMENTIEREN I P R A K T I K U M COMPUTERGESTÜTZTES EXPERIMENTIEREN I P R A K T I K U M 1 Übersicht Im Praktikum zur Vorlesung Computergestütztes Experimentieren I wird der Vorlesungsstoff geübt und vertieft. Ausserdem werden die speziellen

Mehr

Aufgabe 3.1 Schaltalgebra - Schaltnetze

Aufgabe 3.1 Schaltalgebra - Schaltnetze Aufgabe 3.1 Schaltalgebra - Schaltnetze Zeichnen Sie die folgenden Funktionen als Zusammenschaltung von AND-, OR- und Invertergattern: a) b) F = X ( Y Z) F = EN ( X Y) ( Y Z) zur Lösung 3.1 Aufgabe 3.2

Mehr

2.1 Boole sche Funktionen

2.1 Boole sche Funktionen . Grundlagen digitaler Schaltungen. Boole sche Funktionen Darstellung Boolescher Funktionen. Boole sche lgebra Sätze der Booleschen lgebra.3 Realisierung von Booleschen Funktionen Normalformen zweistufiger

Mehr

Praktikum Grundlagen der Elektronik

Praktikum Grundlagen der Elektronik Praktikum Grundlagen der Elektronik Versuch EP 7 Digitale Grundschaltungen Institut für Festkörperelektronik Kirchhoff - Bau K1084 Die Versuchsanleitung umfasst 7 Seiten Stand 2006 Versuchsziele: Festigung

Mehr

Kapitel 2. Elementare Schaltwerke. 2.1 RS-Flipflop

Kapitel 2. Elementare Schaltwerke. 2.1 RS-Flipflop Kapitel 2 Elementare Schaltwerke 2.1 RS-Flipflop Unter dem Gesichtspunkt der Stabilität betrachtet, wird der zweistufige analoge Transistorverstärker des Bildes 2.1 dann instabil, wenn die gestrichelt

Mehr

Rechnerstrukturen Winter 2015 4. WICHTIGE SCHALTNETZE. (c) Peter Sturm, University of Trier 1

Rechnerstrukturen Winter 2015 4. WICHTIGE SCHALTNETZE. (c) Peter Sturm, University of Trier 1 4. WICHTIGE SCHALTNETZE (c) Peter Sturm, University of Trier 1 Wichtige Schaltnetze Häufig verwendete Grundfunktionen Umwandeln (Decoder) Verteilen (Multiplexer) und Zusammenfassen (Demultiplexer) Arithmetisch-

Mehr

Grundlagen der Technischen Informatik

Grundlagen der Technischen Informatik TECHNISCHE FAKULTÄT 11. Übung zur Vorlesung Grundlagen der Technischen Informatik Aufgabe 1 (VHDL) Gegeben ist ein binärer Taschenrechner (siehe Abb. 1), der als Eingabe die Tasten 0, 1, +, - und = und

Mehr

Computersysteme. 2. Grundlagen Digitaler Schaltungen 2.10 Minimierung Boole scher Funktionen 2.11 CMOS Komplexgatter

Computersysteme. 2. Grundlagen Digitaler Schaltungen 2.10 Minimierung Boole scher Funktionen 2.11 CMOS Komplexgatter Computersysteme 2. Grundlagen Digitaler Schaltungen 2.10 Minimierung Boole scher Funktionen 2.11 CMOS Komplexgatter 1 Die Einsen im KV-Diagramm werden zu Blöcken maximaler Größe zusammengefasst. Dabei

Mehr

Digitaltechnik Grundlagen 5. Elementare Schaltnetze

Digitaltechnik Grundlagen 5. Elementare Schaltnetze 5. Elementare Schaltnetze Version 1.0 von 02/2018 Elementare Schaltnetze Dieses Kapitel beinhaltet verschiedene Schaltnetze mit speziellen Funktionen. Sie dienen als Anwendungsbeispiele und wichtige Grundlagen

Mehr

Satz von De Morgan A B A + B A + B A B A. Transistoren: A B U a A 0 0 Vcc Vcc Vcc V 0

