Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Maschinelles Lernen II. Clustering

Größe: px
Ab Seite anzeigen:

Download "Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Maschinelles Lernen II. Clustering"

Transkript

1 Uverstät Potsdam Isttut für Iformatk Lehrstuhl Maschelles Lere Maschelles Lere II Clusterg Matthas Bussas / Nels Ladwehr Tobas Scheffer

2 Motvato 2

3 Motvato 3

4 Clusterg Gegebe: Objekte V = { x,...,x } 1 Dstazfukto dst x,x j 0 oder Ählchketsfukto Erwartete Clusterazahl P 1,...Pk P P j =, P = V = 1... hoher tra-cluster-ählchket Zel: Partto, wobe mt edrger ter-cluster-ählchket k w = sm x,x 0 j j 4

5 Iter-Cluster Metrke Efacher Abstad = d P,P m dst v,w m j v P, w P j Kompletter Abstad = d P,P max dst v,w max j v P,w P Durchschttsabstad 1 dmea P,Pj dst v,w P P v P w Pj Abstad der Zetrode 1 1 dcet ( P,Pj ) = dst v, v P v P P j v Pj = j j 5

6 Optmales Clusterg Problem: Berechug des globale Optmum bezüglch der ter- ud tra-cluster-ählchket st NP schwer. Approxmato otwedg: Heurstk (Herarchsches Clusterg) Relaxato (Spectral Clusterg) EM-Algorthmus (ächste VL) 6

7 Überblck Herarchsches Cluster Bottom Up Top Dow Graph-basertes Cluster Ählchketsgraph Mmaler Schtt 7

8 Überblck Herarchsches Cluster Bottom Up Top Dow Graph-basertes Cluster Ählchketsgraph Mmaler Schtt 8

9 Herarchsches Cluster Ages (Algorthmus) Geg.: Objekte V, Iter-Cluster Metrk Setze Solage uterschedlche Cluster exstere v w bereche m. Dstaz über alle c,c C 1 s,t = arg m d c,c ; D = m d c,c Setze 0 {{ } } C = x x V ( v w ) ( v w v,w v, w ) v s t C = { c v s, t} { c c } Lefere C,C,... zurück 0 1 d 9

10 Herarchsches Cluster Agglomeratve Coeffcet s s Se mk = d c, xk, wobe c das Cluster st, mt dem m -te Schrtt verschmolze wurde ( { }) v s { } { { k} } C = c v s, t c x Agglomeratve Coeffcet : 1 m AC = 1 0,1 = 1 Dfal [ ] E Maß für de Qualtät ees Clustergs Ncht geeget um Datesätze uterschedlcher Größe zu vergleche x k 10

11 Überblck Herarchsches Cluster Bottom Up Top Dow Graph-basertes Cluster Ählchketsgraph Mmaler Schtt 11

12 Herarchsches Cluster Daa Bottom up: alle möglche Fusoe werde 2 betrachtet 2 1 Top dow: 1 möglche Splts 12

13 Herarchsches Cluster Daa (Algorthmus) Geg.: Objekte V, Iter-Cluster Metrk Setze Solage mehr-elemetge Cluster exstere Bestmme Cluster mt höchste Durchmesser c = arg max max d s,t Bestmme uählchstes Elemet ud setze Solage max D v 0, wobe Setze Lefere C0 = { V} c C v c 1 ( { }) c s = arg max d v,c v = v c c c = c { t} zurück s, t c > v c t arg max D v C 0,C 1,... ( { } ) { } { } C = C c c c c 1 d c = { s} = ( c) d ( v, ) D v d v,c c 13

14 Herarchsches Cluster Dvsve Coeffcet Se da, der Durchmesser des Cluster aus dem das Objekt v zu letzt herausgelöst wurde (bs es ezel war) Dvsve Coeffcet: 1 DC = da = 1 E Maß für de Qualtät ees Clustergs Ncht geeget um Datesätze uterschedlcher Größe zu vergleche 14

15 Überblck Herarchsches Cluster Bottom Up Top Dow Graph-basertes Cluster Ählchketsgraph Mmaler Schtt 15

16 Graphe-basertes Cluster Ählchketsgraph Ählchkete zwsche Datepukte V (Kote) blde gewchtete Kate: 16

17 Graphe-basertes Cluster Ählchketsgraph Ählchkete zwsche Datepukte V (Kote) blde gewchtete Kate: Vollstädger Graph: Kategewchte = Ählchket k-graph: Kate, we Kote (oder j) eer der k ächste Nachbar vo j (bzw. ) ε -Nachbarschaftsgraph: Kate, we dst v,v < ε ( j ) 17

18 Graphe-basertes Cluster Deftoe Gewchtete Adjazezmatrx Kotegrad-Matrx Laplace-Matrx uormalsert Symmetrsch ormalsert w w W = w1 w 11 1 d1 0 D = d = 0 d L = D W u L = I D WD sym j = 1 w 1/ 2 1/ 2 j 18

19 Beobachtug Zusammehägede Telgraphe etsprcht Azahl Egewerte vo L mt Wert 0. zugehörge (uormerte) Egevektore ethalte Idkatorvektore der Telgraphe. Erkets für schwach zusammehäg. Telgraphe? λ = λ = λ = f = 1,...1,0,...0,0,...0 / f = 0,...0,1,...1,0,...0 / #Bsp. C # Bsp. f = 0,...0,0,...0,1,...1 / # Bsp. C 1 λ = f L f f Df f Wf = w f f C T T T u =, j j 2, j =

20 Mmaler Schtt Spezalfall k=2 Betrachte Ählchketsgraphe mt zwe uterschedlche ausgezechete Kote s E s-t-schtt st ee Parttoerug der Kote, wobe s P ud mt s,t t P = V P t s,t V Cut (P) = w v P,v P j j 20

21 Mmaler Schtt Spezalfall k=2 Der mmale s-t-schtt * s,t st P = arg m Cut (P) P V Problem st polyomeller Laufzet lösbar (Ford/Fulkerso; Dc) Der mmale Schtt st der mmale s-t-schtt über alle s-t-schtte: Problem st polyomeller Laufzet lösbar O m + 2 log s Cut(P) = v P,v P j w j t 21

22 Mmaler Schtt Balazerug Problem: MCut-Lösug separert häufg ezele Kote 22

23 Mmaler Schtt Balazerug Problem: MCut-Lösug separert häufg ezele Kote Balazerug: RatoCut P Ncut P Cut(P) Cut(P) = + P P = Cut(P) Cut(P) wobe vol(p) + vol ( P ) vol(p) wobe P Azahl der Kote = v P Balazertes MCut-Problem st NP-hart d P 23

