Marcus Hudec. Statistik 2 für SoziologInnen. Grenzwertsätze. Marcus Hudec. Statistik für SoziologInnen 1 Zentraler Grenzwertsatz

Größe: px
Ab Seite anzeigen:

Download "Marcus Hudec. Statistik 2 für SoziologInnen. Grenzwertsätze. Marcus Hudec. Statistik für SoziologInnen 1 Zentraler Grenzwertsatz"

Transkript

1 Statistik 2 für SoziologInnen Grenzwertsätze Marcus Hudec Statistik für SoziologInnen 1 Zentraler Grenzwertsatz

2 Inhalte Themen dieses Kapitels sind: Der zentrale Grenzwertsatz und seine Bedeutung für die angewandte Statistik Standardfehler versus Standardabweichung Simulation von Stichprobenziehungen und Anwendungsbeispiele aus der empirischen Sozialforschung Das Gesetz der großen Zahl Die Approximation der Binomialverteilung durch die Normalverteilung (Grenzwertsatz von Moivre Laplace) Statistik für SoziologInnen 2 Zentraler Grenzwertsatz

3 Zentraler Grenzwertsatz Die Normalverteilung verdankt ihre universelle theoretische und praktische Bedeutung dem zentralen Grenzwertsatz. Unabhängig von der konkreten Ausgangsverteilung konvergiert nämlich die Verteilungsfunktion einer Summe gegen die Normalverteilung. (sehr grob formuliert) Ist die Anzahl der Summanden (n) hinreichend groß, so kann in der Praxis die Verteilung einer Summe durch die Normalverteilung approximiert werden. Die Frage, ab wann n hinreichend groß ist, hängt von der gewünschten Genauigkeit und der Form der Ausgangsverteilung ab. Statistik für SoziologInnen 3 Zentraler Grenzwertsatz

4 Verteilung von Summen Beispiel: Würfelwurf Frage: Wie verhält sich die Verteilung der Augensumme von x-würfeln bei wachsendem n? Zur Beantwortung führen wir ein Simulationsexperiment durch. 600 Würfe mit 1 Würfel 600 Würfe mit 2 Würfel 600 Würfe mit 3 Würfel etc. Statistik für SoziologInnen 4 Zentraler Grenzwertsatz

5 Augenzahl - 1 Würfel n= Statistik für SoziologInnen 5 Zentraler Grenzwertsatz

6 Augenzahl - 2 Würfel n= Statistik für SoziologInnen 6 Zentraler Grenzwertsatz

7 Summe der Augenzahlen - 3 Würfel n= Statistik für SoziologInnen 7 Zentraler Grenzwertsatz

8 Summe der Augenzahlen - 5 Würfel n= Statistik für SoziologInnen 8 Zentraler Grenzwertsatz

9 Summe der Augenzahlen - 10 Würfel n= Statistik für SoziologInnen 9 Zentraler Grenzwertsatz

10 Summe der Augenzahlen - 30 Würfel n= Statistik für SoziologInnen 10 Zentraler Grenzwertsatz

11 Zentraler Grenzwertsatz Seien X 1, X 2,..., X n identisch verteilte, unabhängige Zufallsvariablen mit E(X i ) = und V(X i ) = ²>0 Dann gilt für die Verteilung Summe S n = X 1 + X X n Erwartungswert E(S n ) = n und Varianz V(S n ) = n ². Statistik für SoziologInnen 11 Zentraler Grenzwertsatz

12 Zentraler Grenzwertsatz Seien X 1, X 2,..., X n identisch verteilte, unabhängige Zufallsvariablen mit E(X i ) = und V(X i ) = ²>0 Dann konvergiert die Verteilung der standardisierten Summe Xi n Zn n 2 mit wachsendem n gegen eine Normalverteilung mit Erwartungswert E(Z n ) = 0 und Varianz V(Z n ) = 1. Z n ~ N(0, 1²) Statistik für SoziologInnen 12 Zentraler Grenzwertsatz

13 Simulation.xls Theoretische Verteilung: Eine Simulation Wiederholte Simulationen Verteilung der Summe X Prob(X=x) Prob(X x) Index Zufallszahl Nachfrage Index Summe Bereich Häufigkeit Theorie 0 0,4 0,4 1 0, bis ,0 1 0,3 0,7 2 0, bis ,2 2 0,2 0,9 3 0, bis ,2 3 0, , bis ,6 5 0, bis ,9 Empirischische Verteilung: 6 0, bis ,8 X Anzahl Rel. Häuf. 7 0, bis , ,34 8 0, bis , ,29 9 0, bis , , , bis , , , bis , , bis ,8 Summe: , bis ,9 14 0, bis ,6 15 0, bis ,2 16 0, bis ,2 17 0, bis ,0 18 0, bis ,0 19 0, bis ,0 20 0, bis ,0 21 0, bis ,12847E 06 0, , Prob(X=x) 23 0, Häufigkeit der Summe 24 0, Rel. Häuf ,4 Theorie 25 0, , ,3 27 0, , , ,2 30 0, , ,1 32 0, , , , , bis36 bis bis bis bis 96 bis bis bis bis bis bis bis bis bis bis bis bis bis bis bis bis 37 0, , Statistik für SoziologInnen 13 Zentraler Grenzwertsatz

14 Erkenntnis Wir haben ein Merkmal, das eindeutig nicht normalverteilt ist. Wenn wir viele Stichproben ziehen und uns dabei von jeder Stichprobe die Merkmalsumme merken, beobachten wir, dass die Verteilung der Merkmalsumme (bzw. auch der Mittelwerte) sich sehr gut an eine Normalverteilung annähert. Statistik für SoziologInnen 14 Zentraler Grenzwertsatz

15 Beispiel Wahrscheinlichkeitsfunktion für die Anzahl der Verkäufe pro Tag eines bestimmten Produkts sei 0,5 bekannt 0,4 X ,3 0,2 Prob 0,4 0,3 0,2 0,1 0,1 Wie ist die Anzahl der Verkäufe pro 100 Tage (X100) verteilt, wenn die einzelnen Verkaufstage als unabhängig angesehen werden können? Wie groß ist die Wahrscheinlichkeit, dass X100 > 120 ist? X100=X 1 +X X Statistik für SoziologInnen 15 Zentraler Grenzwertsatz