Satz von De Morgan A B A + B A + B A B A. Transistoren: A B U a A 0 0 Vcc Vcc Vcc V 0 Satz von De Morgan A + = A A A + A + A A 0 0 0 1 1 1 1 0 1 1 0 1 1 0 1 0 1 0 0 1 0 1 1 1 0 0 0 0 Transistoren: A U a A 0 0 Vcc 1 0 1 Vcc 1 1 0 Vcc 1 1 1 0 V 0 eispiel: Schaltung zur Erkennung gültiger

Mehr

2.3 Logikoptimierung. Überblick digitale Synthese. Logikoptimierung

2.3 Logikoptimierung. Überblick digitale Synthese. Logikoptimierung 2.3 Logikoptimierung Logikoptimierung Überblick digitale Synthese Logikoptimierung Begriffe Mehrstufige Logik Zweistufige Logik:..Exakte Verfahen..Heuristische Verfahren..Expansion/ Reduktion..Streichen

Mehr

<[email protected]> Oliver Liebold. NAND (negierte Undverknüpfung) L L H L H H H L H H H L

<ruske.s@web.de> Oliver Liebold. NAND (negierte Undverknüpfung) L L H L H H H L H H H L Elektronische Grundlagen Versuch E7, Grundelemente der Digitaltechnik Praktikumsgruppe IngIF, 04. Juni 2003 Stefan Schumacher Sandra Ruske Oliver Liebold

Mehr

3.2 Verknüpfung von Variablen... 50 3.3 Sheffer- und Pierce-Funktion... 52 3.4 Übungen... 54

3.2 Verknüpfung von Variablen... 50 3.3 Sheffer- und Pierce-Funktion... 52 3.4 Übungen... 54 Inhaltsverzeichnis 1 Einführung 1 1.1 Analog - Digital Unterscheidung... 1 1.1.1 Analoge Darstellung...2 1.1.2 Digitale Darstellung...3 1.1.3 Prinzip der Analog-Digital-Wandlung...4 1.2 Begriffsdefinitionen...5

Mehr

Hardwarearchitekturen und Rechensysteme

Hardwarearchitekturen und Rechensysteme Lehrstuhl für Eingebettete Systeme Hardwarearchitekturen und Rechensysteme Asynchrone sequenzielle Schaltungen (asynchrone Schaltwerke) Folien zur Vorlesung Hardwarearchitekturen und Rechensysteme von

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

DuE-Tutorien 4 und 6. Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery. WOCHE 11 AM

DuE-Tutorien 4 und 6. Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery.  WOCHE 11 AM DuE-Tutorien 4 und 6 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery WOCHE 11 AM 15.01.2013 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Lehr- und Ubungsbuch für Elektrotechniker und Informatiker

Lehr- und Ubungsbuch für Elektrotechniker und Informatiker Klaus Fricke I I I Lehr- und Ubungsbuch für Elektrotechniker und Informatiker 5., verbesserte und aktualisierte Auflage Mit 210 Abbildungen und 103 Tabellen Viewegs Fachbücher der Technik vreweg VII 1

Mehr

Disitaltechni. Klaus Fricke. Lehr- und Übungsbuch für Elektrotechniker und Informatiker 6., überarbeitete Auflage Mit 210 Abbildungen und 103 Tabellen

Disitaltechni. Klaus Fricke. Lehr- und Übungsbuch für Elektrotechniker und Informatiker 6., überarbeitete Auflage Mit 210 Abbildungen und 103 Tabellen Klaus Fricke Disitaltechni Lehr- und Übungsbuch für Elektrotechniker und Informatiker 6., überarbeitete Auflage Mit 210 Abbildungen und 103 Tabellen STUDIUM VIEWEG+ TEUBNER VII Inhaltsverzeichnis 1 Einleitung.1

Mehr

- Zustandsvariable z i werden durch binäre Speicherelemente Flipflops FF realisiert, die entweder 1 gesetzt oder auf 0 rückgesetzt werden