24 Mmaler Schtt Balazerug Lemma 1: Se da glt Lemma 2: Se da glt T V RatoCut P = f L f f f = = P / P, we v P P / P T u vol(v) NCut P = f L f, sost vol P / vol P, we v P vol P / vol P sym, sost 24

25 Spectral-Clusterg (uormalsert) Relaxato RatoCut 25 P V T 2 m f Lf, wobe f = 0, f = = 1 = 1

26 Spectral-Clusterg (uormalsert) Relaxato RatoCut P V f T 2 = 1 = 1 ka ur 2 Werte aehme m f Lf, wobe f = 0, f = f = P / P, we v P P / P, sost 26

27 Spectral-Clusterg (uormalsert) Relaxato NP-hart RatoCut P V T 2 = 1 = 1 m f Lf, wobe f = 0, f = (Uormalsertes) Spectral-Clusterg f R T 2 = 1 = 1 m f Lf, wobe f = 0, f = Egewertproblem 27

28 Spectral-Clusterg (uormalsert) Relaxato NP-hart RatoCut P V T 2 = 1 = 1 m f Lf, wobe f = 0, f = (Uormalsertes) Spectral-Clusterg f R T 2 = 1 = 1 m f Lf, wobe f = 0, f = Dskretserug: sg(f ) Egewertproblem 28

29 Spectral-Clusterg (uormalsert) Verallgemeerug auf k>2 1 Cut(P,...P ) = Cut P 1 k 2 = 1...k 1 RatoCut(P,...P ) = RatoCut P 1 k 2 = 1...k 1 Ncut(P,...P ) = Ncut P 1 k 2 = 1...k 29

30 Spectral-Clusterg (uormalsert) Verallgemeerug auf k>2 1 Cut(P,...P ) = Cut P 1 k 2 = 1...k 1 RatoCut(P,...P ) = RatoCut P f 1 k 2 = 1...k 1 Ncut(P,...P ) = Ncut P = 1 k 2 = 1...k P / P, we v P P / P RatoCut(P 1,...P k ), sost T = Tr F LF F j 1/ P j, we v Pj = 0, sost 30

31 Spectral-Clusterg (uormalsert) Relaxerug (k>2) NP-hart RatoCut 1 k ( T ) T m Tr F LF, wobe F F P,...,P = I Egewertproblem (Uormalsertes) Spectral-Clusterg m Tr F T LF, wobe F T F = I F R k 31

32 Spectral-Clusterg (uormalsert) Relaxerug (k>2) NP-hart RatoCut 1 k ( T ) T m Tr F LF, wobe F F P,...,P = I Egewertproblem (Uormalsertes) Spectral-Clusterg m Tr F T LF, wobe F T F = I F R k Dskretserug: Cluster auf Bass der Vektore F 32

33 Spectral-Clusterg Bespel Date: Mxture of gaussa 33

34 Spectral-Clusterg Bespel sm: RBF mt σ = 1 Egewerte der zugehörge Laplacematrx (fully coected Graph) 34

35 Spectral-Clusterg Bespel 35

36 Spectral-Clusterg (uormalsert) Algorthmus Geg.: Adjazezmatrx W R Bereche zugehörge Laplacematrx, Clusterazahl Bereche de kleste k Egevektore vo L u Setze Bereche Cluster aus Datepukte Lefere zurück 0 x 1 = u... u 1 k x C j C j L u x u R k 36

37 Approxmatosgüte Balazerte Schtte Polyomeller Algorthmus mt kostater Approxmatosgüte exstert cht Cockroach Graph (Guattery & Mller 1998) optmal P = P = 2k cut P, P = 2 37

38 Approxmatosgüte Balazerte Schtte Polyomeller Algorthmus mt kostater Approxmatosgüte exstert cht Cockroach Graph (Guattery & Mller 1998) U. Spectral Clusterg P = P = 2k cut P, P = k 38

39 Amerkuge Ncut führt zum verallgemeerte Egevektorproblem (orm. Spectral clusterg) Quelle: H. Zha et al.: Spectral Relaxato for K-meas Clusterg; 2001 U. vo Luxburg: A Tutoral o Spectral Clusterg;

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Maschinelles Lernen II. Clustering 2

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Maschinelles Lernen II. Clustering 2 Uverstät Potsdam Isttut für Iformatk Lehrstuhl Maschelles Lere Maschelles Lere II Clusterg 2 Chrstoph Sawade/Nels Ladwehr Tobas Scheffer Überblck Zuletzt: K-meas Mxture of Gaussas Herarchsches Cluster

Mehr

9. Clustern und Klassifizieren

9. Clustern und Klassifizieren 03. JULI 2006: BLATT 55 9. Cluster ud Klassfzere 9.. Eletug Uter Klassfkato wrd de Zuordug vordeferter Klassfkatore (etwa sytaktsche Kategore aus eer Grammatk) zu Obekte verstade - userem Fall zu sprachlche

Mehr

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes Quellecoderug I: Redudazredukto, redudazsparede Codes. Redudaz. Eführug. Defto der Redudaz. allgemee Redudazredukto. redudazsparede Codes. Coderug ach Shao. Coderug ach Fao. Coderug ach Huffma.4 Coderug

Mehr

Genexpression (1) Clustering

Genexpression (1) Clustering Clusterg Clusterg: Grupperug ud Etelug eer Datemege ach ählche Merkmale Uüberwachte Klassfzerug (Neuroale Netze- Termologe) Dstazkrterum: E Datevektor st zu adere Datevektore seer Gruppe ahe (äher als

Mehr

Kapitel 6: Regression

Kapitel 6: Regression udwg-maxmlas-uverstät Müche Isttut für Iformatk ehr- ud Forschugsehet für Datebaksysteme Skrpt zur Vorlesug Kowledge Dscovery Databases m Sommersemester 05 Kaptel 6: Regresso Vorlesug: PD Dr. Arthur Zmek

Mehr

Erinnerung: Funktionslernen. 5.6 Support Vector Maschines (SVM) Beispiel: Funktionenlernen. Reale Beispiele

Erinnerung: Funktionslernen. 5.6 Support Vector Maschines (SVM) Beispiel: Funktionenlernen. Reale Beispiele Ererug: Fuktoslere 5.6 Support Vector Masches (SVM) überomme vo Stefa Rüpg, Kathara Mork Uverstät Dortmud Vorlesug Maschelles Lere ud Data Mg WS 2002/03 Gegebe: Bespele X LE de ahad eer Wahrschelchketsvertelug

Mehr

Ordnungsstatistiken und Quantile

Ordnungsstatistiken und Quantile KAPITEL Ordugsstatste ud Quatle Um robuste Lage- ud Streuugsparameter eführe zu öe, beötge wr Ordugsstatste ud Quatle... Ordugsstatste ud Quatle Defto... Se (x,..., x R ee Stchprobe. Wr öe de Elemete der