16 Beispiel (Fortsetzung) X Prob 0,4 0,3 0,2 0,1 X*Prob 0 0,3 0,4 0,3 ==> E(X)=1 X²*Prob 0 0,3 0,8 0,9 ==> E(X²)=2 V(X) = 2-1² = 1 E(X100)=100 V(X100)=100 X100~N(100, 100) z.b.: P(X100>120) = 1-F N (( )/10) = 1-F N (2)=0,023 Statistik für SoziologInnen 16 Zentraler Grenzwertsatz

17 Beispiel (Fortsetzung) Wie lautet das zentrale Schwankungsintervall, für das gilt, dass der Verkauf an 100 Tagen mit einer Wahrscheinlichkeit von 50% in diesem Intervall zu liegen kommt? P(x u <X100<x o )=0,50 P(z 0,25 <(X )/10<z 0,75 )=0,50 P(-0,674<(X )/10<0,674)=0,50 P(93,26<X<106,74)=0,50 93,26 0,5 106, Statistik für SoziologInnen 17 Zentraler Grenzwertsatz

18 Anwendung des zentralen Grenzwertsatzes auf Mittelwert Seien X 1, X 2,..., X n identisch verteilte, unabhängige Zufallsvariablen mit E(X i ) = und V(X i ) = ²>0 Dann gilt für die Verteilung des arithmetischen Mittels x n = 1/n(X 1 + X X n ) Erwartungswert E(x n ) = und Varianz V(x n ) = ²/n. i) Auch das arithmetisch Mittel ist der Stichprobe ist eine Zufallsvariable ii) Die Standardabweichung des arithm. Mittels wird auch Standardfehler bezeichnet Statistik für SoziologInnen 18 Zentraler Grenzwertsatz

19 Anwendung des zentralen Grenzwertsatzes auf Mittelwert Seien X 1, X 2,..., X n identisch verteilte, unabhängige Zufallsvariablen mit E(X i ) = und V(X i ) = ²>0 Dann konvergiert die Verteilung des standardisierten Mittelwertes 1 X n i x Zn 2 2 / n / n mit wachsendem n gegen eine Normalverteilung mit Erwartungswert E(Z n ) = 0 und Varianz V(Z n ) = 1. Z n ~ N(0, 1²) Statistik für SoziologInnen 19 Zentraler Grenzwertsatz

20 Standardfehler Die Varianz bzw. die Standardabweichung des arithmetischen Mittels ergibt sich also durch: 2 2 x / 2 / n / x n n Der Mittelwert schwankt weniger stark als die Einzelwerte Die Standardabweichung des Mittelwertes wird auch als Standardfehler (standard error) bezeichnet. Wurzel-n Gesetz: Doppelte Genauigkeit benötigt vierfachen Stichprobenumfang! Statistik für SoziologInnen 20 Zentraler Grenzwertsatz

21 Standard Error.xls Scorewerte zwischen 0 und 100 bei n=100 Personen gemessen Arithmetisches Mittel 49,6 Standardabweichung 31,8 Drücken Sie F9 für eine neue Stichprobenziehung Wir ziehen 10 mal eine zufällige Stichprobe von 9 Beobachtungen Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 9 Sample arithm. Mittel 22,9 49,7 57,2 46,7 29,1 47,6 50,4 33,8 50,6 56,1 Standardfehler 10,6 Std.Abw. der 10 Stichprobenmittelwerte 11,1 Statistik für SoziologInnen 21 Zentraler Grenzwertsatz

22 Beispiel: Analyse der Grundgesamtheit (1) Canadian Survey of Labour and Income Dynamics Stundenlohn von n = Angestellten Min st Qu Median Mean rd Qu Max Frequency Lohn Statistik für SoziologInnen 22 Zentraler Grenzwertsatz

23 Beispiel: Analyse der Grundgesamtheit (2) Var(Lohn) = 62,14 Std.Abw.(Lohn) = 7,88 VC = 50,7% Gedanken-Experiment: Angenommen anstelle der Gesamtheit hätten wir nur eine Stichprobe des Umfangs von n=100 Was könnten wir daraus über den Durchschnittslohn lernen? Statistik für SoziologInnen 23 Zentraler Grenzwertsatz

24 Eine konkrete Stichprobe sample(lohn, 100) Mean = Wir haben für die Stichprobe zufällig n=100 von Personen ausgewählt. Der Stichprobenmittelwert liegt rund 1$ über dem wahren Mittelwert. Offensichtlich waren in dieser konkreten Stichprobe gut verdienende Personen eher überrepräsentiert. Was würde nun passieren, wenn wir nicht eine Stichprobe sondern viele verschiedene Stichproben ziehen würden? Wir bekommen dann natürlich viele verschiedene Stichprobenmittelwerte! Statistik für SoziologInnen 24 Zentraler Grenzwertsatz

25 Wiederholte Stichproben In der Folge betrachten wir zufällige Stichproben vom Umfang n=100. Jeder dieser Stichproben liefert natürlich im allgemeinen einen individuellen Wert für den Durchschnittslohn. Aus der Analyse dieser verschiedenen Schätzwerte für den Durchschnittslohn können wir allgemeine Eigenschaften erkennen, die die zuvor dargestellten theoretischen Ergebnisse bestätigen und transparent machen. In der Praxis liegt natürlich nur eine Stichprobe vor, weshalb wir uns auf die Theorie verlassen müssen! Statistik für SoziologInnen 25 Zentraler Grenzwertsatz

26 Analyse von Stichproben mit Umfang n=100 Density Histogramm der Mittelwerte smx Min Mean Max Var 0.60 Stand.Abw Die Standard-Abweichung der Mittelwerte bezeichnen wir als Standardfehler. Er quantifiziert wie genau wir mit einer Stichprobe von n Elementen liegen! Im Beispiel gilt n=100 Statistik für SoziologInnen 26 Zentraler Grenzwertsatz

