Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n



Ähnliche Dokumente
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie

10 Das Riemannsche Integral

Doppel- und Dreifachintegrale

1 Kurvendiskussion /40

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999

Kapitel 9 Integralrechnung

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester gehalten von Harald Baum

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Lineare Gleichungssysteme

Mathe Warm-Up, Teil 1 1 2

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse Lösung 10 Punkte

Einführung in Mathcad H.

Einführung in die Algebra

Formelsammlung. Folgen und Reihen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Crashkurs - Integration

5.1 Charakterisierung relativ kompakter und kompakter

7 Rechnen mit Polynomen

9 Das Riemannsche Integral

Funktionen und Mächtigkeiten

Primzahlen und RSA-Verschlüsselung

(1 ξ) f (k) (ξ) + k! z x n+1. (n + 1)! 2 f (n + 1)!

( ) als den Punkt mit der gleichen x-koordinate wie A und der

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1.

Vorlesung Mathematik 1 für Ingenieure (Sommersemester 2016)

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Musterlösungen (ohne Gewähr) Aufgabe 1 ( 7 Punkte) Geben Sie die Koordinaten des Flächenschwerpunktes des dargestellten Querschnitts an!

KAPITEL 18 UND 19 H. KOCH. Kapitel 18. x>a. x<y

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

Mathematischer Vorkurs NAT-ING1

Numerische Mathematik Sommersemester 2013

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Übungsblatt Gleichungssysteme Klasse 8

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 8. Übungsblatt

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Kapitel 7. Integralrechnung für Funktionen einer Variablen

Kapitel 8 Anwendungen der Di erentialrechnung

Mathematik. Name, Vorname:

Definition Suffixbaum

Musterlösungen zur Linearen Algebra II Blatt 5

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge.

3 Wiederholung des Bruchrechnens

Zusatzunterlagen zur Vorlesung Analysis II Sommersemester 2014

16. Integration über Flächen. Der Gaußsche Integralsatz

Absolute Stetigkeit von Maßen

Mathematischer Vorbereitungskurs für Ökonomen

Kapitel 9. Integration. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 9 Integration 1 / 36

Lineare Funktionen. 1 Proportionale Funktionen Definition Eigenschaften Steigungsdreieck 3

Mathematik II. Vorlesung 31

6.2 Scan-Konvertierung (Scan Conversion)

Mathematik schriftlich

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung

TECHNISCHE UNIVERSITÄT MÜNCHEN

Mathematik 1 für Wirtschaftsinformatik

Lineare Gleichungssysteme

9 Integralrechnung. 9.1 Das Riemann-Integral: Sei [a, b] ein beschränktes abgeschlossenes Intervall und f : [a, b] R eine beschränkte Funktion.

Serie 13 Lösungsvorschläge

Kapitel 9. Integration. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 9 Integration 1 / 36. F (x) = f (x) Vermuten und Verifizieren.

Im Jahr t = 0 hat eine Stadt Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

nennt man eine Zerlegung (Partition, Unterteilung) des Intervalls [a, b]. Die Feinheit der Zerlegung ist dabei

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

Taylorreihen - Uneigentlische Integrale

Lineare Gleichungssysteme

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

9.6 Parameterabhängige Integrale

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen.

Numerische Integration durch Extrapolation

Resultat: Hauptsatz der Differential- und Integralrechnung

VI. Das Riemann-Stieltjes Integral.

Lösungen zu Kapitel 7

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik

8. Quadratische Reste. Reziprozitätsgesetz

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern.

!(0) + o 1("). Es ist damit möglich, dass mehrere Familien geschlossener Orbits gleichzeitig abzweigen.

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt:

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

Erstellen von x-y-diagrammen in OpenOffice.calc

4.4 Partielle Integration

Freie ungedämpfte Schwingung eines Massenpunktes (Federschwinger) = 2a. Die allgemeine Lösung der DGL ist dann eine Linearkombination beider Lösungen:

Definition und Begriffe

Frohe Weihnachten und ein gutes neues Jahr!

Analysis I Probeklausur 2

Rückblick auf die letzte Vorlesung

Grundlagen der Künstlichen Intelligenz

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Bestimmung einer ersten

Vorkurs Mathematik Übungen zu Differentialgleichungen

Stammfunktionen, Hauptsätze, unbestimmtes Integral

Transkript:

Them 13 Integrle, die von einem Prmeter bhängen, Integrle von Funktionen uf Teilmengen von R n Wir erinnern drn, dß eine Funktion h : [, b] R eine Treppenfunktion ist, flls es eine Unterteilung x < x 1 < < x n b des Intervlls [, b] gibt, so dß h uf ]x k 1, x k [ konstnt ist für jedes k. Es ist klr, wie mn Treppenfunktionen uf R n definiert (Die Konstnzmengen sind jetzt Rechtecke oder Quder d.h. Produkte von Intervllen. Mn knn dmit den Begriff einer Riemnn-integrierbren Funktion geeignete Funktionen mehrerer Vriblen übertrgen, indem mn Ober- und Unterintegrle völlig nlog definiert. D ein viel llgemeinerer und effizienterer Integrlbegriff (ds Lebesgue-Integrl in der Mthemtik verwendet wird und dieser Zugng sehr ufwendig ist, werden wir stttdessen iterierte Integrle behndeln. Dies genügt, um konkrete Integrle, die von prktischer Bedeutung sind, zu berechnen. Integrle, die von einem Prmeter bhängen Stz 1 Sei [, b] R, Q ein bgeschlossener Quder in R n und f : [, b] Q R stetig. Dnn ist die Funktion ϕ : Q R, wobei ϕ(y f(x, ydx, stetig. Beweis. Wähle ǫ >. D f gleichmäßig stetig ist, existiert δ >, sodss us (x x 2 + (y y 2 < δ folgt f(x, y f(x, y < ǫ. Dmit gilt φ(y φ(y < ǫ(b, wenn (y y < δ. Ähnlicherweise zeigt mn: Stz 2 Seien I, I R kompkte Intervlle und f : I I R stetig und stetig prtiell differenzierbr nch der zweiten Vriblen. Dnn ist die Funktion ϕ : I R, definiert durch ϕ(y : f(x, ydx, stetig differenzierbr und es gilt dϕ(y dy I I f(x, y dx. y Einschub Eulersche Differentilgleichungen der Vritionsrechnung Sei I [, b] R, c 1, c 2 R. Die Funktion L : (t, y, p L(t, y, p von I R R in R sei zweiml stetig prtiell differenzierbr, R bezeichne die Fmilie der Funktionen ϕ : [, b] R, sodß ϕ zweiml stetig differenzierbr ist und ϕ( c 1, ϕ(b c 2. Die Abbildung S : R R sei definiert durch S(ϕ L(t, ϕ(t, ϕ (t. Gesucht ist nun ein ϕ R, so dß S(ϕ miniml ist, d.h. S(ϕ S(ψ für lle ψ R. 1

Stz 3 Eine notwendige Bedingung dfür, dß S(ϕ miniml ist für ein ϕ R, ist die Gültigkeit der Eulerschen Differentilgleichung d p (t, ϕ(t, ϕ (t y (t, ϕ(t, ϕ (t. Beweis. Sei ψ : [, b] R zweiml stetig differenzierbr mit ( ψ( ψ(b. Sei ϕ R so, dß S(ϕ min χ R S(χ. Für beliebiges ǫ R ist ϕ + ǫψ R und dmit Die Funktion φ : R R sei definiert durch φ besitzt für ǫ ein Minimum, lso ist S(ϕ S(ϕ + ǫψ. φ(ǫ : S(ϕ + ǫψ. ( dφ dǫ ( dφ(ǫ dǫ ǫ L(t, ϕ(t + ǫψ(t, ϕ (t + ǫψ (t { y L(...ψ(t + } p L(... ψ (t. Wegen ( ist p ψ (t p ψ(t b ψ(t ( d ( d ψ(t p. p Dmit erhält mn schließlich mit ( dφ dǫ ( } p (t, ϕ, ϕ ψ { y (t, ϕ, ϕ ψ + { y (t, ϕ, ϕ d p (t, ϕ, ϕ } ψ. (Wir hben zur Vereinfchung nur ϕ, ϕ,... sttt ϕ(t, ϕ (t,... geschrieben. Mit dem folgenden Lemm folgt drus y (t, ϕ(t, ϕ (t d p (t, ϕ(t, ϕ (t, q.e.d. 2

Die folgende Aussge ist nheliegend: Lemm 4 Sei [, b] R mit < b ein bgeschlossenes Intervll und f : [, b] R eine stetige Funktion. Flls für jede zweiml stetig differenzierbre Funktion gilt: dnn ist f(t für lle t [, b]. ψ : [, b] R mit ψ( ψ(b f(tψ(t, Verllgemeinerung uf höhere Dimensionen Sei [, b] R ein bgeschlossenes Intervll, c (c 1,...,c n, d (d 1,...,d n R n. R {ϕ (ϕ 1,...,ϕ n : [, b] R n : ϕ zweiml stetig differenzierbr mit ϕ( c, ϕ(b d}. L : (t, y 1,..., y n, p 1,...,p n L(t, y 1,...,y n, p 1,...,p n von [, b] R n R n R sei eine zweiml stetig differenzierbre Funktion. Ein reelles Funktionl S : R R sei definiert durch S(ϕ Mn knn uch hier zeigen: Ist für ein ϕ R L(t, ϕ 1 (t,...,ϕ n (t, ϕ 1 (t,...,ϕ n (t. S(ϕ S(ψ für lle ψ R, dnn gelten die Eulerschen Differentilgleichungen d (t, ϕ(t, ϕ (t (t, ϕ(t, ϕ (t p i y i für i 1,...,n. Wir kehren zurück zum Them der Integrtion. Ds Integrl von stetigen Funktionen mit kompktem Träger Sei jetzt f eine stetige Funktion von zwei Vriblen, die uf einer Menge [ 1, b 1 ] [ 2, b 2 ] definiert ist. Mn definiert dnn ( f(x, y dxdy f(x, y dx dy. Ähnlicherweise definiert mn f(x 1,...,x n dx 1... dx n ls ein iteriertes Integrl. Wir werden unten zeigen, dß diese Definition unbhängig von der Reihe der Integrtionen ist d.h. es gilt (für n 2 ( ( f(x, y dx dy f(x, y dy dx. K(R n bezeichne die Menge der stetigen Funktionen f : R n R, sodß K > existiert mit f(x, flls x R n, x > K. Ist f K(R n, dnn liegt f(x 1,...,x n dx n K(R n 1. 3

Beweis. Zunächst ist klr, dß ds Integrl existiert, d die Abbildung x n f(x 1,..., x n 1, x n bei jeder Whl von (x 1,..., x n 1 in K(R liegt. Die Abbildung (x 1,...,x n 1 f(x 1,...,x n 1, x n dx n ht ntürlich kompkten Träger. Nch den obigen Sätzen ist sie uch stetig. D die Funktion (x 1,...,x n 1 f(x 1,...,x n 1, x n dx n in K(R n 1 liegt, knn mn ds Integrl ( f(x 1,...,x n 1, x n dx n dx n 1 bilden und erhält wieder eine Funktion us K(R n 2, usw. Also knn mn jeder Funktion f K(R n die Zhl ( (( I(f... f(x 1,...,x n dx n dx n 1... dx 1 zuordnen, die mn durch iterierte Integrtion us f erhält. Stz 5 Ds Funktionl I ht uf K(R n die folgenden Eigenschften: I(f 1 + f 2 I(f 1 + I(f 2 I(αf αi(f für α R I(f für f I(E t f I(f für t R n, wobei E t f die Funktion x f(x + t bezeichnet Flls f K, dnn I(f (b i i K, wenn Trf [ i, b i ] ist (d.h. f(x, flls x / [ i, b i ]. Beweis. Ds folgt unmittelbr us den Eigenschften des eindimensionlen Integrls für stückweise stetige Funktionen. Es ist interessnt, dß ds Funktionl I durch diese Eigenschften bis uf einen Proportionlitätsfktor eindeutig bestimmt ist. D mn von einem Integrl lle diese Eigenschften erwrtet, hben wir somit den richtigen Integrlbegriff gefunden. Sollte mn Funktionen integrieren wollen, die nicht stetig sind, verwendet mn folgende ntürliche Approximtionsmethode: Definition 6 Sei f eine nichtnegtive beschränkte Funktion mit kompktem Träger uf R n. Wir nennen f integrierbr uf R n, wenn für jedes ǫ > Funktionen g, h K(R n existieren mit g f h und I(g h < ǫ. Für eine integrierre Funktion f versteht mn unter dem Integrl I(f die Zhl I(f sup I(g g f g K(R n inf I(h. f h h K(R n Wenn f integrierbr ist, gibt es für jedes ǫ > Funktionen g ǫ, h ǫ K(R n mit g ǫ f h ǫ und I(h ǫ I(g ǫ < ǫ. Dnn ist I(g ǫ sup I(g inf I(h I(h ǫ g f f h 4

und somit ttsächlich sup I(g inf I(h, womit gezeigt ist, dß die Definition sinnvoll ist. Bemerkung. Diese Definition ist im wesentlichen die Archimedische Exhustionsmethode zur Bestimmung des Inhlts eines Körpers. Mn pproximiert die Funktion f von oben und unten durch Funktionen, für welche ds Integrl bereits definiert ist. Definition 7 Eine beschränkte reellwertige Funktion f heißt integrierbr, wenn f + mx(f, und f mx( f, integrierbr sind. Mn definiert dnn ds Integrl durch I(f I(f + I(f. Stz 8 Mit f 1 und f 2 sind uch f 1 + f 2, αf 1, f 1 f 2, mx(f 1, f 2, min(f 1, f 2 und f 1 integrierbr. Ds erweiterte Integrl ht ähnliche Eigenschften: Stz 9 Für integrierbre Funktionen f, f 1, f 2 gilt I(f 1 + f 2 I(f 1 + I(f 2 I(αf αi(f, α R I(f für f I(E t f I(f, t R n I(f (b i i K, flls Trf [ i, b i ] und f K. Die o.e. Eindeutigkeit wird im folgenden Stz (ohne Beweis formuliert. Stz 1 Sei J : K(R n R eine Abbildung mit den folgenden Eigenschften: J(f 1 + f 2 J(f 1 + J(f 2 J(αf αj(f, α R J(f für f J(E t f J(f, t R n J(f α (b i i K für jedes f mit Tr f [ i, b i ] und f < K mit einer von f und Tr f unbhängigen Konstnten α >. Dnn existiert ein λ mit J(f λi(f für lle f K(R n. Als einfche Folgerung us diesem Stz ergibt sich, dß es in der Definition von I(f uf die Reihenfolge der Integrtionen nicht nkommt. Stz 11 Sei J(f... ( f(x 1,...,x n dx i1 dx i2... dx in, wobei {i 1, i 2,...,i n } irgendeine Permuttion von {1, 2,..., s} ist. Dnn gilt J(f I(f. Beweis. J(f erfüllt 1 5 und J(χ W1 1. Wir schreiben dher kurz I(f R n f(xdx, wobei dx dx 1...dx n bedeutet. Nun sind wir in der Lge, den bis jetzt nur vge umschriebenen Begriff des Flächeninhlts oder Volumens exkt zu definieren. Definition 12 Ist A R n und die Indiktorfunktion χ A integrierbr im R n, dnn nennt mn die Zhl m(a I(χ A ds (n-dimensionle Mß oder den Inhlt von A und nennt A eine integrierbre Menge. (Für n 2 spricht mn von Flächeninhlt, für n 3 von Volumen. Bemerkung. Mn erhält uf diese Weise eine Klsse von integrierbren Mengen, die lle jene Mengen umfßt, welchen mn üblicherweise einen Inhlt zuschreiben möchte. 5

Die Trnsformtionsregel Stz 13 Sei g (g 1,...,g n eine stetig differenzierbre Funktion uf U (offen in R n. Wir nehmen n, g ist injektiv und det J g (x uf U. Sei f stetig uf g(u. Dnn gilt: f(x dx f g(u detj g (u du g(u für jede stetige Funktion f uf g(u. Beweis. (Beweisskizze Wir betrchten ds Funktionl f f g(u detj g (u du. U U Mn prüft nch, dß dieses Funktionl den Bedingungen von oben genügt. Drus folgt die Aussge des Stzes. Beispiel. Berechne V x2 z dxdydz wobei V {(x, y, z : x 2 + y 2 2, z h}. Wir benutzen zylindrische Koordinten d.h. die Abbildung φ : (r, θ, ζ (r cosθ, r sin θ, ζ φ(v V wobei V {(r, θ, ζ : r, θ [, 2π], ζ h}. Dher gilt: V x 2 zdxdydz h 2π (r cosθ 2 rζ drdθdζ π4 h 2. 8 Beispiel. Wir berechnen eine Formel für ds Volumen des Rottionskörpers x 2 +y 2 (φ(z 2 : Es gilt: V π dz dxdydz (x 2 +y 2 φ(z 2 2π φ(z dθ φ(z 2 dz. Anwendungen des Integrls: r dr (in zylindrische Koordinten 1. Flls ρ(x, y, z die Dichte n der Stelle (x, y, z ist, dnn ist ρ(x, y, z dxdydz die Gesmtmsse von G. G 6

2. Sttisches Moment: Die Größen T x G T y T z xρ(x, y, z dxdydz, yρ(x, y, z dxdydz, zρ(x, y, z dxdydz sind die sttischen Momente der Msse. 3. Der Schwerpunkt von G ist der Punkt ( x, ȳ, z, wobei x xρ(x, y, z dxdydz ρ(x, y, z dxdydz T x V usw. 4. Die Trägheitsmomente I x, I y, I z im Bezug uf die x (bzw. y, z Achse ist: I x (y 2 + z 2 ρ(x, y, z dxdydz, usw. 5. Ds Potentil der Mssennziehung eines Körpers G mit Dichte ρ ist ρ(x, y, z f(x, y, z (x h2 + (y η 2 + (z ζ dhdηdζ. 2 (Ds entsprechende Krftfeld ist grdf. G Beispiel. Berechne T x, T y, T z, x, ȳ, z für die homogene Hlbkugel {(x, y, z x 2 + y 2 + z 2 1, z }, T x T y (us Symmetriegründen T z D die Gesmtmsse 2π 3 gilt V z dxdydz 1 2π zdz 1 1 z 2 2π rdr 1 z 2 z dz π 2 4. dθ x, ȳ, z 3 8. Beispiel. Berechne I x für die Kugel mit Mssendichte 1. Es gilt: I x (y 2 + z 2 dxdydz I y I z wegen der Symmetrie 1 (x 2 + y 2 + z 2 dxdydz 3 2 3 1 π 2π r 4 sin vdrdvdu 8π 15. 7