Mehr

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...}

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...} 1 Allgeme Geometrsche Rehe: q t = 1 q1 t=0 1 q Mtterachtsformel: ax 2 bxc=0 x 1/ 2 = b±b2 4ac 2a Bomsche Formel: 1. ab 2 =a 2 2abb 2 2. a b 2 =a 2 2abb 2 3. ab a b=a 2 b 2 Wurzel: ugerade 1 Ergebs gerade

Mehr

Eigenwerteinschließungen I

Eigenwerteinschließungen I auptsemar: Numersche Lösuge für Egewertaufgabe Egewerteschleßuge I Referet: Wolfgag Wesselsky Glederug Eletug Kodto vo Egewerte 3 Eschleßugssätze Bauer-Fke, Gershgor, Wlkso, Bedxo 4 Zusatz: Courat / Weyl

Mehr

6. Zusammenhangsmaße (Kovarianz und Korrelation)

6. Zusammenhangsmaße (Kovarianz und Korrelation) Problemstellug: Bsher: Gesucht: 6. Zusammehagsmaße (Kovaraz ud Korrelato) Ee Varable pro Merkmalsträger, Stchprobe x1,, x Maße für Durchschtt, Streuug, usw. Bespel: Kurse zweer Akte ud a 9 aufeader folgede

Mehr

Erzeugen und Testen von Zufallszahlen

Erzeugen und Testen von Zufallszahlen Erzeuge ud Teste vo Zufallszahle Jürge Zumdck Eletug Ee Lergruppe wrd aufgefordert 00 Zufallszahle (0 oder ) ach folgede Methode zu erzeuge: De Hälfte der Gruppe beutzt a) ee Müze oder b) de Zufallszahlefukto

Mehr

Prinzip "Proportional Reduction of Error" (PRE)

Prinzip Proportional Reduction of Error (PRE) Dr. Reate Prust: Eführug quattatve Forschugsmethode Bvarate Maße: Przp "Proportoal Reducto of Error" (PRE) E 1 - E Fehler be Regel 1 - Fehler be Regel = E 1 Fehler be Regel 1 Regel 1: Vorhersageregel ur

Mehr

19. Amortisierte Analyse

19. Amortisierte Analyse 9. Amortserte Aalyse Amortserte Aalyse wrd egesetzt zur Aalyse der Laufzet vo Operatoe Datestrukture. Allerdgs wrd cht mehr Laufzet ezeler Operatoe aalysert, soder de Gesamtlaufzet eer Folge vo Operatoe.

Mehr

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung.

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung. Rudolf Brkma http://brkma-du.de Sete 06.0.008 Spawete, Meda Quartlsabstad, Varaz ud Stadardabwechug. Streuug um de Mttelwert. I de folgede Säuledagramme st de Notevertelug zweer Schülergruppe (Mädche,

Mehr

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 54

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 54 Prof. Dr. H. Rommelfager: tschedugstheore, Katel 3 54 3.2.8 ARROW-PRATT-Maß für de Rskoestellug Rskoverhalte bsher grob kategorsert ach Rskoeutraltät, -symathe ud averso be Rskoaverso: (X) < SÄ Rskoräme

Mehr

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 7, Wintersemester vom 21. Januar 2006

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 7, Wintersemester vom 21. Januar 2006 Prof. E.-W. Zk Isttut für Matheatk Huboldt-Uverstät zu Berl Eleete der Algebra ud Zahletheore Musterlösug, Sere 7, Wterseester 2005-06 vo 21. Jauar 2006 1. Se = 2 p 1 Mersee-Zahl, d.h. p P 1. a) Zege:

Mehr

Kapitel XI. Funktionen mit mehreren Variablen

Kapitel XI. Funktionen mit mehreren Variablen Kaptel XI Fuktoe mt mehrere Varable D (Fuktoe vo uabhägge Varable Se R ud D( f R Ist jedem Vektor (Pukt (,,, D( f durch ee Vorschrft f ee reelle Zahl z = f (,,, zugeordet, so heßt f ee Fukto vo uabhägge

Mehr

Seminar: Stochastische Geometrie und ihre Anwendungen - Unbegrenzt teilbare und stabile Verteilungen.

Seminar: Stochastische Geometrie und ihre Anwendungen - Unbegrenzt teilbare und stabile Verteilungen. Uverstät Ulm, Isttut Stochastk 5. Jul 200 Semar: Stochastsche Geometre ud hre Aweduge - Ubegrezt telbare ud stable Verteluge. Ausarbetug: Stefa Fuke Betreuer: Ju.-Prof. Dr. Zakhar Kabluchko Ubegrezt telbare

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap.5: Kombinatorik. Referenzen zum Nacharbeiten:

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap.5: Kombinatorik. Referenzen zum Nacharbeiten: FH Wedel Prof. Dr. Sebasta Iwaows D5 Fole Dsrete athemat Sebasta Iwaows FH Wedel ap.5: ombator Refereze zum Nacharbete: Lag 5. 5. 7. (Bsp. 4) Beutelspacher 4 (außer Fxpute vo Permutatoe) eel 8 Hacheberger

Mehr

Regressionsrechnung und Korrelationsrechnung

Regressionsrechnung und Korrelationsrechnung Regressosrechug ud Korrelatosrechug Beschrebede Statstk Modul : Probleme be der Abhäggketsaalyse Problem : Es gbt mest cht ur ee Eflussfaktor (Probleme sd selte mookausal ) A Ursache() Wrkug B C - efache

Mehr

Optimierungsverfahren: Motivation. Bayes-Formalismus. Schätztheorie. -- Fehlerfunktion L -- Regularisierungsfunktion R

Optimierungsverfahren: Motivation. Bayes-Formalismus. Schätztheorie. -- Fehlerfunktion L -- Regularisierungsfunktion R Optmerugsverfahre: Motvato Bayes-Formalsmus -- egatve log-lkelhoo -- egatver log-pror -- Max. a Posteror! l p( D! l p( + cost = m Schätztheore -- Fehlerfukto L -- Regularserugsfukto R -- F ( = L( +! R(

Mehr

Schiefe- und Konzentrationsmaße

Schiefe- und Konzentrationsmaße Statstk für SozologIe Schefe- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Merkmal wurde 3 Gruppe beobachtet ud Form der folgede Häufgketstabelle berchtet: Klasse m Gruppe

Mehr

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes Quellecoderug I: Redudazredukto, redudazsparede Codes Quellecoderug Durch de Quellecoderug werde de Date aus der Quelle codert, bevor se ee Übertragugskaal übertrage werde De Coderug det der Verkleerug