27 Analyse von Stichproben mit Umfang n=100 Im Durchschnitt treffen wir mit unseren Stichproben den unbekannten Durchschnittslohn der Gesamtheit (15,55) mit 15,53 sehr genau. ( Erwartungstreue) Im Einzelfall einer Stichprobe können wir aber auch deutlich daneben liegen (13,37 bis 18,77), daher sollten wir bei einer Stichprobe nicht einfach nur den Mittelwert kommunizieren, sondern auch die Unsicherheit aufgrund der Tatsache, dass es sich um ein Stichprobenergebnis handelt. Die Verteilung der arithmetischen Mittelwerte entspricht einer Normalverteilung. Die Standard-Abweichung der Mittelwerte (0,77) bezeichnen wir als Standardfehler. Er erlaubt uns zu quantifizieren, wie genau wir mit einer Stichprobe von n Elementen liegen. Beachte: die Standard-Abweichung der Einzelwerte beträgt Die Formel für den Standardfehler ist die Standard-Abweichung der Einzelwerte dividiert durch die Wurzel aus dem Stichprobenumfang 7,78/Wurzel(100)=0,778 was sehr nahe an unserem Wert liegt Statistik für SoziologInnen 27 Zentraler Grenzwertsatz

28 Beispiel Das mittlere Haushaltseinkommen in einer Stadt betrage ,- mit einer Standardabweichung von 6.200,-. Für eine empirische Untersuchung wird eine Zufallsstichprobe von n=400 Haushalten gezogen. Wie hoch ist die Wahrscheinlichkeit, in der Stichprobe ein mittleres Jahreseinkommen von weniger als ,- zu beobachten? x400 ~ N(32.600;6.200² / 400) Ex ( ) Vx ( ) 6.200² / x Px ( ) ( ) ( 1,935) 0, Beachte: Einkommen sind typischerweise rechtsschief verteilt, dennoch können wir unter der Annahme von n identisch verteilten unabhängigen Realisierungen einer ZV für das arithmetische Mittel die Normalverteilung heranziehen Statistik für SoziologInnen 28 Zentraler Grenzwertsatz

29 Beispiel Wie hoch ist die Wahrscheinlichkeit, in der Stichprobe von n=400 Haushalten ein mittleres Jahreseinkommen zu beobachten, dass nur um 500 vom wahren Wert in der Grundgesamtheit abweicht? [- also zwischen ,- und ,- zu liegen kommt] x 400 ~ N(32.600;6.200² / 400) Ex ( ) Vx ( ) 6.200² / x P( x ) ( ) ( ) (1,613) ( 1,613) 0,893 Statistik für SoziologInnen 29 Zentraler Grenzwertsatz

30 Beispiel Wie hoch ist die Wahrscheinlichkeit, in der Stichprobe von n=400 Haushalten ein mittleres Jahreseinkommen zu beobachten, dass nur um 250 vom wahren Wert in der Grundgesamtheit abweicht? [- also zwischen ,- und ,- zu liegen kommt] x 400 ~ N(32.600;6.200² / 400) Ex ( ) Vx ( ) 6.200² / x P( x ) ( ) ( ) (0,806) ( 0,806) 0,58 Statistik für SoziologInnen 30 Zentraler Grenzwertsatz

31 Grenzwertsatz von De Moivre und Laplace Falls X binomialverteilt ist mit den Parametern n und p [es sei also X~Bi(n, p)] so gilt: X n p np ( 1 p) N(,) 01 Die Normalverteilung kann zur Approximation der Binomialverteilung verwendet werden! Beachte E(X) = n. p und V(X) = n. p. (1-p) Die Güte der Anpassung hängt dabei von n und p ab. (Wenn p nahe 1/2 und n möglichst groß ist, so steigt die Güte) Faustregel: np>10 und n(1-p)>10 Statistik für SoziologInnen 31 Zentraler Grenzwertsatz

32 n= 10 p= x Statistik für SoziologInnen 32 Zentraler Grenzwertsatz

33 Im Vergleich zum vorherigen Bild hat sich die Anpassung verbessert. n= 20 p= Statistik für SoziologInnen 33 Zentraler Grenzwertsatz

34 Im Vergleich zum vorherigen Bild hat sich die Anpassung wieder verschlechtert. n= 20 p= Statistik für SoziologInnen 34 Zentraler Grenzwertsatz

35 n= 100 p= Sehr gute Anpassung Statistik für SoziologInnen 35 Zentraler Grenzwertsatz

36 Beispiel: Prognose des Rücklaufs Bei einer bestimmten schriftlichen Befragung weiß man aus Erfahrung, dass etwa 20% der Befragten tatsächlich antworten. Es werden n=5.000 Fragebogen versandt. X sei die Anzahl der Antworter E(X) = 5.000*0,2 = Var(X)=5.000*0,2*0,8 = 800 X~N(1.000, 800) Std.Abw.(X) =28 Mehr als Antworten: P(X>1.000) = 0,5 Mehr als Antworten: P(X>1.200) = 0,0 95% Intervall für die Anzahl der zu erwartenden Antworten: P( ,96*28<X< ,96*28) = 0,95 P(945<X<1055) = 0,95 Statistik für SoziologInnen 36 Zentraler Grenzwertsatz

37 n= 5000 p= 0.2 n= 5000 p= 0.2 y y x x Statistik für SoziologInnen 37 Zentraler Grenzwertsatz

38 y n= 500 p= 0.2 y n= 500 p= x x Statistik für SoziologInnen 38 Zentraler Grenzwertsatz

39 n= 50 p= 0.2 n= 50 p= y x Statistik für SoziologInnen 39 Zentraler Grenzwertsatz y x

40 n= 5 p= 0.2 n= 5 p= y x Statistik für SoziologInnen 40 Zentraler Grenzwertsatz y x

41 Stetigkeitskorrektur Bei der Approximation der Binomialverteilung (diskrete ZV) durch die Normalverteilung (stetige ZV) ist eine Stetigkeitskorrektur (Kontinuitätskorrektur) zu berücksichtigen. Die diskrete P(X=x) entspricht im stetigen Fall P(X<x+0,5) - P(X<x-0,5) P( X bzw. P( X x 0,5 np x 0,5 np x) np(1 p) np(1 p) x 0,5 np x) np(1 p) Statistik für SoziologInnen 41 Zentraler Grenzwertsatz