- Zustandsvariable z i werden durch binäre Speicherelemente Flipflops FF realisiert, die entweder 1 gesetzt oder auf 0 rückgesetzt werden sequentielle Schaltungen: digitale Schaltung mit inneren Rückführungen sie haben eine zeitsequentielle Arbeitsweise, wobei die einzelnen diskreten Zeitpunkte durch innere Zustände repräsentiert werden

Mehr

Electronic Design Automation (EDA) Logikoptimierung

Electronic Design Automation (EDA) Logikoptimierung Electronic Design Automation (EDA) Logikoptimierung Überblick digitale Synthese Logikoptimierung Begriffe Mehrstufige Logik Zweistufige Logik: Exakte Verfahren... Heuristische Verfahren... Expansion/Reduktion...

Mehr

Darstellung von negativen binären Zahlen

Darstellung von negativen binären Zahlen Darstellung von negativen binären Zahlen Beobachtung für eine beliebige Binärzahl B, z.b. B=110010: B + NOT(B) ---------------------------------------------- = B + NOT(B) 1 + (Carry) ----------------------------------------------

Mehr

das Ausgabealphabet [Fehler im Skript korrigiert (Schiffmann256)] -Z=z 1

das Ausgabealphabet [Fehler im Skript korrigiert (Schiffmann256)] -Z=z 1 Schaltwerke (13) - Automaten (13.1) α SCHALTWERKE (13) [04.06.02, Folie 481, Übungen 07] Schaltwerke sind wesentliche Funktionseinheiten eines Computers. Beispiele hierfür sind das Rechen- und das Leitwerk

Mehr

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 14/15

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 14/15 Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 14/15 Prof. Dr Jian-Jia Chen Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund [email protected] http://ls1-www.cs.tu-.de Übersicht

Mehr

Grundlagen der Informationverarbeitung

Grundlagen der Informationverarbeitung Grundlagen der Informationverarbeitung Information wird im Computer binär repräsentiert. Die binär dargestellten Daten sollen im Computer verarbeitet werden, d.h. es müssen Rechnerschaltungen existieren,

Mehr

Übungen zu Informatik 1

Übungen zu Informatik 1 Übungen zu Informatik Technische Grundlagen der Informatik - Übung 9 Ausgabedatum: 2. November 22 Besprechung: Übungsstunden in der Woche ab dem 9. November 22 ) Schaltungen und Schaltnetze Communication

Mehr

Digital Design. Digital Design SS Prof. Dr. Richard Roth. 6 SWS SU und Übungen

Digital Design. Digital Design SS Prof. Dr. Richard Roth. 6 SWS SU und Übungen SS 2005 Prof. Dr. Richard Roth 6 SWS SU und Übungen Richard Roth / FB Informatik und Mathematik Schaltungstechnische Grundlagen 1 Literatur zur Vorlesung DD [1] PERNARDS, P..; Digitaltechnik Hüthig, 1992

Mehr

Digital Design 2 Schaltnetze (kombinatorische Logik) Digital Design

Digital Design 2 Schaltnetze (kombinatorische Logik) Digital Design 2 Schaltnetze (kombinatorische Logik) Schaltnetze realisieren eine Schalt- oder Vektorfunktion Y = F (X) X: Eingangsvektor mit den Variablen x 0, x 1, x n Y: Ausgabevektor mit den Variablen y 0, y 1, y

Mehr

Rechnerstrukturen, Teil 1

Rechnerstrukturen, Teil 1 Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 18/19 Prof. Dr. Jian- Jia Chen Fakultät für Informatik Technische Universität Dortmund jian- [email protected] http://ls12- www.cs.tu-.de Übersicht 1. Organisatorisches

Mehr

Minimierung nach Quine Mc Cluskey

Minimierung nach Quine Mc Cluskey Minimierung nach Quine Mc Cluskey F(A,B,C,D) =!A!B!C!D +!A!B!C D +!A B!C!D +!A B!C D +!A B C!D +!A B C D + A!B!C!D + A!B!C D + A!B C D + A B C D Notiere die Funktion als # A B C D Gruppe Binärelemente

Mehr

Klausur "Informatik I" vom Teil "Rechnerstrukturen"