Mehr

Probleme mit mehreren Zielen. Probleme mit mehreren Zielen. Probleme mit mehreren Zielen

Probleme mit mehreren Zielen. Probleme mit mehreren Zielen. Probleme mit mehreren Zielen Probleme mt mehrere Zele Bespel (Dkelbach) E Reseder muss sch vor Ort vo ver Hotels für ees etschede. Dabe verfolgt er folgede Zele: - Bestmöglche Ruhe - Qualtät des Frühstücks - Sauberes Bad - Scherer

Mehr

Einführung in die Stochastik 3. Übungsblatt

Einführung in die Stochastik 3. Übungsblatt Eführug de Stochastk 3. Übugsblatt Fachberech Mathematk SS 0 M. Kohler 06.05.0 A. Fromkorth D. Furer Gruppe ud Hausübug Aufgabe 9 (4 Pukte) Der Mkrozesus st ee statstsche Erhebug. Herbe werde ach bestmmte

Mehr

Lösungen. Häufigkeitsverteilung (Stabdiagramm) Aufgabe 1. Häufigkeit (h) Merkmal (x)

Lösungen. Häufigkeitsverteilung (Stabdiagramm) Aufgabe 1. Häufigkeit (h) Merkmal (x) Lösuge Aufgabe Merkmal (x) Häufgket (h) h x,, 3, 3,, 8, 5, 5, 6, 6, 7, 3, 8, 3 5, 9, 38,, 5,, 8 68,, 6 3, 3, 9,, 8, 5, 5 5, 6, 3 78, 7, 5, 8, 8, 3, 3, Summe 5.63, Aufgabe Häufgketsvertelug (Stabdagramm)

Mehr

Schiefe- und Konzentrationsmaße

Schiefe- und Konzentrationsmaße Statst für SozologIe Schefe- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Mermal wurde 3 Gruppe beobachtet ud Form der folgede Häufgetstabelle berchtet: Klasse m Gruppe

Mehr

DIE VAPNIK-CHERVONENKIS THEORIE. Inhaltsverzeichnis

DIE VAPNIK-CHERVONENKIS THEORIE. Inhaltsverzeichnis DIE VAPNIK-CHERVONENKIS THEORIE MATHIS KLEPPER, MICHAEL SAß Ihaltsverzechs Tel Vapk-Chervoeks Theore Tel I 2 Eführug 2 2 Glveko-Catell 5 3 Vapk-Chervoeks-Theore 0 Tel 2 Vapk-Chervoeks Theore Tel II 2 4

Mehr

6. Zusammenhangsmaße (Kovarianz und Korrelation)

6. Zusammenhangsmaße (Kovarianz und Korrelation) 6. Zuammehagmaße Kovaraz ud Korrelato Problemtellug: Bher: Ee Varable pro Merkmalträger, Stchprobe x,, x Geucht: Maße für Durchchtt, Streuug, uw. Jetzt: Zwe metrche! Varable pro Merkmalträger, Stchprobe

Mehr

( x) eine Funktion definiert, in der nur die i-te Komponente variabel ist. Folgende Schreibweisen werden aufgrund dieser Anmerkungen auch verwendet:

( x) eine Funktion definiert, in der nur die i-te Komponente variabel ist. Folgende Schreibweisen werden aufgrund dieser Anmerkungen auch verwendet: Pro. Dr. Fredel Bolle LS ür Volkswrtschatslehre sb. Wrtschatstheore (Mkroökoome) Vorlesug Mathematk - WS 008/009 4. Deretalrechug reeller Fuktoe IR IR (Karma, S. 00 06, dort glech ür IR IR m ) 4. Partelle

Mehr

(Markowitz-Portfoliotheorie)

(Markowitz-Portfoliotheorie) Thema : ortfolo-selekto ud m-s-rzp (Markowtz-ortfolotheore) Beurtelugskrtere be quadratscher Nutzefukto: Beroull-rzp + quadratsche Nutzefukto Thema Höhekompoete: Erwartugswert µ Rskokompoete: Stadardabwechug

Mehr

v. Weter st + r X + = ( X + ) = ( X + ) ( X + ) = P Deshalb fr 6 6 = + X = K, d. h. I desem Berech ( 6 6 ) glt also ( Idukto ach ) ( ) ( mod ), was fr

v. Weter st + r X + = ( X + ) = ( X + ) ( X + ) = P Deshalb fr 6 6 = + X = K, d. h. I desem Berech ( 6 6 ) glt also ( Idukto ach ) ( ) ( mod ), was fr 5. De Stze vo Sylow Im gaze Abschtt st G ee edlche Grue, 4 #( G). 5.. Problem: Gbt es zu jedem Teler t vo ( tj ) ee Utergrue H mt #( H) = t? We ja, wevele? Gegebesel: 9 Utergrue H vo G = A 5 mt #( H) =

Mehr

Konzentrationsanalyse

Konzentrationsanalyse Kaptel V Kozetratosaalyse B. 5.. Im Allgemee wrd aus statstscher Scht zwsche - absoluter ud - relatver Kozetrato uterschede Der absolute ud relatve Aspekt wrd och emal utertelt - statscher ud - dyamscher

Mehr

Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst

Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst Marketg- ud Iovatosmaagemet Herbstsemester 2013 - Übugsaufgabe Leseder: Prof. Dr. Adreas Fürst Isttut für Marketg ud Uterehmesführug Abtelug Marketg Uverstät Ber Ihaltsverzechs 1 Eletug Allgemee Grudlage

Mehr

Ergebnis- und Ereignisräume

Ergebnis- und Ereignisräume I Ergebs- ud Eregsräume Zufallsexpermete Defto: E Expermet, welches belebg oft uter gleche Bedguge wederholbar st ud desse Ergebs cht mt Bestmmthet vorhergesagt werde ka (d.h. es gbt md. 2 Mgk.), heßt

Mehr

Der Korrelationskoeffizient ist ein Maß für den linearen Zusammenhang zwischen zwei Variablen X und Y. Er ist durch folgende Formel charakterisiert:

Der Korrelationskoeffizient ist ein Maß für den linearen Zusammenhang zwischen zwei Variablen X und Y. Er ist durch folgende Formel charakterisiert: Korrelatoskoeffzet Der Korrelatoskoeffzet st e Maß für de leare Zusammehag zwsche zwe Varable X ud Y. Er st durch folgede Formel charaktersert: r xy corr XY ( x x)( y y) ( ) x x ( y y) x x y x ( ) ( )

Mehr

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Aufgabe ud Lösuge vo Peter M Schulze, Verea Dexhemer. Auflage Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Schulze / Dexhemer schell ud portofre