42 Beispiel: In einer Bevölkerung sind 60% der Bürger für die Einführung eines neuen Gesetzes. Wie wahrscheinlich ist es, genau 50 Befürworter in einer Stichprobe vom Umfang n=100 zu haben? Binomialverteilung PX ( ) *, *,, Näherung mit Normalverteilung PX ( 50) ( 1939, ) ( 2, 143) 0, , , 0102 Statistik für SoziologInnen 42 Zentraler Grenzwertsatz

43 Visualisierung des Beispiels Wahrscheinlichkeit der Binomialvert./Dichte der Normalvert Die Summe der Wahrscheinlichkeiten der Binomialverteilung (graue Linien) ergibt 1. Das Integral der Dichte der Normalverteilung ergibt ebenfalls 1. Jeder grauen Linie entspricht ein blau schraffiertes Rechteck (das Anwendungsbeispiel ist rot markiert)! Anzahl der Befürworter Statistik für SoziologInnen 43 Zentraler Grenzwertsatz

44 Beispiel: In einer Bevölkerung sind 60% der Bürger für die Einführung eines neuen Gesetzes. Wie groß ist die Wahrscheinlichkeit, dass sich in einer Stichprobe von 10 (100) Personen, weniger als 5 (50) Befürworter des Gesetzes finden? a) Binomialverteilung mit n=10 und p=0.6 P(X<5)=P(X=0) + P(X=1) P(X=4)= =0.166 (Exaktes Ergebnis durch Einsetzen in die Formel der Binomialverteilung) Statistik für SoziologInnen 44 Zentraler Grenzwertsatz

45 Beispiel: b) Bei einer Stichprobe von n=100 gibt es 2 Lösungswege: b1) Einsetzen in die Formel der Binomialverteilung mit n=100 und p=0.6 P(X<50)=P(X=0) + P(X=1) P(X=49)= b2) Approximation durch Normalverteilung X~N(60; 24) n.p=100*0,6=60 n.p.(1-p)=60*0,4=24 Wurzel(n.p.(1-p))=4,899 P(X 49) = F N ((49+0,5-60)/4,899)= F N (-2,14)=0,0160 Statistik für SoziologInnen 45 Zentraler Grenzwertsatz

46 Visualisierung des Beispiels Normalverteilung Binomialverteilung Anzahl Prob. kum. Prob. Anzahl kum. Prob. 49,0 0,0068 0, ,0 0, ,5 0, ,0 0,0103 0, ,0 0,0206 Statistik für SoziologInnen 46 Zentraler Grenzwertsatz

47 Gesetz der großen Zahlen Eng verwandt mit dem zentralen Grenzwertsatz ist, das Gesetz der großen Zahl Das schwache Gesetz der großen Zahlen lautet: Px ( ) 0 für n n Vereinfacht formuliert bedeutet das Gesetz der großen Zahlen, dass mit wachsendem n (Stichprobenumfang), die Wahrscheinlichkeit für eine Abweichung des Stichprobenmittelwertes vom Erwartungswert der Grundgesamtheit ( ), welche absolut größer als ist, gegen null geht. Statistik für SoziologInnen 47 Zentraler Grenzwertsatz

48 Beispiel: Die durchschnittliche Lottozahl Beim Lotto 6 aus 45 werden die Zahlen 1-45 gleichverteilt gezogen. Der Mittelwert einer Ziehung liegt theoretisch bei 23 [(45+1)/2] Bei einzelnen Ziehungen schwankt dieser Mittelwert deutlich. Der Mittelwert über alle 90 Ziehungen des Jahres 2003 beträgt 23,70. Der Mittelwert über 1218 Ziehungen beträgt 23,09. LOTTO Zahlen 2003 Datum Rd Zahlen Mittelwert Mi , So , Mi , So , Mi , So , Mi , So , Mi , So , Mi , So , Mi , So , Mi ,17 Statistik für SoziologInnen 48 Zentraler Grenzwertsatz

49 Bernoullis Gesetz der großen Zahlen Überträgt man das schwache Gesetz der großen Zahlen auf die n-malige Durchführung eines Bernouilli-Experimentes mit konstanter Wahrscheinlichkeit p, dann gilt für die relative Häufigkeit f n : P( f p ) 0 für n n Vereinfacht formuliert bedeutet dies, dass mit wachsendem n (Stichprobenumfang), die Wahrscheinlichkeit für eine Abweichung der relativen Häufigkeit von der konstanten Erfolgswahrscheinlichkeit, welche absolut größer als ist, gegen null geht. Statistik für SoziologInnen 49 Zentraler Grenzwertsatz

50 Gesetz der großen Zahlen Das Gesetz der großen Zahlen besagt auch, dass sich die relative Häufigkeit der Erfolge bei Wiederholung eines Bernoulli-Zufallsexperiments immer weiter an die theoretisch erwartete Erfolgswahrscheinlichkeit p annähert, je häufiger das Zufallsexperiment durchgeführt wird. Beachte: Dies gilt nicht für die absolute Anzahl der Erfolge! Sei X n die Anzahl der Erfolge bei n unabhängigen Wiederholungen, so gilt V(X n )=n.p.(1-p). Sei f n die relative Häufigkeit der Erfolge bei n unabhängigen Wiederholungen, so gilt f n =X n /n V(f n )=p.(1-p)/n Statistik für SoziologInnen 50 Zentraler Grenzwertsatz

51 Kein absoluter Ausgleich Entwicklung des Anteils der Erfolge 70,0% 65,0% 60,0% 55,0% 50,0% 45,0% Die Schwankungsbreite für die absolute Abweichung nimmt beständig zu. 40,0% 35,0% beobachteter Anteil UG ANTEIL OG ANTEIL 600 Entwicklung der Anzahl der Erfolge 30,0% Die relative Häufigkeit wird immer genauer. Anzahl der Erfolge beobachtete Anzahl UG ANZAHL OG ANZAHL ERWARTUNG Anzahl der Münzwürfe Statistik für SoziologInnen 51 Zentraler Grenzwertsatz

