Regressionsrechnung: Die Methode der kleinsten Quadrate

Größe: px
Ab Seite anzeigen:

Download "Regressionsrechnung: Die Methode der kleinsten Quadrate"

Transkript

1 Universität Basel Wirtschaftswissenschaftliches Zentrum Regressionsrechnung: Die Methode der kleinsten Quadrate Dr. Thomas Zehrt Inhalt: 1. Einstimmung 2. Problemstellung 3. Die Methode der kleinsten Quadrate 4. Lineare Regression 5. Quadratische Regression

2 Teil 1 Einstimmung

3 Aufgabe: Untersuchung des Zusammenhangs zwischen Werbungskosten und Absatz Daten einer Stichprobe: x i y i x i - Werbungskosten je Kunde (in ) y i - Absatz je Kunde (in ) Frage: Welcher Absatz ist bei Werbungskosten von zu erwarten???

4 Darstellung in einem Streuungsdiagramm (Punktwolke) y x

5 Mathematische Modellbildung: Es scheint zwischen beiden Merkmalen einen linearen Zusammenhang zu geben, der durch verschiedene Einflüsse leicht verfälscht ist. Linearer Modellansatz: y = f(x) = a + b x Problem: Wie sollen die Zahlen a und b gewählt werden, d.h. welche Gerade kommt unserer Punktwolke am nächsten?

6 Welche Gerade ist die Beste? y x

7 Methode der kleinsten Quadrate Für jede Gerade y = f(x;a,b) = a + b x führen wir in zwei Schritten ein Strafmass für deren Abweichung von der Punktwolke ein. Dieses Strafmass wird eine Funktion F(a,b) sein, die von den beiden Parametern a und b abhängt. Wir minimieren diese Funktion F, d.h. wir suchen die Werte â und ˆb die die Funktion (global) minimieren.

8 1. Schritt Abweichung der Geraden im Punkt x i : e i = y i (a + b x i ) }{{} f(x i ;a,b) R y a + b x 1 e 1 e 2 e 3 y 1 y = a + bx x 1 x 2 x 3 x e 1 = 2 (a + b) = 2 a b e 2 = 3 (a + b2) = 3 a 2b e 3 = 4.5 (a + b3) = 4.5 a 3b

9 2. Schritt Gesamtstrafe für die Gerade y = a + b x F(a,b) }{{} 0 = e 2 i }{{} 0 Für unser Beispiel: F(a,b) = (2 a b) 2 + (3 a 2b) 2 + (4.5 a 3b) 2 = 3a b ab 19a 43b

10 3. Schritt Bestimmung der Extremalstellen der Funktion F(a, b) Notwendige Bedingungen: 0 = a F(a,b) und 0 = b F(a,b)

11 Für unser Beispiel: 0 = 6a + 12b 19 und 0 = 12a + 28b 43 oder ( )( a b ) = ( ) Lösung: â = 2 3 und ˆb = 5 4 Das sind die Koordinaten des einzigen lokalen (und globalen) Minimums der Funktion F(a,b)! Optimale Gerade: y = x Antwort: Bei Werbungskosten von ist ein Absatz von also zu erwarten!

12 Teil 2 Problemstellung

13 Seien X und Y (bzw. X 1,...,X n und Y ) zwei (bzw. n + 1) quantitative Merkmale. Die Regressionsrechnung untersucht die Form des Zusammenhangs dieser Merkmale. Wir benötigen eine Modellgleichung zwischen den Merkmalen: y = f(x;a,b,c,...) y = f(x 1,...,x n ;a,b,c,...) mit einer (an das Problem angepassten) Funktion f, mit noch zu bestimmenden Parametern a,b,c,... X bzw. X 1,...,X n heissen Ursache und Y Wirkung.

14 Modell 1: Merkmal Y : Absatz(menge) eines Produktes Merkmal X: Werbungskosten Zusammenhangsmodell: y = a + bx gesucht: a,b

15 Modell 2: Merkmal Y : Nachfrage nach einem Gut (y = q d ) Merkmal X: Preis (x = p) Zusammenhangsmodell: }{{} q d = a b }{{} p y x gesucht: a,b > 0

16 Modell 3: Merkmal Y : Angebot eines Gutes (y = q s ) Merkmal X: Preis (x = p) Zusammenhangsmodell: }{{} q s = c + d }{{} p y x gesucht: a,b > 0

17 Modell 4: Merkmal Y : Nachfrage nach einem Gut (y = q) Merkmal X: persönliches Einkommen (x = E) Zusammenhangsmodell(Engel-Funktion für ein normales Gut): ( q = q(e) = s 1 E ) 0 E gesucht: s,e

18 Modell 5: Merkmal Y : Nachfrage nach einem Gut (y = q) Merkmal X: persönliches Einkommen (x = E) Zusammenhangsmodell(Engel-Funktion für ein inferiores Gut): q = q(e) = a E gesucht: a

19 Modell 6: Merkmal Y : Nachfrage nach einem Gut (y = q) Merkmal X: persönliches Einkommen (x = E) Zusammenhangsmodell: q = q(e) = A e b/e gesucht: A,b

20 Modell 7: Merkmal Y : Produktionskosten (y = K) Merkmal X: Output (x) Zusammenhangsmodell: K = K(x) = k 0 + k 1 x + k 2 x 2 + k 3 x 3 gesucht: k 0,k 1,k 2,k 3

21 Modell 8: Merkmal Y : Konsum (y = C) Merkmal X: Volkseinkommen (x = Y ) Zusammenhangsmodelle: C = C(Y ) = C 0 + cy C = C(Y ) = C 0 + b(1 e ay ) gesucht: C 0,c bzw. C 0,b,a

22 Modell 9: Merkmal Y : Nachfrage nach Gut G 1 (y = q 1 ) Merkmal X 1 : Preis von Gut G 1 (x 1 = p 1 ) Merkmal X 2 : Preis von Gut G 2 (x 2 = p 2 ) Zusammenhangsmodelle: Konkurrierende Güter q 1 = q 1 (p 1,p 2 ) = a bp 1 + cp 2 q 1 = q 1 (p 1,p 2 ) = k pβ 2 p α 1 gesucht: a,b,c bzw. k,α,β