Klausur Informatik I vom Teil Rechnerstrukturen Seite 1 von 6 Seiten Klausur "Informatik I" vom 20.2.2001 Teil "Rechnerstrukturen" Aufgabe 1: Binäre Informationsdarstellung (18 Punkte) 1.1 Gleitkommazahlen: Gegeben sei eine 8-bit Gleitkommazahl-Darstellung

Mehr

Schaltalgebra und kombinatorische Logik

Schaltalgebra und kombinatorische Logik Schaltalgebra und kombinatorische Logik. Digitale elektrische Schaltungen 2. Beschreibung durch logische Ausdrücke 3. Boolesche Algebra 4. Schaltfunktionen 5. Synthese von Schaltungen 6. Schaltnetze *Die

Mehr

Grundlagen der Technischen Informatik

Grundlagen der Technischen Informatik Grundlagen der technischen Informatik Kapitel 4 Verarbeitungsschaltungen Pascal A. Klein, M.Sc. 4 Verarbeitungsschaltungen... 3 4.1 Einführung... 3 4.2 Addierer... 3 4.2.1 Halbaddierer... 3 4.2.2 Volladdierer...

Mehr

HANSER. von Prof. Dipl.-Ing. Johannes Borgmeyer. 2., verbesserte Auflage

HANSER. von Prof. Dipl.-Ing. Johannes Borgmeyer. 2., verbesserte Auflage 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. von Prof. Dipl.-Ing. Johannes Borgmeyer 2., verbesserte Auflage Mit

Mehr

4. Digitale Netzwerke

4. Digitale Netzwerke 4 Digitale Netzwerke Folie 1 4. Digitale Netzwerke 4.1 Allgemeine Einführung Es werden zwei Arten logischer Schaltungen (digitaler Netzwerke) unterschieden (vgl. Abbildung 4.1): kombinatorische Schaltungen

Mehr

Informatik I Modul 5: Rechnerarithmetik (2)

Informatik I Modul 5: Rechnerarithmetik (2) Herbstsemester 2, Institut für Informatik IFI, UZH, Schweiz Informatik I Modul 5: Rechnerarithmetik (2) 2 Burkhard Stiller M5 Modul 5: Rechnerarithmetik (2) Grundrechenarten Arithmetisch-logische Einheit

Mehr

Flipflops. asynchron: Q t Q t+t

Flipflops. asynchron: Q t Q t+t Flipflops Ein Flipflop ist ein elementares Schaltwerk, das jeweils einen von zwei Zuständen ( 0 und 1 ) annimmt. Es hat zwei komplementäre Ausgänge ( Q und Q ), die den internen Zustand anzeigen. (Falls

Mehr

Rechnerstrukturen WS 2012/13

Rechnerstrukturen WS 2012/13 WS 2012/13 Boolesche Funktionen und Schaltnetze Hazards (Wiederholung/Abschluss) Programmierbare Bausteine Einleitung Einsatz von PLAs Sequenzielle Schaltungen Einleitung Hinweis: Folien teilweise a. d.

Mehr

Integrierte Schaltungen

Integrierte Schaltungen Integrierte Schaltungen Klassen von Chips: SSI (Small Scale Integrated) circuit: 1 bis 10 Gatter MSI (Medium Scale Integrated) circuit: 10 bis 100 Gatter LSI (Large Scale Integrated) circuit: 100 bis 100

Mehr

Digitaltechnik. Klaus Fricke. Lehr- und Übungsbuch für Elektrotechniker und Informatiker. 4., aktualisierte Auflage

Digitaltechnik. Klaus Fricke. Lehr- und Übungsbuch für Elektrotechniker und Informatiker. 4., aktualisierte Auflage Klaus Fricke Digitaltechnik Lehr- und Übungsbuch für Elektrotechniker und Informatiker 4., aktualisierte Auflage Mit 205 Abbildungen und 100 Tabellen Viewegs Fachbücher der Technik Vieweg VII 1 Einleitung

Mehr

Grundlagen Digitaltechnik (_GDT_WS2012_02.pdf)