52 Binäres Experiment 0,50 50,0 40,0 0,25 30,0 20,0 10,0 0,00 0,0-10,0-0,25-20,0-30,0 relative Abweichung absolute Abweichung -40,0-0,50-50, Statistik für SoziologInnen 52 Zentraler Grenzwertsatz

53 Was wir uns merken sollten Summen und Mittelwerte sind aufgrund des zentralen Grenzwertsatzes häufig normalverteilt Der Standardfehler (Standardabweichung des Mittelwertes) ist die Standardabweichung der Einzelwerte dividiert durch die Wurzel des Stichprobenumfangs Das Gesetz der großen Zahl gilt für relative Häufigkeiten nicht für absolute Häufigkeiten Falls np>10 und n(1-p)>10 kann die Binomialverteilung durch die Normalverteilung approximiert werden (beachte dabei die Stetigkeitskorrektur) Statistik für SoziologInnen 53 Zentraler Grenzwertsatz

von x-würfeln bei wachsendem n? Zur Beantwortung führen wir ein Simulationsexperiment durch.

von x-würfeln bei wachsendem n? Zur Beantwortung führen wir ein Simulationsexperiment durch. Zentraler Grenzwertsatz Die Normalverteilung verdankt ihre universelle theoretische und praktische Bedeutung dem zentralen Grenzwertsatz. Unabhängig von der konkreten k Ausgangsverteilung konvergiert die

Mehr

von x-würfeln bei wachsendem n? Zur Beantwortung führen wir ein Simulationsexperiment durch.

von x-würfeln bei wachsendem n? Zur Beantwortung führen wir ein Simulationsexperiment durch. Zentraler Grenzwertsatz Die Normalverteilung verdankt ihre universelle theoretische und praktische Bedeutung dem zentralen Grenzwertsatz. Unabhängig von der konkreten k Ausgangsverteilung konvergiert nämlich

Mehr

Zentraler Grenzwertsatz

Zentraler Grenzwertsatz Statistik 2 für SoziologInnen Zentraler Grenzwertsatz Univ.Prof. Dr. Marcus Hudec Statistik für SoziologInnen 1 Zentraler Grenzwertsatz Inhalte Themen dieses Kapitels sind: Der zentrale Grenzwertsatz und

Mehr

Verteilung von Summen

Verteilung von Summen Verteilung von Summen Beispiel: Würfelwurf Frage: Wie verhält sich die Verteilung der Augensumme von -Würfeln bei wachsendem? Zur Beantwortung führen wir ein Simulationseperiment durch. 6 Würfe mit 1 Würfel

Mehr

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind:

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind: Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Inhalte Themen dieses Kapitels sind: Das Konzept stetiger Zufallsvariablen Die

Mehr

Marcus Hudec. Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Statistik 2 für SoziologInnen 1 Normalverteilung

Marcus Hudec. Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Statistik 2 für SoziologInnen 1 Normalverteilung Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Inhalte Themen dieses Kapitels sind: Das Konzept stetiger Zufallsvariablen Die

Mehr

Modelle diskreter Zufallsvariablen

Modelle diskreter Zufallsvariablen Statistik 2 für SoziologInnen Modelle diskreter Zufallsvariablen Univ.Prof. Dr. Marcus Hudec Zufallsvariable Eine Variable (Merkmal) X, deren numerische Werte als Ergebnisse eines Zufallsvorgangs aufgefasst

Mehr

Marcus Hudec. Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Statistik 2 für SoziologInnen 1 Normalverteilung

Marcus Hudec. Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Statistik 2 für SoziologInnen 1 Normalverteilung Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Stetige Zufalls-Variable Erweitert man den Begriff der diskreten Zufallsvariable

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec

Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec Binomialverteilung Jakob Bernoulli (1654-1705) Ars Conjectandi Klassisches Verteilungsmodell für die Berechnung der Wahrscheinlichkeit für die Häufigkeit des Eintretens von Ereignissen in bestimmten noch

Mehr

Standardnormalverteilung

Standardnormalverteilung Standardnormalverteilung 1720 erstmals von Abraham de Moivre beschrieben 1809 und 1816 grundlegende Arbeiten von Carl Friedrich Gauß 1870 von Adolphe Quetelet als "ideales" Histogramm verwendet alternative

Mehr

Hypergeometrische Verteilung

Hypergeometrische Verteilung Hypergeometrische Verteilung Typischer Anwendungsfall: Ziehen ohne Zurücklegen Durch den Ziehungsprozess wird die Wahrscheinlichkeit des auch hier zu Grunde liegenden Bernoulli-Experimentes verändert.

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilung diskreter Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle Patric Müller ETHZ Teil VIII Zentraler Grenzwertsatz und Vertrauensintervalle WBL 17/19, 29.05.2017 Wahrscheinlichkeit

Mehr

Konzept diskreter Zufallsvariablen

Konzept diskreter Zufallsvariablen Statistik 1 für SoziologInnen Konzept diskreter Zufallsvariablen Univ.Prof. Dr. Marcus Hudec Beispiel: Zufallsvariable 3 Münzen werden unabhängig voneinander geworfen. Jede Münze kann entweder Kopf oder

Mehr

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus

Mehr

7. Grenzwertsätze. Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012

7. Grenzwertsätze. Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 7. Grenzwertsätze Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Mittelwerte von Zufallsvariablen Wir betrachten die arithmetischen Mittelwerte X n = 1 n (X 1 + X 2 + + X n ) von unabhängigen

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilung diskreter Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Beispiel: Zufallsvariable

Beispiel: Zufallsvariable Beispiel: Zufallsvariable 3 Münzen werden unabhängig voneinander geworfen. Jede Münze kann entweder Kopf oder Zahl zeigen. Man ist nur an der Zahl der Köpfe interessiert. Anzahl Kopf Elementarereignis

Mehr

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

Exponentialverteilung

Exponentialverteilung Exponentialverteilung Dauer von kontinuierlichen Vorgängen (Wartezeiten; Funktionszeiten technischer Geräte) Grenzübergang von der geometrischen Verteilung Pro Zeiteinheit sei die Eintrittswahrscheinlichkeit

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Mai 2011 Waldherr / Christodoulides Einführung in Quantitative Methoden- 8.VO 1/40 Poisson-Verteilung Diese Verteilung