23 Modell 10: Merkmal Y : Nachfrage nach Gut G 1 (y = q 1 ) Merkmal X 1 : Preis von Gut G 1 (x 1 = p 1 ) Merkmal X 2 : Preis von Gut G 2 (x 2 = p 2 ) Zusammenhangsmodelle: Komplementäre Güter q 1 = q 1 (p 1,p 2 ) = a bp 1 cp 2 q 1 = q 1 (p 1,p 2 ) = k 1 p α 1 pβ 2 gesucht: a,b,c bzw. k,α,β

24 Modell 11: Merkmal Y : Kosten für die Produktion von 2 Gütern G 1 und G 2 (y = C) Merkmal X 1 : Menge von G 1 (x 1 = q 1 ) Merkmal X 2 : Menge von G 2 (x 2 = q 2 ) Zusammenhangsmodelle: C = C(q 1,q 2 ) = aq 2 1 +bq 1q 2 +cq 2 2 +dq 1+eq 2 +f gesucht: a,b,c,d,e,f

25 Modell 12: Merkmal Y : Produktionsergebnis (y = Q) Merkmal X 1 : 1. Produktionsfaktor (x 1 = K) Merkmal X 2 : 2. Produktionsfaktor (x 2 = A) Zusammenhangsmodelle: Q = Q(K,A) = c K α A β gesucht: c,α,β

26 Modell 13: Merkmal Y : Produktionsergebnis (y = Q) Merkmal X 1 : 1. Produktionsfaktor (x 1 = K) Merkmal X 2 : 2. Produktionsfaktor (x 2 = A) Zusammenhangsmodelle: Q = Q(K,A) = (a K ρ + b A ρ ) 1/ρ gesucht: a,b,ρ

27 Nun werden n Messungen beider Merkmale durchgeführt. Ergebnis: n Messwertepaare (-tripel,...) (x 1,y 1 ), (x 2,y 2 ),...,(x n,y n ) die (z.b. auf Grund von Messfehlern) nicht genau auf einer dem Modell entsprechenden Kurve (Fläche) liegen werden. Ziel der Regressionsrechnung: Aus der Vielzahl aller möglichen Modellkurven (Modellflächen) soll die,,beste ausgewählt werden. Weg: Die Methode der kleinsten Quadrate

28 Teil 3 Die Methode der kleinsten Quadrate

29 gegeben Modellgleichung zwischen den Merkmalen X und Y n Messwertpaare y = f(x;a,b,c,...) (x 1,y 1 ), (x 2,y 2 ),...,(x n,y n ) Problem: Für jede (erlaubte) Wahl der Parameter a,b,c,... entsteht eine Funktion, die in das Modell passt. Welche approximiert meine Messwerte am Besten?

30 Lösung: Jeder möglichen Modellkurve (d.h. jeder Wahl der Parameter) wird das Strafmass F(a,b,c,...) = (y } i f(x i {{ ;a,b,c,...) } ) 2 e i zugeordnet, dessen Grösse die Abweichung dieser Kurve von den Messwerten ausdrückt. Dann suchen wir die Parameter â,ˆb,ĉ,... die diese Straffunktion minimieren. Notwendige Bedingungen: 0 = a F(a,b,c,...) 0 = b F(a,b,c,...) 0 = c F(a,b,c,...)....

31 Vektorschreibweise x = x 1 x 2. x n y = y 1 y 2. y n u = e = e 1 e 2. e n = y 1 f(x 1,a,b,c, ) y 2 f(x 2,a,b,c, ). y n f(x n,a,b,c, )

32 Teil 4 Lineare Regression

33 gegeben lineare Modellgleichung zwischen den Merkmalen X und Y n Messwertpaare y = f(x;a,b) = a + bx (x 1,y 1 ), (x 2,y 2 ),...,(x n,y n ) oder x = x 1 x 2. x n y = y 1 y 2. y n u = e = e 1 e 2. e n = y 1 a bx 1 y 2 a bx 2. y n a bx n = y au bx

34 Straffunktion F(a,b) = e 2 i = e e = (y au bx) (y au bx) = y y 2a u y 2b x y +a 2 u u + 2ab u x + b 2 x x

35 Notwendige Bedingungen für ein Extrema 0 = F(a,b) = 2a u u + 2b u x 2u y a 0 = F(a,b) = 2a u x + 2b x x 2x y b Als lineares Gleichungssystem ( u u u x u x x x ) ( a b ) = ( u y x y ) Nach Berechnung der Skalarprodukte n x i x i x 2 i ( a b ) = y i x i y i

36 Lösung mittels Cramerscher Regel: â = y i n n x 2 i n x 2 i ( x i x i ) 2 x i y i ˆb = n n n x i y i n x 2 i ( x i x i ) 2 y i

37 Aufgabe: Finden Sie eine einfache Bedingung dafür, dass das lineare Regressionsproblem ( ) ( ) ( ) u u u x a u y = u x x x b x y für jede rechte Seite eindeutig lösbar ist. Hinweis: Erinnern Sie sich zunächst unter welchen Bedingungen ein lineares Gleichungssystem eindeutig lösbar ist. Berechnen Sie dann det ( u u ) u x u x x x

38 Aufgabe 1: Die Werte x i y i liegen ungefähr auf einer Geraden. Bestimmen Sie die Gerade, die diese Daten bestmöglich approximiert ,0 1,5 2,0 2,5 3,0 3,5 4,0

39 Aufgabe 2: Gegeben sind die Daten x i y i Bestimmen Sie mit den Techniken der linearen Regression eine Funktion der Form f(x) = ae bx, die diese Daten gut approximiert. 3,0 2,5 2,0 1,5 1,0 0,5 0,

40 Teil 5 Quadratische Regression

41 gegeben quadratische Modellgleichung zwischen den Merkmalen X und Y y = f(x;a,b,c) = a + bx + cx 2 n Messwertpaare (x 1,y 1 ), (x 2,y 2 ),...,(x n,y n ) oder x = x 1 x 2. x n y = y 1 y 2. y n u = e = e 1 e 2. e n = y 1 a bx 1 cx 2 1 y 2 a bx 2 cx 2 2. y n a bx n cx 2 n