Mehr

Klausur SS 2005 Version 1

Klausur SS 2005 Version 1 BEMERKUG: für de Rchtgket der Lösuge wrd atürlch kee Garate überomme!! Klausur SS 005 Verso Aufgabe : e Gamma-Quat hat kee Ladug > el. Felder übe kee Kräfte aus > kee Kräfte, kee Äderug der Bewegug (ewto)

Mehr

Schiefe-, Wölbungs- und Konzentrationsmaße

Schiefe-, Wölbungs- und Konzentrationsmaße Statstk für SozologIe Schefe-, Wölbugs- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Merkmal wurde 3 Gruppe beobachtet ud Form der folgede Häufgketstabelle berchtet: Klasse

Mehr

Lineare Algebra Formelsammlung

Lineare Algebra Formelsammlung ee Algeb Fomelsmmlug vo Gábo Zogg Fomelsmmlug ee Algeb Gábo Zogg. ee Glechugsssteme. Ds Guss'sche Elmtosvefhe Defto: Σ Sstem vo m Glechuge ud Ubekte Opetoe: - Vetusche vo Glechuge - Addee/Subthee ees Velfche

Mehr

Statistik. ist die Kunst, Daten zu gewinnen, darzustellen, zu analysieren und zu interpretieren um zu neuem Wissen zu gelangen.

Statistik. ist die Kunst, Daten zu gewinnen, darzustellen, zu analysieren und zu interpretieren um zu neuem Wissen zu gelangen. Statstk st de Kust, Date zu gewe, darzustelle, zu aalysere ud zu terpretere um zu euem Wsse zu gelage. Sachs (984) Aufgabe De Statstk hat also folgede Aufgabe: Zusammefassug vo Date Darstellug vo Date

Mehr

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen.

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen. Rudolf Brkma http://brkma-du.de Sete 0.0.008 Lagemaße der beschrebede Statstk. Zur Iterpretato eer Beobachtugsrehe ka ma ebe der grafsche Darstellug wetere charakterstsche Größe herazehe. Mttelwert ud

Mehr

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt.

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt. Webull & Wöhler 0 CRGRAPH Wöhlerdagramm Im Wöhlerdagramm wrd de Lebesdauer ( oder Laufzet) ees Bautels Abhägget vo der Belastug dargestellt. Kurzetfestget Beaspruchug Zetfestget auerfestget 0 5 3 4 6 0

Mehr

Vl. Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 3: Diskrete Verteilungen

Vl. Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 3: Diskrete Verteilungen Vl. Statstsche Prozess- ud Qualtätsotrolle ud Versuchsplaug Übug 3: Dsrete Verteluge Prof. Dr. B. Grabows Zur Lösug der folgede Aufgabe öe Se auch de begefügte Tabelle der dsrete Verteluge m Ahag verwede.

Mehr

Histogramm / Säulendiagramm

Histogramm / Säulendiagramm Hstogramm / Säuledagramm Häugkete 10 9 8 7 6 5 4 3 2 1 0 3,45 3,75 4,05 4,35 4,65 Flüge lläge [mm] Be Hstogramme st soort deutlch, daß es sch um Häugketsauszähluge hadelt. De Postoe der Klasse sowe hre

Mehr

Vektorraummodell. Michael Granitzer Know-Center - gefördert durch das Kompetenzzentrenprogramm

Vektorraummodell.  Michael Granitzer Know-Center - gefördert durch das Kompetenzzentrenprogramm Vektorrauoell Mchael Gratzer gra@ko-ceter.at / - geförert urch as Kopetezzetreprogra Vektorrauoell Ausgagsbass Gegebe: Vorverarbetug vo Dokuete Tokezato POS Taggg Nae Etty Extracto Mege vo Merkale pro

Mehr

3.7 Support Vector Machines

3.7 Support Vector Machines 3.7 Support Vector Maches Motvato: Leare Separato Vektore R d repräsetere Objekte. Objekte gehöre zu geau eer vo je 2 Klasse Klassfkato durch leare Separato: Suche Hperebee de bede Klasse mamal stabl voeader

Mehr

Stochastische Bildmodelle und deren Anwendung

Stochastische Bildmodelle und deren Anwendung Abtelug Stochastk --Uverstät Ulm Ulm Semar: Bayessche Asätze der der Bldaalyse Stochastsche Bldmodelle ud dere Awedug Sad Bakadr 22.Ma 2006 Sad Bakadr - Uverstät Ulm - Ihalt Eletug Bespele vo Bldmodelle

Mehr

Varianzfortpflanzung

Varianzfortpflanzung 5.0 / SES.5 Parameterschätzug Varazortplazug Torste Maer-Gürr Torste Maer-Gürr Dskrete Zuallsvarable Ee dskrete Zuallsvarable mmt edlch vele oder abzählbar uedlch vele Werte a. - Werte: - Wahrschelchket:,,,,,,,,

Mehr

Mathematische Modellierung Lösungen zum 1. Übungsblatt

Mathematische Modellierung Lösungen zum 1. Übungsblatt Mathematsche Modellerug Lösuge zum Klaus G. Blümel Lars Hoege 6. Oktober 005 Aufgabe 1 a) Der Raumhalt vo eem Kubkmeter etsprcht gerade 1000 Lter, d.h. 1 m 3 = 1000 l. Reche zuächst 1 m 3 cm 3 um. E Meter

Mehr

Rekurrenz. Algorithmen rufen sich selbst (rekursiv) auf.

Rekurrenz. Algorithmen rufen sich selbst (rekursiv) auf. Rekurrez Rekurso: Algorthme rue sch selst rekursv u. Rekurrez: Ds Luzetverhlte zw. der Specherpltzedr vo rekursve Algorthme k der Regel durch ee Rekursosormel recurrece, RF eschree werde. Rekurrez Bespel:

Mehr

5 Reproduktions- und Grenzwertsätze

5 Reproduktions- und Grenzwertsätze Reproduktos- ud Grezwertsätze Reproduktos- ud Grezwertsätze. Reproduktossätze Bespel 0: Der Aufzug eer Frma st zugelasse für Persoe bzw. 000 kg. Das Durchschttsgewcht der Agestellte der Frma st µ = 80

Mehr

Lineare Klassifikatoren

Lineare Klassifikatoren Uverstät Potsdam Isttut für Iformatk Lehrstuhl Maschelles Lere Leare Klassfkatore Chrstoph Sawade, obas Scheffer Vorlesug am ächste Destag De VL am 28.0. fägt um ca. 2:30 a. 2 Ihalt Klassfkatosproblem

Mehr

Polynomprodukt und Fast Fourier Transformation

Polynomprodukt und Fast Fourier Transformation Polomrodut ud Fst Fourer Trsformto Polome Reelles Polom eer Vrble...... R : oeffzete vo Grd vo : höchste Potez Besel: 3 3 5 8 Mege ller reelle Polome: R[] 3 Oertoe uf Polome. Addto b b b q b b b b b q

Mehr

Statistik für Ingenieure (IAM) Version 3.0/21.07.2004

Statistik für Ingenieure (IAM) Version 3.0/21.07.2004 Stattk fü Igeeue (IAM) Veo 74 Vaazaalye Mt de efache Vaazaalye (ANOVA Aaly of Vaace) wd de Hypothee gepüft, ob de Mttelwete zwee ode mehee Stchpobe detch d, de au omaletelte Gudgeamthete gezoge wede, de

Mehr

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik Prof. Dr. Ig. Post Grudlage der Eergetechk Eergewrtschaft Kosterechug EEG. Vorlesug EEG Grudlage der Eergetechk De elektrsche Eergetechk st e sogeates klasssches Fach. Folglch st deses Fach vele detallert

Mehr

Physikalische Messungen sind immer fehlerbehaftet! Der wahre Wert ist nicht ermittelbar. Der wahre Wert x ist nicht identisch mit dem Mittelwert

Physikalische Messungen sind immer fehlerbehaftet! Der wahre Wert ist nicht ermittelbar. Der wahre Wert x ist nicht identisch mit dem Mittelwert Physkalsche Messuge sd mmer fehlerbehaftet! Der wahre Wert st cht ermttelbar. Der wahre Wert st cht detsch mt dem Mttelwert Der Wert legt mt eer gewsse Wahrschelchket (Kofdezahl bzw. Vertrauesveau %) m

Mehr

Statistische Grundlagen Ein kurzer Überblick (diskret)

Statistische Grundlagen Ein kurzer Überblick (diskret) Prof. J.C. Jackwerth 1 Statstsche Grudlage E kurzer Überblck (dskret De wchtgste Begrffe ud Deftoe: 1 Erwartugswert Varaz / Stadardabwechug 3 Stchprobevaraz 4 Kovaraz 5 Korrelatoskoeffzet 6 Uabhäggket

Mehr

7/7/06. Formulierung mittels Dynamischer Programmierung. Berechnungsbeispiel. Gewinnung der optimalen Reihenfolge

7/7/06. Formulierung mittels Dynamischer Programmierung. Berechnungsbeispiel. Gewinnung der optimalen Reihenfolge Formulerug mttels Dyamscher Programmerug Berechugsbespel Beobachtug: de Azahl der Telprobleme A j mt j st ur Folgerug: der aïve rekursve Algo berechet vele Telprobleme mehrfach! Idee: Bottom-up-Berechug

Mehr

Unter einer Rente versteht man eine regelmässige und konstante Zahlung

Unter einer Rente versteht man eine regelmässige und konstante Zahlung 8 Aweduge aus der Fazmathematk Perodsche Zahluge: Rete ud Leasg Uter eer Rete versteht ma ee regelmässge ud kostate Zahlug Bespele: moatlche Krakekassepräme, moatlche Altersrete, perodsches Spare, verteljährlcher

Mehr

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition Informatk II Raner Schrader und Implkanten Zentrum für Angewandte Informatk Köln 27. Oktober 2005 1 / 28 2 / 28 Was bsher geschah: jede Boolesche Funkton kann durch enfache Grundfunktonen dargestellt werden

Mehr

2.2 Rangkorrelation nach Spearman

2.2 Rangkorrelation nach Spearman . Ragkorrelato ach Spearma Wr wolle desem Kaptel de Ragkorrelatoskoeffzete ach Spearma bereche. De erste Daterehe besteht aus Realseruge x, x,..., x der uabhägg ud detsch stetg vertelte Zufallsvarable

Mehr

( ) ( ) ) ( ) 1/ ( ) Beispiel: U = y1. 3. Ergänzungen zur Haushaltstheorie, insbesondere Dualität und Anwendungen

( ) ( ) ) ( ) 1/ ( ) Beispiel: U = y1. 3. Ergänzungen zur Haushaltstheorie, insbesondere Dualität und Anwendungen Prof. Dr. Fredel Bolle 3. rgäzuge zur Haushaltstheore, sbesodere Dualtät ud Aweduge (Btte wederhole Se zuächst emal de Haushaltstheore aus Mkro I!!!) komme gegebe errechbare Idfferezkurve festgelegt Güterprese

Mehr

Bericht zur Prüfung im Oktober 2008 über Grundprinzipien der Versicherungs- und Finanzmathematik (Grundwissen)

Bericht zur Prüfung im Oktober 2008 über Grundprinzipien der Versicherungs- und Finanzmathematik (Grundwissen) Becht zu Püfug m Oktobe 008 übe Gudpzpe de Vescheugs- ud Fazmathematk (Gudwsse) Pete Albecht (Mahem) Am 7 Oktobe 008 wude zum dtte Mal ee Püfug m Fach Gudpzpe de Vescheugs- ud Fazmathematk ach PO III (Gudwsse

Mehr

Korrelations- und Assoziationsmaße

Korrelations- und Assoziationsmaße k m χ : j l r +. Zusammehagsmaße ( o e ) jl jl e jl Korrelatos- ud Assozatosmaße e jl 5 Merkmal Y Summe X b b m a H (a,b) H (a,b). a H (a,b) H (a,b). Summe.. Zusammehagsmaße Eführug Sche- ud Noses-Korrelato

Mehr

Ein polynomialer Algorithmus für minimale Kreisbasen

Ein polynomialer Algorithmus für minimale Kreisbasen E polyomler Algorthmus für mmle Kresbse Überblck:. Motvto. Deftoe 2. Algorthmus für ee Kresbss mmler Läge, Lufzet O(m³) 3. Läge eer kürzeste Kresbss 4. Algorthmus für ee suboptmle Kresbss der Läge O(²);

Mehr

Konzentrationsmessung

Konzentrationsmessung Kozetrtosmessug We telt sch de gesmte Merkmlssumme uf de ezele uf? Auftelug der Gesmtbevölkerug Gemede verschedeer Größeklsse Auftelug des gesmte Steuerufkommes uf de ezele Steuersubekte Auftelug der gesmte

Mehr

Alternative Darstellung des 2-Stichprobentests für Anteile. Beobachtete Response No Response Total absolut DCF CF

Alternative Darstellung des 2-Stichprobentests für Anteile. Beobachtete Response No Response Total absolut DCF CF Alteratve Darstellug des -Stchprobetests für Atele DCF CF Total 111 11 3 Respose 43 6 69 Resp. Rate 0,387 0,3 0,309 Beobachtete Respose No Respose Total absolut DCF 43 68 111 CF 6 86 11 69 154 3 Be Gültgket