Mehr

Tabelle 11.2 zeigt die gemeinsame Wahrscheinlichkeitsfunktion und die Randverteilungen

Tabelle 11.2 zeigt die gemeinsame Wahrscheinlichkeitsfunktion und die Randverteilungen Kapitel 11 Stichprobenfunktionen Um eine Aussage über den Wert eines unbekannten Parameters θ zu machen, zieht man eine Zufallsstichprobe vom Umfang n aus der Grundgesamtheit. Das Merkmal wird in diesem

Mehr

Modellanpassung und Parameterschätzung. A: Übungsaufgaben

Modellanpassung und Parameterschätzung. A: Übungsaufgaben 7 Modellanpassung und Parameterschätzung 1 Kapitel 7: Modellanpassung und Parameterschätzung A: Übungsaufgaben [ 1 ] Bei n unabhängigen Wiederholungen eines Bernoulli-Experiments sei π die Wahrscheinlichkeit

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Korollar 116 (Grenzwertsatz von de Moivre)

Korollar 116 (Grenzwertsatz von de Moivre) Ein wichtiger Spezialfall das Zentralen Grenzwertsatzes besteht darin, dass die auftretenden Zufallsgrößen Bernoulli-verteilt sind. Korollar 116 (Grenzwertsatz von de Moivre) X 1,..., X n seien unabhängige

Mehr

1 Stochastische Konvergenz 2

1 Stochastische Konvergenz 2 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

Statistik Einführung // Stichprobenverteilung 6 p.2/26

Statistik Einführung // Stichprobenverteilung 6 p.2/26 Statistik Einführung Kapitel 6 Statistik WU Wien Gerhard Derflinger Michael Hauser Jörg Lenneis Josef Leydold Günter Tirler Rosmarie Wakolbinger Statistik Einführung // 6 p.0/26 Lernziele 1. Beschreiben

Mehr

Standardnormalverteilung

Standardnormalverteilung Standardnormalverteilung 1720 erstmals von Abraham de Moivre beschrieben 1809 und 1816 grundlegende Arbeiten von Carl Friedrich Gauß 1870 von Adolphe Quetelet als "ideales" Histogramm verwendet alternative

Mehr

Modelle diskreter Zufallsvariablen

Modelle diskreter Zufallsvariablen Statistik 2 für SoziologInnen Modelle diskreter Zufallsvariablen Univ.Prof. Dr. Marcus Hudec Zufallsvariable Eine Variable (Merkmal) X, deren numerische Werte als Ergebnisse eines Zufallsvorgangs aufgefasst

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc.

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc. Abiturvorbereitung Stochastik neue friedländer gesamtschule Klasse 12 GB 24.02.2014 Holger Wuschke B.Sc. Siedler von Catan, Rühlow 2014 Organisatorisches 0. Begriffe in der Stochastik (1) Ein Zufallsexperiment

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 206 Prof. Dr. Stefan Etschberger HSA Unabhängigkeit von Ereignissen A, B unabhängig: Eintreten von A liefert keine Information über P(B). Formal: P(A

Mehr

Weierstraß-Institut für Angewandte Analysis und Stochastik Universalität der Fluktuationen: Warum ist alles Gauß-verteilt?

Weierstraß-Institut für Angewandte Analysis und Stochastik Universalität der Fluktuationen: Warum ist alles Gauß-verteilt? Weierstraß-Institut für Angewandte Analysis und Stochastik Universalität der Fluktuationen: Warum ist alles Gauß-verteilt? Wolfgang König Technische Universität Berlin und Weierstraß-Institut Berlin Mohrenstraße

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg 2 R. 06-206 (Persike) R. 06-214 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 20/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt 4 Lösungshinweise (ohne Ganantie auf Fehlerfreiheit. Wenn man beim Roulette auf Rot oder Schwarz setzt, erhält

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Zufallsvariable Erinnerung: Merkmal, Merkmalsausprägung Deskriptive Statistik:

Mehr

Vorlesung 7a. Der Zentrale Grenzwertsatz

Vorlesung 7a. Der Zentrale Grenzwertsatz Vorlesung 7a Der Zentrale Grenzwertsatz als Erlebnis und Das Schwache Gesetz der Großen Zahlen Wiederholung: Die Normalverteilung Dichtefunktion ϕ der Standardnormalverteilung ϕ(x) 0.0 0.1 0.2 0.3 0.4

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/39 Biostatistik, Sommer 2017 Wahrscheinlichkeitstheorie: Gesetz der großen Zahl, Zentraler Grenzwertsatz Schließende Statistik: Grundlagen Prof. Dr. Achim Klenke http://www.aklenke.de 9. Vorlesung: 16.06.2017

Mehr

Kapitel 2 Wahrscheinlichkeitsrechnung

Kapitel 2 Wahrscheinlichkeitsrechnung Definition 2.77: Normalverteilung & Standardnormalverteilung Es sei µ R und 0 < σ 2 R. Besitzt eine stetige Zufallsvariable X die Dichte f(x) = 1 2 πσ 2 e 1 2 ( x µ σ ) 2, x R, so heißt X normalverteilt

Mehr

1 Dichte- und Verteilungsfunktion

1 Dichte- und Verteilungsfunktion Tutorium Yannick Schrör Klausurvorbereitungsaufgaben Statistik Lösungen Yannick.Schroer@rub.de 9.2.26 ID /455 Dichte- und Verteilungsfunktion Ein tüchtiger Professor lässt jährlich 2 Bücher drucken. Die

Mehr

Stichproben Parameterschätzung Konfidenzintervalle:

Stichproben Parameterschätzung Konfidenzintervalle: Stichproben Parameterschätzung Konfidenzintervalle: Beispiel Wahlprognose: Die Grundgesamtheit hat einen Prozentsatz p der Partei A wählt. Wenn dieser Prozentsatz bekannt ist, dann kann man z.b. ausrechnen,

Mehr

WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X.

WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X. Fragenkatalog zur Übung Methoden der empirischen Sozialforschung WS 2014/15 Hier finden Sie die denkbaren Fragen zum ersten Teil der Übung. Das bedeutet, dass Sie zu diesem Teil keine anderen Fragen im

Mehr

Einführung in die (induktive) Statistik

Einführung in die (induktive) Statistik Einführung in die (induktive) Statistik Typische Fragestellung der Statistik: Auf Grund einer Problemmodellierung sind wir interessiert an: Zufallsexperiment beschrieben durch ZV X. Problem: Verteilung

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können.

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. 2 Zufallsvariable 2.1 Einführung Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. Eine Zufallsvariable X ordnet jedem elementaren Versuchsausgang

Mehr

1.5 Erwartungswert und Varianz

1.5 Erwartungswert und Varianz Ziel: Charakterisiere Verteilungen von Zufallsvariablen durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere: a) durchschnittlicher Wert Erwartungswert, z.b.

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/52 Biostatistik, Sommer 2017 Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 02.06.2017 2/52 Inhalt 1 Wahrscheinlichkeit Bayes sche Formel 2 Diskrete Stetige 3/52 Wahrscheinlichkeit Bayes

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Noémie Becker & Dirk Metzler http://evol.bio.lmu.de/_statgen 7. Juni 2013 1 Binomialverteilung 2 Normalverteilung 3 T-Verteilung

Mehr

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2

Mehr

Statistik I für Betriebswirte Vorlesung 13

Statistik I für Betriebswirte Vorlesung 13 Statistik I für Betriebswirte Vorlesung 13 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 6. Juli 2017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 13 Version: 7. Juli

Mehr

Grundlegende Eigenschaften von Punktschätzern

Grundlegende Eigenschaften von Punktschätzern Grundlegende Eigenschaften von Punktschätzern Worum geht es in diesem Modul? Schätzer als Zufallsvariablen Vorbereitung einer Simulation Verteilung von P-Dach Empirische Lage- und Streuungsparameter zur

Mehr

Spezielle stetige Verteilungen

Spezielle stetige Verteilungen Spezielle stetige Verteilungen schon bekannt: Die Exponentialverteilung mit Parameter k R, k > 0 hat die Dichte f (x) = ke kx für x 0 und die Verteilungsfunktion F (x) = 1 e kx für x 0. Eigenschaften Für

Mehr

Basiswissen Daten und Zufall Seite 1 von 8 1 Zufallsexperiment Ein Zufallsexperiment ist ein Versuchsaufbau mit zufälligem Ausgang, d. h. das Ergebnis kann nicht vorhergesagt werden. 2 Ergebnis (auch Ausgang)

Mehr

4.4 Punktschätzung. E(X 1 )+ +E(X n ) Var(ˆµ) = 1 n 2 ( Var(X1 )+ +Var(X n ) ) = 1 n 2nσ2 = σ2

4.4 Punktschätzung. E(X 1 )+ +E(X n ) Var(ˆµ) = 1 n 2 ( Var(X1 )+ +Var(X n ) ) = 1 n 2nσ2 = σ2 4 4.4 Punktschätzung Wir betrachten eine endliche oder unendliche Grundgesamtheit, zum Beispiel alle Studierenden der Vorlesung Mathe II für Naturwissenschaften. Im endlichen Fall soll die Anzahl N ihrer

Mehr

Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung

Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung R. Brinkmann http://brinkmann-du.de Seite 5.05.0 Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung Erwartungswert binomialverteilter Zufallsgrößen Wird ein Bernoulli- Versuch, bei

Mehr

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5 Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am 5..201 von 10:00 bis 11:00 Uhr Bearbeiten Sie zwei der drei folgenden Aufgaben! Sätze aus der Vorlesung und den Übungen dürfen Sie ohne

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 23. Dezember 2011 1 Stetige Zufallsvariable, Normalverteilungen Der zentrale Grenzwertsatz und die 3-Sigma Regel

Mehr

Institut für Biometrie und klinische Forschung. WiSe 2012/2013

Institut für Biometrie und klinische Forschung. WiSe 2012/2013 Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie (3) Überblick. Deskriptive Statistik I 2. Deskriptive

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Motivation. Benötigtes Schulwissen. Übungsaufgaben. Wirtschaftswissenschaftliches Zentrum 10 Universität Basel. Statistik

Motivation. Benötigtes Schulwissen. Übungsaufgaben. Wirtschaftswissenschaftliches Zentrum 10 Universität Basel. Statistik Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Statistik Dr. Thomas Zehrt Ausblick Motivation Wir werfen einen Würfel 000-mal und wir möchten die Wahrscheinlichkeit P bestimmen, dass zwischen

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Ausgewählte spezielle Verteilungen

Ausgewählte spezielle Verteilungen Ausgewählte spezielle Verteilungen In Anwendungen werden oft Zufallsvariablen betrachtet, deren Verteilung einem Standardmodell entspricht. Zu den wichtigsten dieser Modelle gehören: diskrete Verteilungen:

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

M13 Übungsaufgaben / pl

M13 Übungsaufgaben / pl Die Histogramme von Binomialverteilungen werden bei wachsendem Stichprobenumfang n immer flacher und breiter. Dem Maximum einer solchen Verteilung kommt daher keine allzu große Wahrscheinlichkeit zu. Vielmehr

Mehr

8 Stichprobenkennwerteverteilung

8 Stichprobenkennwerteverteilung 8 Stichprobenkennwerteverteilung 8.1 Vorbemerkungen 8.2 Die Normalverteilung: Teil 2 8.3 Die t Verteilung 8.4 Normalverteilungs Approximation: Der zentrale Grenzwertsatz 8.1 Vorbemerkungen Daten x 1,...,

Mehr

Statistische Inferenz

Statistische Inferenz Statistische Inferenz Prinzip der statistischen Inferenz Datensätze = Stichproben aus einer Gesamtpopulation (meistens) Beispiel : Messung der Körpertemperatur von 106 gesunden Individuen man vermutet,

Mehr

Wird ein Bernoulli- Versuch, bei dem die Trefferwahrscheinlichkeit p = 0,2 ist, n = 40 mal durchgeführt, dann erwarten wir im Mittel 8 Treffer.