Grundlagen Digitaltechnik (_GDT_WS2012_02.pdf) Grundlagen Digitaltechnik (_GDT_WS202_02.pdf) Wintersemester 202 Inhaltsverzeichnis Zahlensysteme 2 Logiken 3 Schaltalgebra 4 Logikoptimierung 5 Schaltnetze 6 Schaltwerke I 7 Schaltwerke II Inhaltsverzeichnis

Mehr

Rechnerstrukturen. Michael Engel und Peter Marwedel. Sommer TU Dortmund, Fakultät für Informatik

Rechnerstrukturen. Michael Engel und Peter Marwedel. Sommer TU Dortmund, Fakultät für Informatik Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik Sommer 2014 Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 19. Mai 2014 1/43 1 Sequenzielle

Mehr

Boolesche (Schalt-) Algebra (8)

Boolesche (Schalt-) Algebra (8) Boolesche (Schalt-) Algebra (8) Karnaugh-Diagramm ist eine graphische Technik zur Darstellung und Vereinfachung von Booleschen Ausdrücken ist eine andere, zweidimensionale Darstellung von Wahrheitstabellen

Mehr

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 15/16

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 15/16 Rechnerstrukturen, Teil Vorlesung 4 SWS WS 5/6 Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund [email protected] http://ls-www.cs.tu-.de Übersicht. Organisatorisches 2.

Mehr

Grundlagen der Informationsverarbeitung:

Grundlagen der Informationsverarbeitung: Grundlagen der Informationsverarbeitung: Grundbausteine der Computertechnik Prof. Dr.-Ing. habil. Ulrike Lucke Durchgeführt von Prof. Dr. rer. nat. habil. Mario Schölzel Maximaler Raum für Titelbild (wenn

Mehr

Digitaltechnik. vieweg. Klaus Fricke. Lehr- und Übungsbuch für Elektrotechniker und Informatiker

Digitaltechnik. vieweg. Klaus Fricke. Lehr- und Übungsbuch für Elektrotechniker und Informatiker Klaus Fricke Digitaltechnik Lehr- und Übungsbuch für Elektrotechniker und Informatiker 2., durchgesehene Auflage Mit 147 Abbildungen und 86 Tabellen Herausgegeben von Otto Mildenberger vieweg VII 1 Einleitung

Mehr

Rechnerstrukturen, Teil 1

Rechnerstrukturen, Teil 1 Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 18/19 Prof. Dr. Jian- Jia Chen Fakultät für Informatik Technische Universität Dortmund jian- [email protected] http://ls12- www.cs.tu-.de Übersicht 1. Organisatorisches

Mehr

Aufbau und Funktionsweise eines Computers - II

Aufbau und Funktionsweise eines Computers - II Aufbau und Funktionsweise eines Computers - II Schaltwerke Schaltwerke Bei Schaltnetzen: Ausgabe hängt nur von der aktuellen Eingabe ab. Bei Schaltwerken: Ausgabe hängt zusätzlich von endlich vielen vorausgegangenen

Mehr

Kapitel 5. Standardschaltnetze. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik

Kapitel 5. Standardschaltnetze. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Kapitel 5 Standardschaltnetze Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w Universit of Applied Sciences w Fakultät für Informatik Inhalt und Lernziele Inhalt Vorstellung der wichtigsten Standardelemente

Mehr

Grundlagen der Technischen Informatik

Grundlagen der Technischen Informatik Dirk W. Hoffmann Grundlagen der Technischen Informatik 3., neu bearbeitete Auflage Mit 356 Bildern, 57 Tabellen und 95 Aufgaben HANSER Inhaltsverzeichnis 1 Einführung 11 1.1 Was ist technische Informatik?

Mehr

Grundlagen der Informationsverarbeitung:

Grundlagen der Informationsverarbeitung: Grundlagen der Informationsverarbeitung: Schaltungsentwurf und Minimierungsverfahren Prof. Dr.-Ing. habil. Ulrike Lucke Durchgeführt von Prof. Dr. rer. nat. habil. Mario Schölzel Maximaler Raum für Titelbild

Mehr