42 Straffunktion F(a,b,c) = (y i a bx i cx 2 i )2 Notwendige Bedingungen für ein Extrema 0 = a F(a,b,c) = 2 n 0 = b F(a,b,c) = 2 n 0 = c F(a,b,c) = 2 n (y i a bx i cx 2 i ) x i (y i a bx i cx 2 i ) x 2 i (y i a bx i cx 2 i )

43 Als lineares Gleichungssystem n x i x 2 i x i x 2 i x 3 i x 2 i x 3 i x 4 i a b c = y i x i y i x 2 i y i

44 Aufgabe 3: Gegeben sind die Daten x i y i Bestimmen Sie eine quadratische Funktion, die diese Daten gut approximiert

45 Lösung: Daten x i y i Arbeitstabelle: x i y i x 2 i x 3 i x 4 i x i y i x 2 i y i

46 Lösung: Daten x i y i Arbeitstabelle: x i y i x 2 i x 3 i x 4 i x i y i x 2 i y i Als lineares Gleichungssystem a b c =

47 Lösungen des linearen Gleichungssystems â = 1.2 ˆb = 2.1 ĉ = 4.5 Die quadratische Funktion f(x) = x + 4.5x 2 approximiert die Datenmenge bestmöglich! x

Eine Firma will den Zusammenhang zwischen Werbungskosten und Absatz untersuchen. Dazu nimmt sie zunächst eine Stichprobe dieser beiden Merkmale

Eine Firma will den Zusammenhang zwischen Werbungskosten und Absatz untersuchen. Dazu nimmt sie zunächst eine Stichprobe dieser beiden Merkmale Wirtschaftswissenschaftliches Zentrum 4 Universität Basel Statistik Dr. Thomas Zehrt Regression Motivation Eine Firma will den Zusammenhang zwischen Werbungskosten und Absatz untersuchen. Dazu nimmt sie

Mehr

Funktionen in zwei (und mehreren) Veränderlichen

Funktionen in zwei (und mehreren) Veränderlichen Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Herbstsemester 8 Funktionen in zwei (und mehreren) Veränderlichen Inhalt: 1. Definition und Beispiele.

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 3 Anwendungen der Differentialrechnung 3.1 Lokale Maxima und Minima Definition 16: Sei f : D R eine Funktion von n Veränderlichen. Ein Punkt x heißt lokale oder relative Maximalstelle bzw. Minimalstelle

Mehr

Extrema von Funktionen mit Nebenbedingung

Extrema von Funktionen mit Nebenbedingung Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen mit Nebenbedingung Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 8. Mai 2009 1 / 29 Bemerkung In der Vorlesung Elemente der Analysis I wurden Funktionen

Mehr

Inhaltsverzeichnis. Universität Basel 7 Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden. Mathematik 1

Inhaltsverzeichnis. Universität Basel 7 Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden. Mathematik 1 Universität Basel 7 Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematik 1 Dr. Thomas Zehrt Produktionsfunktionen Inhaltsverzeichnis 1 Homogene Funktionen 2 1.1 Definition und

Mehr

Über- und unterbestimmte Systeme

Über- und unterbestimmte Systeme Über- und unterbestimmte Systeme Über- und unterbestimmte Systeme (verallgemeinerte Lösungen) Ax = b ist genau dann für alle b R m eindeutig lösbar, wenn m = n und rk A = n. Falls m n oder rk A < min{m,

Mehr

Überbestimmte lineare Gleichungssysteme

Überbestimmte lineare Gleichungssysteme Überbestimmte lineare Gleichungssysteme Fakultät Grundlagen September 2009 Fakultät Grundlagen Überbestimmte lineare Gleichungssysteme Übersicht 1 2 Fakultät Grundlagen Überbestimmte lineare Gleichungssysteme

Mehr

Untersuchen Sie, ob die folgenden Abbildungen linear oder nicht linear sind. x y

Untersuchen Sie, ob die folgenden Abbildungen linear oder nicht linear sind. x y Aufgabe 1 Untersuchen Sie, ob die folgenden Abbildungen linear oder nicht linear sind. (( )) 3x x (a) Sei f : R 2 R 3 mit f = 2y + x y x y ( ) 4 (b) Sei f : R R 2 mit f(x) = x + 1 (( )) ( ) x x y (c) Sei

Mehr

Nichtlineare Ausgleichsrechnung

Nichtlineare Ausgleichsrechnung 10. Großübung Nichtlineare Ausgleichsrechnung Allgemeines Problem: Wir betrachten ein nichtlineares System F : R n R m mit (m > n, d.h. das System ist überbestimmt und F i (x g(t i ; x g i! 0 i 1,.., m.

Mehr

Elementare Regressionsrechnung

Elementare Regressionsrechnung Elementare Regressionsrechnung Motivation: Streudiagramm zweier metrisch skalierter Merkmale X und Y Y X Dr. Karsten Webel 107 Ziel: Erfassung des Zusammenhangs zwischen X und Y durch eine Gerade der Form

Mehr

18.2 Implizit definierte Funktionen

18.2 Implizit definierte Funktionen 18.2 Implizit definierte Funktionen Ziel: Untersuche Lösungsmengen von nichtlinearen Gleichungssystemen g(x) = 0 mit g : D R m, D R n, d.h. betrachte m Gleichungen für n Unbekannte mit m < n, d.h. wir

Mehr

d) Produkte orthogonaler Matrizen sind wieder orthogonal.

d) Produkte orthogonaler Matrizen sind wieder orthogonal. Die orthogonale Matrizen Definition: Eine Matrix Q R n n heißt orthogonal, falls QQ T = Q T Q = I gilt. Die Eigenschaften orthogonaler Matrizen: a) det(q) = ±1; b) Qx 2 = x 2 für alle x R n, also Q 2 =

Mehr

Kapitel 19 Partialbruchzerlegung

Kapitel 19 Partialbruchzerlegung Kapitel 19 Partialbruchzerlegung Mathematischer Vorkurs TU Dortmund Seite 1 / 15 Zur Erinnerung wiederholen wir Definition 4.5 [part] Es sei n N 0 und a 0, a 1,..., a n R mit a n 0. Dann heißt die Funktion

Mehr

Statistische Methoden

Statistische Methoden Modeling of Data / Maximum Likelyhood methods Institut für Experimentelle und Angewandte Physik Christian-Albrechts-Universität zu Kiel 22.05.2006 Datenmodellierung Messung vs Modell Optimierungsproblem:

Mehr

1 Singulärwertzerlegung und Pseudoinverse

1 Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung A sei eine Matrix mit n Spalten und m Zeilen. Zunächst sei n m. Bilde B = A A. Dies ist eine n n-matrix. Berechne die Eigenwerte von B. Diese

Mehr

3 Anwendungen der Differentialrechnung. (x 1, x 2,..., x n 1, x n ) f xn (x 1, x 2,..., x n 1, x n ), 1 i n 1. y + cos z

3 Anwendungen der Differentialrechnung. (x 1, x 2,..., x n 1, x n ) f xn (x 1, x 2,..., x n 1, x n ), 1 i n 1. y + cos z R Es sei f : R n D R eine einmal stetig differenzierbare Funktion, für die in einer Umgebung eines Punkte a = a 1, a,, a n D gilt: fa 1, a,, a n = 0, f xn a 1, a,, a n 0 Dann gibt es eines Umgebung U des

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Universität Basel Wirtschaftswissenschaftliches Zentrum Vektoren und Matrizen Dr. Thomas Zehrt Inhalt: 1. Vektoren (a) Einführung (b) Linearkombinationen (c) Länge eines Vektors (d) Skalarprodukt (e) Geraden

Mehr

Statistik II für Betriebswirte Vorlesung 12

Statistik II für Betriebswirte Vorlesung 12 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 12 11. Januar 2013 7.3. Multiple parameterlineare Regression Im Folgenden soll die

Mehr

Quadratische Formen und Definitheit

Quadratische Formen und Definitheit Universität Basel Wirtschaftswissenschaftliches Zentrum Quadratische Formen und Definitheit Dr. Thomas Zehrt Inhalt: 1. Quadratische Formen 2. Quadratische Approximation von Funktionen 3. Definitheit von

Mehr

3 *Flächenkurven und partielle Ableitungen* Flächenkurven Flächenkurven und partielle Ableitungen... 18

3 *Flächenkurven und partielle Ableitungen* Flächenkurven Flächenkurven und partielle Ableitungen... 18 Universität Basel 5 Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematik 1 Dr. Thomas Zehrt Funktionen in zwei oder mehreren Veränderlichen I Inhaltsverzeichnis 1 Einleitung

Mehr

Die Funktion f wird als Regressionsfunktion bezeichnet.

Die Funktion f wird als Regressionsfunktion bezeichnet. Regressionsanalyse Mit Hilfe der Techniken der klassischen Regressionsanalyse kann die Abhängigkeit metrischer (intervallskalierter) Zielgrößen von metrischen (intervallskalierten) Einflussgrößen untersucht

Mehr

3. Lineare Ausgleichsrechnung

3. Lineare Ausgleichsrechnung 3 Lineare Ausgleichsrechnung 1 Ausgleichsrechnung (1) Definition 31 (Ausgleichsproblem) Gegeben sind n Wertepaare (x i,y i ), i = 1,,n mit x i x j für i j Gesucht ist eine stetige Funktion f, die in einem

Mehr

Statistik II. Lineare Regressionsrechnung. Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II

Statistik II. Lineare Regressionsrechnung. Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II Statistik II Lineare Regressionsrechnung Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II - 09.06.2006 1 Mit der Kovarianz und dem Korrelationskoeffizienten können wir den statistischen

Mehr

( ) Lineare Gleichungssysteme

( ) Lineare Gleichungssysteme 102 III. LINEARE ALGEBRA Aufgabe 13.37 Berechne die Eigenwerte der folgenden Matrizen: ( ) 1 1 0 1 1 2 0 3 0 0, 2 1 1 1 2 1. 1 1 0 3 Aufgabe 13.38 Überprüfe, ob die folgenden symmetrischen Matrizen positiv

Mehr

f(x) = 1 5 ex c Roolfs

f(x) = 1 5 ex c Roolfs Krümmung Die lineare Näherung von Funktionen durch Geraden (Tangenten) bildet die Grundlage der Differentialrechnung. Quadratische Näherungen durch Parabeln werden bei Reihenentwicklungen betrachtet. Durch

Mehr

Mathematik 2 SS 2016

Mathematik 2 SS 2016 Mathematik 2 SS 2016 2. Übungsblatt Gruppe 1 18. Man zeige, dass die Gleichung f(x, y) = y 5 e y (2x 2 + 3) sin y + x 2 y 2 x cos x = 0 in einer Umgebung des Punktes P (0, 0) nach y aufgelöst werden kann,

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG. Sommer 2016

Lineare Algebra und Numerische Mathematik für D-BAUG. Sommer 2016 P. Grohs T. Welti F. Weber Herbstsemester 2015 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Name a a Note Vorname Leginummer Datum 19.08.2016 1 2 3 4 5 6 Total 7P 11P 10P 11P

Mehr

Ausgleichsproblem. Definition (1.0.3)

Ausgleichsproblem. Definition (1.0.3) Ausgleichsproblem Definition (1.0.3) Gegeben sind n Wertepaare (x i, y i ), i = 1,..., n mit x i x j für i j. Gesucht ist eine stetige Funktion f, die die Wertepaare bestmöglich annähert, d.h. dass möglichst

Mehr

Bericht zur Mathematischen Zulassungsprüfung im Oktober 2013

Bericht zur Mathematischen Zulassungsprüfung im Oktober 2013 Bericht zur Mathematischen Zulassungsprüfung im Oktober 03 Heinz-Willi Goelden, Wolfgang Lauf, Martin Pohl Am. Oktober 03 fand die Mathematische Zulassungsprüfung statt. Die Prüfung bestand aus einer 90-minütigen

Mehr

Kapitel X - Lineare Regression

Kapitel X - Lineare Regression Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel X - Lineare Regression Deskriptive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh Agenda 1 Untersuchung

Mehr

Kapitel 1. Matrizen und lineare Gleichungssysteme. 1.1 Matrizenkalkül (Vektorraum M(n,m); Matrixmultiplikation;

Kapitel 1. Matrizen und lineare Gleichungssysteme. 1.1 Matrizenkalkül (Vektorraum M(n,m); Matrixmultiplikation; Kapitel 1 Matrizen und lineare Gleichungssysteme 11 Matrizenkalkül (Vektorraum M(n,m; Matrixmultiplikation; Transposition; Spalten- und Zeilenvektoren Matrizen sind im Prinzip schon bei der schematischen

Mehr

Kreis - Kreisgleichung (+ Lagebeziehung Punkt / Kreis)

Kreis - Kreisgleichung (+ Lagebeziehung Punkt / Kreis) Kreis - Kreisgleichung (+ Lagebeziehung Punkt / Kreis. Kreisgleichung. Kreis durch 3 Punkte 3. Lage Punkt / Kreis. Kreisgleichung Ein Kreis mit dem Mittelpunkt M - Ortsvektor m - und dem Radius r ist beschrieben

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion Übungen zur Ingenieur-Mathematik III WS 11/1 Blatt 8 3.11.11 Aufgabe 5: Berechnen Sie den kritischen Punkt der Funktion fx, y 3x 5xy y + 3 und entscheiden Sie, ob ein Maximum, Minimum oder Sattelpunkt

Mehr

Über- und unterbestimmte

Über- und unterbestimmte Über- und unterbestimmte Systeme (verallgemeinerte Lösungen) Über- und unterbestimmte Systeme Ax = b ist genau dann für alle b R m eindeutig lösbar, wenn m = n und rk A = n. Falls m n oder rk A < min{m,

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmann W Wu Herbstsemester 26 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 2 Aufgabe 2 Welche der folgenden Aussagen sind korrekt? (i) Jedes

Mehr

Deskriptive Beschreibung linearer Zusammenhänge

Deskriptive Beschreibung linearer Zusammenhänge 9 Mittelwert- und Varianzvergleiche Mittelwertvergleiche bei k > 2 unabhängigen Stichproben 9.4 Beispiel: p-wert bei Varianzanalyse (Grafik) Bedienungszeiten-Beispiel, realisierte Teststatistik F = 3.89,

Mehr

Kapitel 10. Maschinelles Lernen Lineare Regression. Welche Gerade? Problemstellung. Th. Jahn. Sommersemester 2017

Kapitel 10. Maschinelles Lernen Lineare Regression. Welche Gerade? Problemstellung. Th. Jahn. Sommersemester 2017 10.1 Sommersemester 2017 Problemstellung Welche Gerade? Gegeben sind folgende Messungen: Masse (kg) 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Kraft (N) 1.6 2.2 3.2 3.0 4.9 5.7 7.1 7.3 8.1 Annahme: Es gibt eine Funktion

Mehr

3. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12)

3. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Technische Universität München Zentrum Mathematik PD Dr. Christian Karpfinger http://www.ma.tum.de/mathematik/g8vorkurs 3. Übung zum G8-Vorkurs Mathematik (WiSe 0/) Aufgabe 3.: Gehen Sie die Inhalte der

Mehr

10 Extremwerte mit Nebenbedingungen

10 Extremwerte mit Nebenbedingungen 10 Extremwerte mit Nebenbedingungen 49 10 Extremwerte mit Nebenbedingungen Wir betrachten nun Extremwertaufgaben, bei denen nach dem Extremwert einer fx 1,, x n gesucht wird, aber die Menge der zulässigen

Mehr

6.2. Prüfungsaufgaben zur Lösbarkeit von LGS

6.2. Prüfungsaufgaben zur Lösbarkeit von LGS 6.. Prüfungsaufgaben zur Lösbarkeit von LGS Aufgabe : Lösbarkeit von LGS () Berechne mit Hilfe des Gauß-Verfahrens die Lösungsmengen der drei folgenden inhomogenen Gleichungssysteme. Gib außerdem die Lösungsmengen

Mehr

3. Approximation von Funktionen und Extremwertprobleme im R n

3. Approximation von Funktionen und Extremwertprobleme im R n 3. Approximation von Funktionen und Extremwertprobleme im R n Wie in D ist es wichtig Funktionen mit mehreren Variablen durch Polynome lokal approximieren zu können. Polynome lassen sich im Gegensatz zu

Mehr

Klausur DI/LA F 2006 LA : 1

Klausur DI/LA F 2006 LA : 1 Klausur DI/LA F 26 LA : Aufgabe (4+2=6 Punkte): Gegeben seien die Matrix A und der Vektor b mit λ A = λ und b = λ a) Bestimmen Sie die Werte λ R, für welche das Gleichungssystem Ax = b genau eine, keine

Mehr

16. FUNKTIONEN VON MEHREREN VARIABLEN

16. FUNKTIONEN VON MEHREREN VARIABLEN 16. FUNKTIONEN VON MEHREREN VARIABLEN 1 Reelle Funktionen auf dem R 2 Wir betrachten Funktionen f(x 1, x 2 ) von zwei reellen Variablen x 1, x 2, z.b. f(x 1, x 2 ) = x 2 1 + x2 2, g(x 1, x 2 ) = x 2 1

Mehr

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei das folgende lineare Gleichungssystem: b a 2 3a 1

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei das folgende lineare Gleichungssystem: b a 2 3a 1 Name: Matr.-Nr.: 2 Aufgabe 1. Gegeben sei das folgende lineare Gleichungssystem: 1 1 0 2 b 1 1 2 4 1 1 4 6 x = 1 1. 2 2 2a 2 3a 1 (a) Bringen Sie das lineare Gleichungssystem auf Treppenform. (b) Für welche

Mehr

KLAUSUR. Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.:

KLAUSUR. Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.: KLAUSUR Lineare Algebra (E-Techniker/Mechatroniker/W-Ingenieure/Informatiker).3. (W. Koepf) Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.: Für jede Aufgabe gibt es Punkte. Zum Bestehen der Klausur

Mehr

QUADRATISCHE FUNKTIONEN

QUADRATISCHE FUNKTIONEN QUADRATISCHE FUNKTION DARSTELLUNG MIT DER FUNKTIONSGLEICHUNG Allgemeine Form - Vorzeichen von a gibt an, ob die Funktion nach oben (+) oder unten (-) geöffnet ist. Der Wert (Betrag) von gibt an, ob die

Mehr

M U = {x U f 1 =... = f n k (x) = 0}, (1)

M U = {x U f 1 =... = f n k (x) = 0}, (1) Aufgabe 11. a) Es sei M = {(x, y, z) R 3 f 1 = xy = 0; f = yz = 0}. Der Tangentialraum T x M muss in jedem Punkt x M ein R-Vektorraum sein und die Dimension 1 besitzen, damit diese Menge M eine Untermannigfaltigkeit

Mehr

Funktionen in zwei Variablen

Funktionen in zwei Variablen Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen, Band 1,

Mehr

P AP 1 = D. A k = P 1 D k P. = D k. mit P 0 3

P AP 1 = D. A k = P 1 D k P. = D k. mit P 0 3 Matrixpotenzen In Anwendungen müssen oft hohe Potenzen einer quadratischen Matrix berechnet werden Ist die Matrix diagonalisierbar, dann kann diese Berechnung wie folgt vereinfacht werden Sei A eine diagonalisierbare

Mehr

1993 III Aufgabe. In einem kartesischen Koordinatensystem sind die Gerade

1993 III Aufgabe. In einem kartesischen Koordinatensystem sind die Gerade 993 III Aufgabe In einem kartesischen Koordinatensystem sind die Gerade = g : X mit R sowie die beiden Punkte A( -) und C(- 2 ) gegeben. A und C bestimmen die Gerade h..a) Begründen Sie, dass der Mittelpunkt

Mehr

Einführung und Überblick

Einführung und Überblick Einführung und Überblick Thomas Zehrt Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Thomas Zehrt (Universität Basel) Einführung und Überblick 1 / 33 Outline 1

Mehr

Satz 142 (Partialbruchzerlegung)

Satz 142 (Partialbruchzerlegung) Satz 142 (Partialbruchzerlegung) Seien f, g K[x] (K = Q, R, C) Polynome mit grad(g) < grad(f), und es gelte f(x) = (x α 1 ) m1 (x α r ) mr mit N m i 1 und paarweise verschiedenen α i K (i = 1,, r) Dann

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden in Quantitative Methoden Mag. Dipl.Ing. Dr. Pantelis Christodoulides & Mag. Dr. Karin Waldherr SS 2011 Christodoulides / Waldherr in Quantitative Methoden- 2.VO 1/47 Historisches Regression geht auf Galton

Mehr

C. Eicher Analysis Study Center ETH Zürich HS Extremwerte

C. Eicher Analysis Study Center ETH Zürich HS Extremwerte C. Eicher Analysis Study Center ETH Zürich HS 05 Extremwerte Gelöste Aufgabenbeispiele:. Bestimme die lokalen und globalen Extrema der Funktion f(x) = x x + x auf dem Intervall [ 4, ]. a. Bestimmung der

Mehr

Einführung. Ablesen von einander zugeordneten Werten

Einführung. Ablesen von einander zugeordneten Werten Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,

Mehr

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 1

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 1 1.1 (Herbst 2005, Thema 1, Aufgabe 1) Bestimmen Sie alle reellen Lösungen des folgenden linearen

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x

Mehr

Lösbarkeit linearer Gleichungssysteme

Lösbarkeit linearer Gleichungssysteme Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn

Mehr

Analysis 2. f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt:

Analysis 2.  f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: Analysis 2 www.schulmathe.npage.de Aufgaben 1. Gegeben ist die Funktion f durch f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: f (x) = 6(x

Mehr

Übungsblatt

Übungsblatt Übungsblatt 3 3.5.27 ) Die folgenden vier Matrizen bilden eine Darstellung der Gruppe C 4 : E =, A =, B =, C = Zeigen Sie einige Gruppeneigenschaften: a) Abgeschlossenheit: Berechnen Sie alle möglichen

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (3 Punkte) Bestimmen Sie die Determinante der Matrix

Stroppel Musterlösung , 180min. Aufgabe 1 (3 Punkte) Bestimmen Sie die Determinante der Matrix Stroppel Musterlösung 7.., 8min Aufgabe Punkte Bestimmen Sie die Determinante der Matrix A =. Geben Sie alle Lösungen x des homogenen Gleichungssystems Ax = an. Entwicklung nach der ersten Spalte: deta

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 13. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 13. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Andreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.de Department Biologie II Telefon: 89-8-748 Großhadernerstr. Fax:

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Lineare Algebra und analytische Geometrie 1

Klausurenkurs zum Staatsexamen (WS 2014/15): Lineare Algebra und analytische Geometrie 1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Lineare Algebra und analytische Geometrie. (Herbst 2005, Thema, Aufgabe ) Bestimmen Sie alle reellen Lösungen des folgenden linearen Gleichungssystems:.2

Mehr

Statistik II. Regressionsrechnung+ Regressionsanalyse. Statistik II

Statistik II. Regressionsrechnung+ Regressionsanalyse. Statistik II Statistik II Regressionsrechnung+ Regressionsanalyse Statistik II - 16.06.2006 1 Regressionsrechnung Nichtlineare Ansätze In einigen Situation könnte man einen nichtlinearen Zusammenhang vermuten. Bekannte

Mehr

D-INFK Lineare Algebra HS 2018 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11

D-INFK Lineare Algebra HS 2018 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11 D-INFK Lineare Algebra HS 2018 Özlem Imamoglu Olga Sorkine-Hornung Serie 11 1. In dieser Aufgabe wollen wir die Parameter einer gewissen Modellfunktion aus ein paar gemessenen Werten bestimmen. Das Modell

Mehr

die täglichen Schlusskurse eines börsengehandelten Wertpapiers,

die täglichen Schlusskurse eines börsengehandelten Wertpapiers, Wirtschaftswissenschaftliches Zentrum 5 Universität Basel Statistik Dr. Thomas Zehrt Zeitreihen Motivation Typische Beispiele für Zeitreihen sind die täglichen Schlusskurse des SMI Nummer 1 2 3 4 5 Datum

Mehr

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren Länge eines Vektors und Abstand von zwei Punkten Aufgabe Bestimme die Länge des Vektors x. Die Länge beträgt: x ( ) =. Skalarprodukt und Winkel zwischen Vektoren Aufgabe Es sind die Eckpunkte A(; ), B(

Mehr

(3D-)Extrema unter Nebenbedingungen. Problemstellung (lokale Optimierung)

(3D-)Extrema unter Nebenbedingungen. Problemstellung (lokale Optimierung) (3D-)Extrema unter Nebenbedingungen Wir beschränken uns wieder (meistens) auf Funktionen von zwei Variablen x, y. Bei drei oder mehr Variablen x 1,..., x n sind die gleichen Techniken analog anwendbar,

Mehr

1 Höhere Ableitungen 2. 2 Mittelwertsatz und Monotonie 3. 3 Konvexe und konkave Funktionen 5. 4 Lokale und globale Extremalstellen 7

1 Höhere Ableitungen 2. 2 Mittelwertsatz und Monotonie 3. 3 Konvexe und konkave Funktionen 5. 4 Lokale und globale Extremalstellen 7 Universität Basel 4 Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematik 1 Dr. Thomas Zehrt Kurvendiskussionen Inhaltsverzeichnis 1 Höhere Ableitungen 2 2 Mittelwertsatz und

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 9. Aufgabe 9.1. Herbstsemester Dr. V. Gradinaru D. Devaud A.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 9. Aufgabe 9.1. Herbstsemester Dr. V. Gradinaru D. Devaud A. Dr V Gradinaru D Devaud A Hiltebrand Herbstsemester 2014 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 9 Aufgabe 91 91a) Sei A eine n n-matrix Das Gleichungssystem Ax

Mehr

Thema 10 Gewöhnliche Differentialgleichungen

Thema 10 Gewöhnliche Differentialgleichungen Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 5

Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Prof. Dr. Norbert Pietralla/Sommersemester 2012 c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe 1: Berechnen Sie den Abstand d der Punkte P 1 und

Mehr

Determinanten. I. Permutationen

Determinanten. I. Permutationen Determinanten Durch Bildung der Determinante wird einer quadratischen (! Matrix eine gewisse Zahl zuordnet. Die Determinante tritt besonders bei Fragen der Flächen- bzw. Volumsberechnung auf (siehe auch

Mehr

Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1

Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1 Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1 1. (a) Lösen Sie das lineare Gleichungssystem für die Werte a = 1, b = 2. x + 3y + 2z = 0 2x + ay + 3z = 1 3x + 4y + z = b (b) Für welche Werte von

Mehr

Klausur Mathematik I

Klausur Mathematik I Klausur Mathematik I E-Techniker/Mechatroniker/Informatiker/W-Ingenieure). März 007 Hans-Georg Rück) Aufgabe 6 Punkte): a) Berechnen Sie alle komplexen Zahlen z mit der Eigenschaft z z = und z ) z ) =.

Mehr

Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung. x = x 2 e x 1.

Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung. x = x 2 e x 1. Name: Matrikel-Nr.: 1 Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung R 3 R 2, x 1 f : x 1 + e x2 2 sin(x3 ) x = x 2 e x 1 (1 + x 2 1 + x, 2x 3 )

Mehr

1 Die Strahlensätze 2. 2 Winkel 3. 3 Rechtwinklige Dreiecke 3. 4 Kreise 6. 5 Trigonometrische Funktionen 8. 6 Kurven in Parameterdarstellung 10

1 Die Strahlensätze 2. 2 Winkel 3. 3 Rechtwinklige Dreiecke 3. 4 Kreise 6. 5 Trigonometrische Funktionen 8. 6 Kurven in Parameterdarstellung 10 Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Geometrie Inhaltsverzeichnis 1 Die Strahlensätze 2 2 Winkel 3 3 Rechtwinklige

Mehr

Aufgaben / Lösungen der Klausur Nr. 4 vom Juni 2002 im LK 12. nx ln(x)dx

Aufgaben / Lösungen der Klausur Nr. 4 vom Juni 2002 im LK 12. nx ln(x)dx Aufgaben / Lösungen der Klausur Nr. 4 vom Juni 2002 im LK 2 Aufgabe ) a) Berechne für alle natürlichen Zahlen n N das Integral e nx ln(x)dx. Mit Hilfe der partiellen Integration für f (x) = nx, somit f(x)

Mehr

Vermischte Aufgaben zu Mathematische Grundlagen der Ökonomie

Vermischte Aufgaben zu Mathematische Grundlagen der Ökonomie Aufgabe : Vermischte Aufgaben zu Mathematische Grundlagen der Ökonomie Bilden die Lösungsmengen der folgenden linearen Gleichungssysteme jeweils einen Unterraum des IR 3? Begründen Sie. (i) (ii) + 3 =

Mehr

Übung 3: Unternehmenstheorie

Übung 3: Unternehmenstheorie Übung 3: Unternehmenstheorie Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Intermediate Microeconomics HS 11 Unternehmenstheorie 1 / 42 Produktion Zur Erinnerung: Grenzprodukt

Mehr

Übungen zur Analysis II Blatt 27 - Lösungen

Übungen zur Analysis II Blatt 27 - Lösungen Prof. Dr. Torsten Wedhorn SoSe 22 Daniel Wortmann Übungen zur Analysis II Blatt 27 - Lösungen Aufgabe 5: 6+6+6* Punkte Bestimme alle lokalen Extrema der folgenden Funktionen: a b c* f : R 3 R g : R 2 R

Mehr

ELEMENTE. Grundkompetenzen DER MATHEMATIK. für die neue Reifeprüfung. Mit Lösungen

ELEMENTE. Grundkompetenzen DER MATHEMATIK. für die neue Reifeprüfung. Mit Lösungen 5 ELEMENTE DER MATHEMATIK GK Grundkompetenzen für die neue Reifeprüfung Mit Lösungen Die Formulierung der Grundkompetenzen (GK) bezieht sich auf den Stand von August 2010. 1. Auflage, 2010 Gesamtherstellung:

Mehr

y (k) (0) = y (k) y(z) = c 1 e αz + c 2 e βz. c 1 + c 2 = y 0 k=1 k=1,...,m y k f k (x)

y (k) (0) = y (k) y(z) = c 1 e αz + c 2 e βz. c 1 + c 2 = y 0 k=1 k=1,...,m y k f k (x) 9 Ausgleichsrechnung 9.1 Problemstelllung Eine Reihe von Experimenten soll durchgeführt werden unter bekannten Versuchsbedingungen z Ê m. Es sollen Größen x Ê n bestimmt werden, für die ein Gesetz gelten

Mehr

Hauptprüfung Fachhochschulreife Baden-Württemberg

Hauptprüfung Fachhochschulreife Baden-Württemberg Hauptprüfung Fachhochschulreife 01 Baden-Württemberg Aufgabe 7 Mathematik in der Praxis Hilfsmittel: grafikfähiger Taschenrechner Berufskolleg Alexander Schwarz www.mathe-aufgaben.com Februar 015 1 7.1

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 1

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Lineare Algebra und analytische Geometrie. (Herbst 2005, Thema, Aufgabe ) Bestimmen Sie alle reellen Lösungen des folgenden linearen Gleichungssystems:.2

Mehr

Determinanten. I. Permutationen

Determinanten. I. Permutationen Determinanten Durch Bildung der Determinante wird einer quadratischen (! Matrix eine gewisse Zahl zuordnet. Die Determinante tritt besonders bei Fragen der Flächen- bzw. Volumsberechnung auf (siehe auch

Mehr

Optimieren unter Nebenbedingungen

Optimieren unter Nebenbedingungen Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht

Mehr

1 Einstimmung 2. 2 Die Reduktionsmethode 5. 3 Die Methode der Lagrange-Multiplikatoren 6. 4 *Ergänzungen und Verallgemeinerungen* 10

1 Einstimmung 2. 2 Die Reduktionsmethode 5. 3 Die Methode der Lagrange-Multiplikatoren 6. 4 *Ergänzungen und Verallgemeinerungen* 10 Universität Basel 9 Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematik 1 Dr. Thomas Zehrt Extremwertprobleme mit Nebenbedingung Inhaltsverzeichnis 1 Einstimmung 2 2 Die Reduktionsmethode

Mehr

Folgerungen aus dem Auflösungsatz

Folgerungen aus dem Auflösungsatz Folgerungen aus dem Auflösungsatz Wir haben in der Vorlesung den Satz über implizite Funktionen (Auflösungssatz) kennen gelernt. In unserer Formulierung lauten die Resultate: Seien x 0 R m, y 0 R n und

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R. Käppeli L. Herrmann W. Wu Herbstsemester 2016 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 6 Aufgabe 6.1 Berechnen Sie die Determinanten der beiden

Mehr

4x 1 + 2x 2 + 3x 3 = 1, x 2 + ax 3 = 1, ax 2 + x 3 = a 1. 0 a 1 1 Wir führen nun den Gauÿalgorithmus durch:

4x 1 + 2x 2 + 3x 3 = 1, x 2 + ax 3 = 1, ax 2 + x 3 = a 1. 0 a 1 1 Wir führen nun den Gauÿalgorithmus durch: Aufgabe 8 Punkte Bestimmen Sie die Lösungsmenge in R in Abhängigkeit von a R des folgenden linearen Gleichungssystems: 4x + x + 3x 3 =, x + ax 3 =, ax + x 3 =. Lösung. Wir schreiben das lineare Gleichungssystem

Mehr

Mathematik für Studierende der Fachrichtungen Biologie, Chemie, Lebensmittelchemie und Erziehungswissenschaften Blatt 2

Mathematik für Studierende der Fachrichtungen Biologie, Chemie, Lebensmittelchemie und Erziehungswissenschaften Blatt 2 Fakultät Mathematik WS 27/8 Institut für Mathematische Stochastik / Institut für Analysis Dr. W. Kuhlisch, Dr. F. Morherr Mathematik für Studierende der Fachrichtungen Biologie, Chemie, Lebensmittelchemie

Mehr

Vorkurs Mathematik (Allgemein) Übungsaufgaben

Vorkurs Mathematik (Allgemein) Übungsaufgaben Justus-Liebig-Universität Gießen Fachbereich 07 Mathematisches Institut Vorkurs Mathematik (Allgemein) Übungsaufgaben PD Dr. Elena Berdysheva Aufgabe. a) Schreiben Sie die folgenden periodischen Dezimalzahlen

Mehr

Öffnen Sie den Klausurbogen erst nach Aufforderung! Mathematische Grundlagen II (CES) SS 2017 Klausur

Öffnen Sie den Klausurbogen erst nach Aufforderung! Mathematische Grundlagen II (CES) SS 2017 Klausur Prof. Dr. Manuel Torrilhon Prof. Dr. Sebastian Noelle Öffnen Sie den Klausurbogen erst nach Aufforderung! Zugelassene Hilfsmittel: Mathematische Grundlagen II (CES) SS 2017 Klausur 07.08.2017 Dokumentenechtes

Mehr

Probeklausur xj = 3x

Probeklausur xj = 3x Probeklausur.) (4P) Bestimmen Sie die Lösungen von j4 xj = 3x.) (3P) Berechnen Sie mittels Horner-Schema die Polynomdivision f(x) : (x+) mit Rest, wobei f(x) = x 3 +x 5 ist. Welchen Funktionswert können

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler. (a) Bestimmen Sie die kartesische Form von Wintersemester 7/8 (..8) z = ( + i)( i) + ( + i). (b) Bestimmen Sie sämtliche komplexen Lösungen

Mehr