Mehr

Mathematik für VIW - Prof. Dr. M. Ludwig ( ) ( ) ( ) n f. bestimmt m Funktionen. durch die Festlegung f (,,

Mathematik für VIW - Prof. Dr. M. Ludwig ( ) ( ) ( ) n f. bestimmt m Funktionen. durch die Festlegung f (,, Matheatk ür VIW - Pro. Dr. M. Ludwg 8. Deretato reeller Fuktoe ehrerer Varabler 8. Skalare Felder Vektorelder Koordatesystee Bsher wurde reelle Fuktoe ür ee Varable utersucht: : D t der egeührte Schrebwese

Mehr

MST Übung 3 Mathematik 2 Prof.Dr.B.Grabowski Tel.:

MST Übung 3 Mathematik 2 Prof.Dr.B.Grabowski   Tel.: MST Übug Mthemtk Prof.Dr.B.Grbowsk e-ml: grbowsk@htw-srld.de Tel.: 87- Iverse Mtrze ufgbe : Bereche Se de Iverse Mtr zu folgede Mtrze. Prüfe Se Ihr Ergebs, dem Se - bereche! b dg-,,-,,-, c 7 d ufgbe :

Mehr

Hinweise zum Hochrechnungsverfahren für die Arbeit mit den Daten

Hinweise zum Hochrechnungsverfahren für die Arbeit mit den Daten Kraftfahrzeugverkehr Deutschlad 2010 (KD 2010) Abschlussverastaltug am 24. Aprl 2012 bem BMVBS Bo Hwese zum Hochrechugsverfahre für de Arbet mt de Date Prof. Dr. Wlfred Stock IVT Isttut für agewadte Verkehrsud

Mehr

AUSLEGUNGSVERFAHREN FÜR AUTARKE PV BATTERIE WASSERSTOFF HYBRIDSYSTEME MITTELS PARTIKEL SCHWARM OPTIMIERUNG

AUSLEGUNGSVERFAHREN FÜR AUTARKE PV BATTERIE WASSERSTOFF HYBRIDSYSTEME MITTELS PARTIKEL SCHWARM OPTIMIERUNG Isttut für Eergetechk Professur für Eergespechersysteme AUSLEGUNGSVERFAHREN FÜR AUTARKE PV BATTERIE WASSERSTOFF HYBRIDSYSTEME MITTELS PARTIKEL SCHWARM OPTIMIERUNG Mart Paultschke Dresde, 15. November 2016

Mehr

Methodik: auf einer kompakten (beschränkten und abgeschlossenen) Menge, z.b. einem n-dimensionalen Quader,

Methodik: auf einer kompakten (beschränkten und abgeschlossenen) Menge, z.b. einem n-dimensionalen Quader, . Verllgemeeruge Aweduge Glole Etrem Defto: Ee ukto f : M R R ht der Stelle M e gloles Mmum we f f M. = M = [] = f m m Allgeme glt der Stz vo Weerstrss: Ist f ee stetge ukto uf eer eschräkte ud geschlossee

Mehr

Sitzplatzreservierungsproblem

Sitzplatzreservierungsproblem tzplatzreserverugsproblem Be vele Zugsysteme Europa müsse Passagere mt hrem Zugtcet ee tzplatzreserverug aufe. Da das Tcetsystem Kude ee ezele Platz zuwese muss, we dese e Tcet aufe, ohe zu wsse, welche

Mehr

Wenn man mehrere Verbraucher in Reihe schaltet, so werden alle vom gleichen Strom durchflossen, siehe auch Abschnitt und Formel ( ).

Wenn man mehrere Verbraucher in Reihe schaltet, so werden alle vom gleichen Strom durchflossen, siehe auch Abschnitt und Formel ( ). - rudlage der Elektrotechk - 60 22..04 4 Der komplzertere elektrsche lechstromkres 4. Kombato vo Verbraucher 4.. Sere- oder eheschaltug vo Wderstäde We ma mehrere Verbraucher ehe schaltet, so werde alle

Mehr

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen IT Zahlesysteme Zahledarstellug eem Stellewertcode (jede Stelle hat ee bestmmte Wert) Def. Code: Edeutge Abbldugsvorschrft für de Abbldug ees Zeche-Vorrates eem adere Zechevorrat. Dezmalsystem De Bass

Mehr

1 Elementare Finanzmathematik

1 Elementare Finanzmathematik Elemetare Fazmathemat 4 Elemetare Fazmathemat Zel: Bewertug ud Verglech atueller ud zuüftger Geldströme. Determstsche Zahlugsströme Defto: E determstscher Zahlugsstrom st ee Futo Z: N R, de jedem Zetput

Mehr

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und:

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und: 1 L - Hausaufgabe Nr. 55 Sotag, 1. Ju 2003 Ee Müze werde dremal geworfe. Was st das Zufallsexpermet, das Elemetareregs, das zusammegesetzte Eregs, der Eregsraum ud de Wahrschelchket? Lösugs kte.: 1 De

Mehr

1 1 1 x0,25 x200 0,25 x200 0,25 1 x50 x51 1 1

1 1 1 x0,25 x200 0,25 x200 0,25 1 x50 x51 1 1 Klausur: Statstk 2.06.2018 Jürge Mesel Hlfsmttel: Ncht progr. Tascherecher Bearbetugszet: 60 Mute Aufgabe 1 E Koskbestzer otert 200 Tage lag de Zahl der verkaufte Exemplare eer seer Tageszetuge. Verkaufte

Mehr

Lösungen zu Übungs-Blatt 7 Klassische Wahrscheinlichkeit in Glücksspielen, Bedingte Wkt, Unabhängigkeit, Satz von Bayes

Lösungen zu Übungs-Blatt 7 Klassische Wahrscheinlichkeit in Glücksspielen, Bedingte Wkt, Unabhängigkeit, Satz von Bayes Lösuge zu Übugs-latt 7 Klasssche Wahrschelchet Glücsspele, edgte Wt, Uabhägget, Satz vo ayes Master M Höhere ud gewadte Mathemat rof. Dr.. Grabows De folgede ufgabe löse wr uter Verwedug der bede ombatorsche

Mehr

Induktion am Beispiel des Pascalschen Dreiecks

Induktion am Beispiel des Pascalschen Dreiecks Iduto am Bespel des Pascalsche Dreecs Alexader Rehold Coldtz 0.02.2005 Eletug vollstädge Iduto De vollstädge Iduto st ebe dem drete ud drete Bewesverfahre ees der wchtgste der Mathemat. Eher bespelhaft

Mehr

Approximationsalgorithmen. Facility Location K-Median. Cheng, Wei 12. Juli

Approximationsalgorithmen. Facility Location K-Median. Cheng, Wei 12. Juli Approxmatonsalgorthmen aclty Locaton K-Medan heng We 12. Jul aclty Locaton Defnton Gegeben: möglche Standorte = { 1 2 m } Städte = { 1 2 n } Eröffnungskosten f für Verbndungskosten c zwschen und Dreecksunglechung

Mehr

Lohnkosten pro Arbeitsstunde. Wie hoch sind die Lohnkosten pro Arbeitsstunde im Jahresdurchschnitt?

Lohnkosten pro Arbeitsstunde. Wie hoch sind die Lohnkosten pro Arbeitsstunde im Jahresdurchschnitt? Klausur Wrtschaftsstatstk. [ Pukte] E Uterehme hat folgede Date ermttelt: Moat Gelestete Arbetsstude Lohkoste pro Arbetsstude Jauar 86.400 0,06 Februar 75.000 3,0 März 756.000 4,47 Aprl 768.000,53 Ma 638.400

Mehr

Dr. H. Grunert Einführung in die Wahrscheinlichkeitsrechnung Vorlesungscharts. Vorlesung 5.2. Eigenschaften von Zufallsvariablen

Dr. H. Grunert Einführung in die Wahrscheinlichkeitsrechnung Vorlesungscharts. Vorlesung 5.2. Eigenschaften von Zufallsvariablen Vorlesugscharts Vorlesug 5. Egeschafte vo Zufallsvarable Reproduktvtät Approxmatoe Zetraler Grezwertsatz Sete vo Chart : Uabhäggket vo Zufallsvarable Zwe Zufallsvarable X ud Y mt hre Realsatoe { x, x,...,

Mehr

Taylor-Entwicklung der exakten Lösung und Verfahrensfehler

Taylor-Entwicklung der exakten Lösung und Verfahrensfehler Lösug ud Verfaresfeler Ngaleu Poutceu Paul Fracs Fracsc@upb.de 8.6.4 Semar Numerk 1 Lösug ud Verfaresfeler Beobactug, Defto ud Notato Beobactug Notato Taylor-Etwcklug Defto ud Bespele Satz ud Bewes Verfaresfeler

Mehr

Multiple Regression (1) - Einführung I -

Multiple Regression (1) - Einführung I - Multple Regreo Eführug I Mt eem Korrelatokoeffzete ud der efache leare Regreo köe ur varate Zuammehäge zwche zwe Varale uterucht werde. Beutzt ma tatt dee mehrere Varale zur Vorherage, egt ma ch auf da

Mehr

Maße zur Kennzeichnung der Form einer Verteilung (1)

Maße zur Kennzeichnung der Form einer Verteilung (1) Maße zur Kezechug der Form eer Vertelug (1) - Schefe (skewess): Defto I - Ee Vertelug vo Messwerte wrd als schef bezechet, we se der Wese asymmetrsch st, dass lks oder rechts des Durchschtts ee Häufug

Mehr

Klausur Statistik IV Sommersemester 2009

Klausur Statistik IV Sommersemester 2009 Klausur Statstk IV (Lösug) Name, Vorame 013456 Klausur Statstk IV Sommersemester 009 Prof. Dr. Torste Hothor Isttut für Statstk Name: Name, Vorame Matrkelummer: 013456 Wchtg: ˆ Überprüfe Se, ob Ihr Klausurexemplar

Mehr

Leitfaden zu den Indexkennzahlen der Deutschen Börse

Leitfaden zu den Indexkennzahlen der Deutschen Börse Letfade zu de Idexkezahle der Deutsche Börse Verso.5 Deutsche Börse AG Verso.5 Letfade zu de Idexkezahle der Deutsche Börse Page Allgemee Iformato Um de hohe Qualtät der vo der Deutsche Börse AG berechete

Mehr

1. Ökonometrische Modelle ohne Stochastik

1. Ökonometrische Modelle ohne Stochastik .. Ökoometrsche Modelle ohe Stochastk Emprsche Wrtschaftsforschug st otwedge Ergäzug der Wrtschaftstheore, dem se de Wahrhetsgehalt des theoretsche Hpothesegeäudes a der ökoomsche Wrklchket, d. h. a der

Mehr

Die Methode des 2.Moments

Die Methode des 2.Moments De Methode des 2.Momets Chrstoph Schmdt July 13, 2004 1 Eletug De Varaz eer Zufallsvarable st hre mttlere quadratsche Abwechug vo hrem Erwartugswert. V ar[x] = E[(X EX) 2 ] = E[X 2 ] E[X] 2 Der Term E[X

Mehr

1. StatischeSpielemit vollständiger Information

1. StatischeSpielemit vollständiger Information Dr. Jeaette Brosg, Vorlesug Speltheore. StatscheSpelemt vollstädger Iformato Das Allmede-Problem Hard (968): The Tragedy of the Commos The ratoal herdsma cocludes that the oly sesble course for hm to pursue

Mehr

Grundgesetze der BOOLEschen Algebra und Rechenregeln

Grundgesetze der BOOLEschen Algebra und Rechenregeln 5... Grudgesetze der BOOLEsche Algebra ud Recheregel Auf de mathematsch korrekte Eführug der BOOLEsche Algebra ka ch verzchte, da das Ihrer Mathematkausbldug ausführlch behadelt wrd. Ich stelle Ihe zuächst

Mehr

( ) ( ) ( ) E ( ) ( ) ( ) ( ) ( ) Def Erwartungswert. 1. Diskreter Fall X sei diskrete Zufallsgröße mit = { 1, x2,

( ) ( ) ( ) E ( ) ( ) ( ) ( ) ( ) Def Erwartungswert. 1. Diskreter Fall X sei diskrete Zufallsgröße mit = { 1, x2, Def.. Erwarugswer. Dsreer Fall se dsree Zufallsgröße m = {, x, } p = P( = x ),( =,, ), so e ma µ = E = xp = de Erwarugswer vo, falls W x ud de Ezelwahrschelchee = x p

Mehr

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 4. Marshallsche Nachfragefuktoe Frage:

Mehr

14. Folgen und Reihen, Grenzwerte

14. Folgen und Reihen, Grenzwerte 4. Folge ud Rehe, Grezwerte 4. Folge ud Rehe, Grezwerte 4. Ee Folge defere Eplzte Defto Reursve Defto 4. Gleder eer vorher deferte Folge bereche E Gled Mehrere Gleder 6 4 5 4.3 Ee Folge defere ud ege hrer

Mehr