Wird ein Bernoulli- Versuch, bei dem die Trefferwahrscheinlichkeit p = 0,2 ist, n = 40 mal durchgeführt, dann erwarten wir im Mittel 8 Treffer. R. Brinkmann http://brinkmann-du.de Seite 1 06.1008 Erwartungswert binomialverteilter Zufallsgrößen. Wird ein Bernoulli- Versuch, bei dem die Trefferwahrscheinlichkeit p = 0,2 ist, n = 40 mal durchgeführt,

Mehr

Prüfung aus Statistik 1 für SoziologInnen. Musterlösung

Prüfung aus Statistik 1 für SoziologInnen. Musterlösung Prüfung aus Statistik 1 für SoziologInnen Gesamtpunktezahl =80 1) Wissenstest (maximal 20 Punkte) Prüfungsdauer: 2 Stunden Musterlösung Kreuzen ( ) Sie die jeweils richtige Antwort an. Jede richtige Antwort

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 11. November 2010 1 Erwartungswert und Varianz Erwartungswert Varianz und Streuung Rechenregeln Binomialverteilung

Mehr

Wahrscheinlichkeitsrechnung und schließende Statistik

Wahrscheinlichkeitsrechnung und schließende Statistik Karl Mosler Friedrich Schmid Wahrscheinlichkeitsrechnung und schließende Statistik Vierte, verbesserte Auflage Springer Inhaltsverzeichnis 0 Einführung 1 1 Zufalls Vorgänge und Wahrscheinlichkeiten 5 1.1

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-431 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de WS 2008/2009

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Noémie Becker & Dirk Metzler 31. Mai 2016 Inhaltsverzeichnis 1 Binomialverteilung 1 2 Normalverteilung 2 3 T-Verteilung

Mehr

6. Schätzverfahren für Parameter

6. Schätzverfahren für Parameter 6. Schätzverfahren für Parameter Ausgangssituation: Ein interessierender Zufallsvorgang werde durch die ZV X repräsentiert X habe eine unbekannte Verteilungsfunktion F X (x) Wir interessieren uns für einen

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungen stetiger Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Zusammenfassung PVK Statistik

Zusammenfassung PVK Statistik Zusammenfassung PVK Statistik (Diese Zusammenfassung wurde von Carlos Mora erstellt. Die Richtigkeit der Formeln ist ohne Gewähr.) Verteilungen von diskreten Zufallsvariablen Beschreibung Binomialverteilung

Mehr

Mehrdimensionale Zufallsvariablen

Mehrdimensionale Zufallsvariablen Mehrdimensionale Zufallsvariablen Im Folgenden Beschränkung auf den diskreten Fall und zweidimensionale Zufallsvariablen. Vorstellung: Auswerten eines mehrdimensionalen Merkmals ( ) X Ỹ also z.b. ω Ω,

Mehr

Kapitel IV - Spezielle Verteilungen: Diskrete Verteilungen

Kapitel IV - Spezielle Verteilungen: Diskrete Verteilungen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel IV - Spezielle Verteilungen: Diskrete Verteilungen Markus Höchstötter Lehrstuhl

Mehr

13 Grenzwertsätze Das Gesetz der großen Zahlen

13 Grenzwertsätze Das Gesetz der großen Zahlen 13 Grenzwertsätze 13.1 Das Gesetz der großen Zahlen Der Erwartungswert einer zufälligen Variablen X ist in der Praxis meist nicht bekannt. Um ihn zu bestimmen, sammelt man Beobachtungen X 1,X 2,...,X n

Mehr

7.2 Theoretische Kennwerte

7.2 Theoretische Kennwerte 7.2 Theoretische Kennwerte Theoretische Varianz und Standardabweichung Definition und Notation Verschiebungsformel für die theoretische Varianz 391 7.2 Theoretische Kennwerte Interpretation der theoretischen

Mehr

1.6 Der Vorzeichentest

1.6 Der Vorzeichentest .6 Der Vorzeichentest In diesem Kapitel soll der Vorzeichentest bzw. Zeichentest vorgestellt werden, mit dem man Hypothesen bezüglich des Medians der unabhängig und identisch stetig verteilten Zufallsvariablen

Mehr

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist.

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. .3. Stochastik Grundlagen Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. Die RELATIVE HÄUFIGKEIT einer Merkmalsausprägung gibt an mit welchem Anteil

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s X. Zufallsgrößen ================================================================= 10.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)

Mehr

Übungen mit dem Applet Zentraler Grenzwertsatz

Übungen mit dem Applet Zentraler Grenzwertsatz Zentraler Grenzwertsatz 1 Übungen mit dem Applet Zentraler Grenzwertsatz 1 Statistischer Hintergrund... 1.1 Zentraler Grenzwertsatz... 1. Beispiel Würfeln... 1.3 Wahrscheinlichkeit und relative Häufigkeit...3

Mehr

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler Philipp Sibbertsen Hartmut Lehne Statistik Einführung für Wirtschafts- und Sozialwissenschaftler 2., überarbeitete Auflage 4^ Springer Gabler Inhaltsverzeichnis Teil I Deskriptive Statistik 1 Einführung

Mehr

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19 Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, 2016 6:34 P.M. Page 11 Inhaltsverzeichnis Über die Übersetzerin 9 Einleitung 19 Was Sie hier finden werden 19 Wie dieses Arbeitsbuch aufgebaut ist

Mehr

Aufgabe 8: Stochastik (WTR)

Aufgabe 8: Stochastik (WTR) Abitur Mathematik: Nordrhein-Westfalen 2013 Aufgabe 8 a) (1) WAHRSCHEINLICHKEIT FÜR KEINE ANGABE ERMITTELN Nach der Laplace Formel ist Anzahl der Personen, die keine Angabe machten keine Angabe Gesamtzahl

Mehr

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme Binomialverteilung Wahrscheinlichkeitsfunktion Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder

Mehr

Wahrscheinlichkeitstheorie. Alea iacta est!

Wahrscheinlichkeitstheorie. Alea iacta est! Wahrscheinlichkeitstheorie Alea iacta est! "Wissenschaftliche Theorien, die auf Eigenschaften einer großen Zahl von Individuen rekurrieren, [...] werden anfällig gegen Fehlinterpretationen, wenn man die

Mehr

Schließende Statistik

Schließende Statistik Schließende Statistik [statistical inference] Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr