Gestaltungselemente zur Binnendifferenzierung im Mathematikunterricht

Ähnliche Dokumente
Mathematische Kompetenzen entwickeln in heterogenen Lerngruppen

Lerntypen. Prof. Dr. Regina Bruder FB Mathematik Technische Universität Darmstadt , MUED-Tagung in Fuldatal

Elemente eines Unterrichtskonzeptes zur Binnendifferenzierung in der SII/FOS

Methodenvielfalt im Mathematikunterricht. Anleitung zum eigenverantwortlichen Lernen

Struktur einer Blütenaufgabe

Minimalziele Mathematik

Mathematisch Argumentieren, Modellieren und Probleme lösen lernen - aber wie?

Wege zu einem langfristigen Kompetenzaufbau im Mathematikunterricht

1. Gegeben sind die Scheitelpunkte von Parabeln. Gib die Funktionsgleichungen an. a) S(-3/5) b) S(-1/-8) c) S(1/-0,5) d) S(0,5/0,2)

Mit symbolischen, formalen und technischen Elementen der Mathematik umgehen Wertetabellen zur Bearbeitung linearer Zusammenhänge nutzen.

Hausaufgabenkonzept. Prof. Dr. Regina Bruder. Technische Universität Darmstadt FB Mathematik

Zaubern im Mathematikunterricht

Binnendifferenzierung im Mathematikunterricht

Bestandteile Ihres Vortrags: Fachlicher Hintergrund (Schulbücher, ) Aufgabenstellung

Inhaltsbezogene Kompetenzbereiche: Kernkompetenzen / Erwartungen (Schwerpunkte) Längen, Flächeninhalt und Volumina unterscheiden

DatenundZufall Beitrag12 Zahlenbingo 1 von 20. Zahlenbingo spielerisch den Wahrscheinlichkeitsbegriff entdecken

Neue Wege Klasse 5 Schulcurriculum EGW Inhalt Neue Wege 5

Curriculum Mathematik

Mathematik - Klasse 6 -

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind

Geometrie in der Grundschule. Ein erster Überblick

Mathematik. Prüfung zum mittleren Bildungsabschluss Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kinder experimentieren: Licht und Optik

Erprobungsarbeit Mathematik

Lernbereiche (Stunden) Inhalt Seite Inhalt Seite. Im Blickpunkt: Aus Texten und Tabellen Informationen entnehmen. Kapitel 1: Gebrochene Zahlen

CAS ab Klasse 7? Konzept und Ergebnisse von CAliMERO

4.2. Aufgaben zu quadratischen Funktionen

Kompetenzorientiertes Lernen in heterogenen Lerngruppen

THÜRINGER KULTUSMINISTERIUM

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel:

Regelmäßige Kurzwiederholungen in der Hauptschule

inhaltsbezogene Kompetenzen Die SuS... Kapitel I: Natürliche Zahlen

Schulinterner Lehrplan Mathematik Jahrgangsstufe 10

Lehrwerk: Lambacher Schweizer, Klett Verlag

Übungsaufgaben zu quadratischen Gleichungen und Parabeln

Schulinternes Curriculum Mathematik Sekundarstufe I (Kl. 5 & 6) Stand: Oktober 2012

Leistungsbeurteilung mit der 4.0 Skala Mathematik 7. Schulstufe

Schulinterner Lehrplan Mathematik G8 Klasse 5

WÖCHENTLICHE ÜBUNGEN RAHMENBEDINGUNGEN UND ZIELVORSTELLUNGEN: THEMENBEREICHE 7-10:

Schulinterner Lehrplan Mathematik Klasse 8

Pflichtaufgaben A B C D E F. 2,20 m. 1,45 m. 1,10 m. (9 Punkte) P1.1 Löse die Gleichung. (Grundmenge = Menge der Reellen Zahlen)

Mathematisches Thema Quadratische Funktionen 1. Art Anwenden. Klasse 10. Schwierigkeit x. Klasse 10. Mathematisches Thema

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2011 im Fach Mathematik. 18. Mai 2011

Leitidee Messen geeignete Größeneinheiten auswählen und mit ihnen rechnen

Verschiebung/Streckung von Funktionsgraphen. Verwenden von Schablonen zum Zeichnen von Funktionsgraphen. Idee der Koordinatentransformation

WBK Bonn Abendrealschule Mathematik Lernzielkontrolle II

Kern- und Schulcurriculum Mathematik Klasse 5/6. Stand Schuljahr 2009/10

Bearbeite die folgenden Aufgaben mit Hilfe der Lerneinheit im Internet. Notiere Deine Lösungen auf dem Arbeitsblatt.

Das Geobrett. Fachkonferenz Mathematik

Schulinterner Lehrplan des Gymnasiums Buxtehude Süd Klasse 8

Inhaltsverzeichnis. Hinweise für den Benutzer Kopfrechnen Grundwissen... 7 Brüche und Dezimalbrüche (1)... 9 Brüche und Dezimalbrüche (2)...

F u n k t i o n e n Quadratische Funktionen

Mathematik 1 Sekundarstufe I DAS MATHEMATIK-LEHRMITTEL

Zentrale Abschlussprüfung 10. Vergleichsarbeit Mathematik (A) Gesamtschule/Gymnasium

Aufgaben zur Übung der Anwendung von GeoGebra

Stoffverteilungsplan Mathematik Klasse 9

Zum Verhältnis der Wissenschaften Mathematik und Didaktik des Mathematikunterrichts. Hans Dieter Sill, Universität Rostock

Ziele beim Umformen von Gleichungen

Stoffverteilungsplan Mathematik im Jahrgang 5 Lambacher Schweizer 5

Brüche addieren und subtrahieren

Maturitätsprüfung Mathematik

Heinrich-Heine-Gymnasium Herausforderungen annehmen Haltungen entwickeln Gemeinschaft stärken

Mathematik - Jahrgangsstufe 5

Kerncurriculum Mathematik Kl.6

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau

Geometrie - Hausaufgaben Kim Wendel / Linda Adebayo

Hinweise zur Abschlussprüfung im Fach Mathematik in der Hauptschule, Schuljahrgang 10, im Schuljahr 2010 / 2011

Repetition Mathematik 6. Klasse (Zahlenbuch 6)

Basiswissen WADI Basiswissen und Sicherung des Basiswissens durch WADI

Arbeitsplan Mathe 4. Schuljahr 4.Schuljahr Woche Bereich/ Schwerpunkt Lernvoraussetzungen erfassen Wiederholung des in Klasse 3 Gelernten

FACHCURRICULUM KL. 9. Raum und Form Figuren zentrisch strecken Üben und Festigen. Strahlensätze. Rechtwinklige Dreiecke.

Selbsttest Mathematik des FB 14 der Universität Kassel

Direkt und indirekt proportionale Größen

Abfolge in 7 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen

Quadratische Funktionen (Parabeln)

Thüringer Kultusministerium

Liebe Schüler der zukünftigen 7. Klassen des Marie-Curie- Gymnasiums

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2014 MATHEMATIK. 26. Juni :30 Uhr 11:00 Uhr

Gymnasium OHZ Schul-KC Mathematik Jahrgang 5 eingeführtes Schulbuch: Lambacher Schweizer 5

Mathematik 6. Thema, Inhalt, Leitidee und allgemeine mathematische Kompetenzen. inhaltsbezogene Kompetenzen. Die SuS. 1.

Stoffverteilungsplan Mathematik Klasse 7 RS,

Lehrwerk: Lambacher Schweizer, Klett Verlag

Aufstellen der Funktionsgleichung aus gegebenen Bedingungen

Unterrichtseinheit Natürliche Zahlen I

Geogebra im Geometrieunterricht. Peter Scholl Albert-Einstein-Gymnasium

Chancen und Risiken digitaler Werkzeuge für die mathematische Kompetenzentwicklung Erfahrungen aus Langzeitprojekten

Stoffverteilungsplan Mathematik im Jahrgang 9

Intelligentes Üben im kompetenzorientierten Mathematikunterricht der Mittelschule 26. Schwäbischer Lehrertag

Berufliches Gymnasium Gelnhausen

Wie kann man Mathematik nachhaltig lernen?

Themenkreise der Klasse 5

Leistungsbewertung. Dietrich Bonhoeffer Gymnasium Bergisch Gladbach

Vorläufiger schuleigener Lehrplan für das Fach Mathematik Jahrgang 7 Stand Lehrbuch: Mathematik heute 7

Inhaltsbezogene Kompetenzen

Schriftliche Abschlussprüfung Mathematik

DSM Das Mathe-Sommer-Ferien-Vergnügen Klasse 9 auf 10 Juni 2016 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10

Seite 1 von Klasse der Hauptschule. Abschlussprüfung zum Erwerb des mittleren Schulabschlusses (25. Juni 2008 von 8.30 bis 11.

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kinder experimentieren: Eigenschaften der Luft

Repetitionsaufgaben: Quadratische Funktionen

Transkript:

Gestaltungselemente zur Binnendifferenzierung im Mathematikunterricht Kiel, 15. 6. 2011 Prof. Dr. Regina Bruder FB Mathematik, TU Darmstadt

Hintergrund Mathematische Binnendifferenzierende Kompetenzentwicklung (2008-2012) Nachfolgeprojekt des Niedersächsischen CAS-Projektes CAliMERO 2005-2010 Wie kann man auch mit heterogenen Lernvoraussetzungen im MU so umgehen, dass möglichst viele Schülerinnen und Schüler einer Klasse kognitiv wie motivational angesprochen werden und Lernfortschritte für alle erreicht werden? Vgl. die Zielstellung der Expertise Steigerung der Effizienz des mathematischnaturwissenschaftlichenunterrichts 1997 für Modul 4 unter: http://www.ipn.unikiel.de/projekte/blk_prog/gutacht/gut9.htm

Gliederung 1. Welche Unterschiede der Lernenden sind für eine kompetenzorientierte Unterrichtsplanung und gestaltung von Bedeutung? 2. Binnendifferenzierende Elemente für den Mathematikunterricht

Leistungsschwache Schüler/innen in Mathematik sind dankbar für individuelle, gesonderte Erklärungen können den Anwendungsbezug der Mathematik schwerer erkennen geringes Kompetenzerleben (Rheinberg) führt zu Motivationsproblemen und damit geringerer Anstrengungsbereitschaft sehen Mathematik als weniger bedeutungsvoll für ihre Zukunft an...

Probleme leistungsstarker Schüler/innen im MU Probleme von Begabtenerkennung und förderung besondere Leistungen in Mathematik finden weniger Anerkennung als in anderen Bereichen, begünstigen u.u. eine Außenseiterrolle Sport: Jeder akzeptiert, dass manche eben weiter springen können als andere... geringe Akzeptanz alternativer Lösungsideen im MU führt zur Resignation Talente können verkümmern... und das Aufmerksamkeitsdefizit wird durch Fehlverhalten kompensiert (Störenfriede im Unterricht) Unterforderung im MU hemmt die Leistungsbereitschaft Eine Hochbegabte: Warum soll ich mich engagieren für andere, wenn für mich ja auch niemand da ist?

Welche Unterschiede zwischen Jungen und Mädchen sind für die Unterrichtsplanung und gestaltung in Mathematik von Bedeutung? Unterrichtsrelevant sind alle jene Phänomene, die motivationale Bedeutung haben, also das Kompetenzerleben beeinflussen (Rheinberg) Sicherheitsbedürfnis der Mädchen versus Wunsch nach Themenwechsel der Jungen Balance halten zwischen mathematischen Details und den übergreifenden Sinnfragen Angebote zur Selbsteinschätzung der Lernenden und Feedback (Stärkung des Selbstwertgefühls und Förderung realistischer Selbsteinschätzung)

Lernfortschritt erfordert: - Eine selbst gestellte Lernaufgabe - Erarbeitung einer Orientierungsgrundlage für die notw. Tätigkeiten Verortung von Lernfortschritten nach VYGOTSKI: Zone der nächsten Entwicklung ------------------- Zone der aktuellen Leistung Modell der Lerntätigkeit nach Lompscher (1972, 1984) Ziele Motive Handlung Inhalt Verlauf Produkte Ergebnisse Zone der nächsten Entwicklung ------------------- Zone der aktuellen Leistung 1. Probierorientierung 2. Orientierung am Bsp. 3. Feldorientierung Lernaufgabe Orientierungsgrundlage

Welche Unterschiede der Lernenden sind für die Unterrichtsplanung und gestaltung von Bedeutung? Zielwahrnehmung und Zielverarbeitung, wenn Lernanforderungen gestellt werden Modell der Lerntätigkeit nach Lompscher (1972, 1984) Ziele Motive Handlung Inhalt Verlauf Motivationslage intrinsisch extrinsisch, Einstellungen, Interessenbreite, Niveau des math. Elternerwartung, Wissens und Lehrervorbild... Könnens, Grundvorstellungen, Werkzeugkompetenz, Weltwissen... Produkte Ergebnisse Verlaufsqualitäten des Denkens, Arbeitstempo, kognitive Stile, Festigungsbedarf und Selbstregulationskompetenz Umgang mit Fehlern, Kommunikationsfähigkeit, Reflexionsbereitschaft und -fähigkeit

Wie lösen Sie die folgende Aufgabe? Gegeben ist eine Gerade und ein Punkt außerhalb der Geraden. Gesucht ist ein Punkt auf der Geraden, von dem aus man den Punkt außerhalb unter einem Winkel von 30 sieht.

Prädikativer oder funktionaler Denkstil? In einem gestellten Problem wird erst die Struktur oder das Funktionieren gesichtet Mädchen verhalten sich im Vergleich zu Jungen eher prädikativ Konsequenzen für die Aufgabenauswahl in Übungen und Prüfungen!

Kognitive Stile Es ist eine offensichtliche Tatsache, dass Schüler individuelle Präferenzen beim Lernen aufweisen jede Unterrichtssituation auf jeden Schüler jeweils anders von motivierend bis hemmend wirkt auch Lehrer individuelle Präferenzen aufweisen und sich daher fast automatisch gewisse Einseitigkeiten des Lehrens und Lernens einstellen Korrelationen bestehen zwischen dem Stil der Lehrer und ihren Schülern (Sternberg 1994) Diejenigen Schüler weisen bessere Noten auf, deren Stil demjenigen der Lehrer entspricht (Sternberg 1994) Neu: Unterscheidung von vier verschiedenen Lernstilen als Ergebnis einer Metaanalyse (Gregory, Gayle H.: Differentiating Instruction With Style. Aligning Teacher and Learner Intelligences for Maximum Achievement. Thousand Oaks 2005)

Ein Beispiel unterrichtlicher Umsetzung - nach Lernstilen differenzierender Unterrichtsansatz nach Silver et al. Unterscheidung von vier verschiedenen Lernstilen (Gregory, Gayle H.: Differentiating Instruction With Style. Aligning Teacher and Learner Intelligences for Maximum Achievement. Thousand Oaks 2005) Keine Diagnostik und Zuordnung der Lernenden nach Lernstilen Dennoch: Zuordnung Lernstil =>Unterrichtsmethode (math tools) Idee: Durch Variation in den Aufgaben und Darstellungen finden alle Lernstile stärkere Berücksichtigung im Unterricht Annahme: Die Unterschiedlichkeit des Zuganges zum Unterrichtsgegenstand nutzt allen Lernenden mehr, als wenn sie nur ihrem eigenen Lernstil entsprechend unterrichtet würden.

Schlussfolgerungen Didaktische Analyse Berücksichtigung der vier stilbasierten Zielfragen bei der Stoffanalyse und bei der Aufgabenwahl (vor allem für Einstiege, Übungen und Langfristige HA) 1. Welche Fähigkeiten, Verfahren und Schlüsselbegriffe müssen die Lernenden beherrschen? 2. Welche Kernbegriffe, Muster oder Prinzipien müssen die Lernenden vertieft verstehen? 3. Wie werden die Lernenden persönlichen Bezug zur Mathematik herstellen oder gesellschaftliche Relevanz der Mathematik entdecken? 4. Wie werden die Lernenden neue mathematische Sachverhalte erkunden, visualisieren, anwenden oder mit ihnen experimentieren?

Schlussfolgerungen Innermathematische vs.anwendungsbezogene Aufgaben Gelöste Beispiele einbauen (für Clipbords) Abstrakte Aufgaben einbauen (für Microskopes) Selbstregulationselemente verstärken (für Beach Balls) Partnerbearbeitung einer LHA zulassen (für Puppies) Hausaufgaben Wahlaufgaben Komplexe geschlossene vs. offene Aufgaben (für Clipboards) Innermathematische vs. anwendungsbezogene Aufgaben Hilfen z.b. in Form von Tippkärtchen abrufbar (v.a.puppies, Clipboards) Arbeitsform frei wählbar (einzeln, in Gruppen) Einstiege Offene vs. geschlossene Aufgaben (für Clipboards) Innermathematische vs. anwendungsbezogene Situationen Theoretische Darstellung zum Thema alternativ anbieten (für Microscopes) Arbeitsform frei wählbar (einzeln, in Gruppen)

Gliederung 1. Welche Unterschiede der Lernenden sind für eine kompetenzorientierte Unterrichtsplanung und gestaltung von Bedeutung? 2. Unser Werkzeugkoffer: Binnendifferenzierende Elemente für den Mathematikunterricht

Binnendifferenzierung erfordert Diagnose, Prophylaxe und Therapie Ziel- und Inhaltstransparenz für die Lernenden sichern Wachhalten von Basiswissen Vermeiden von (neuen) hemmenden Unterschieden Innerhalb eines mathematischen Lernbereiches wird differenziert nach Schwierigkeitsgrad (Abstraktionsgrad, Komplexität), Kontext und Offenheit Förderung der Selbstregulation Vielseitige kognitive Aktivierung der Lernenden durch vielfältige Aufgabentypen und Wahlmöglichkeiten Reaktion auf Unterschiede der Lernenden

Potenzrechnung 1. Teil: Das können wir schon! Mit dem Taschenrechner den Wert einer Potenz berechnen: 7 8 = Mein Beispiel: 15-6 = Mein Beispiel: (-6,2) 3 = Mein Beispiel: -5,1 6 = Mein Beispiel: Gegebene Zahlen als Zehnerpotenzen umschreiben: 56700300 = Mein Beispiel: 5 Milliarden 35 Millionen = Mein Beispiel: 0,0000621 = Mein Beispiel: Die Taschenrechneranzeige verstehen: 3.42 09 bedeutet: Mein Beispiel: Zehnerpotenzen in den Taschenrechner eingeben: 4,78 10 17 muss in der Tastenfolge eingegeben werden: Mein Beispiel: Umrechnen kleiner Längen in die Grundeinheit Meter: 40 mm = 4 µn = 440 nm = Meine Beispiele:

Kreativ sein dürfen: Ein Spieler zahlt 1 Euro Einsatz und wirft 3 (ideale) Würfel. Erscheint dabei die 6 ein-, zwei- oder dreimal, erhält er den Einsatz zurück und außerdem einen Gewinn von 1 bzw. 2 bzw. 3 Euro. Erscheint keine 6, ist der Einsatz verloren. Weise nach, dass das Spiel nicht fair ist! Was könnte man an dem Spiel verändern, damit es fair wird?

Lösungsvorschläge: - Änderung des Gewinnplanes z.b. soll man auch mit einer 5 noch einen kleinen Gewinn erzielen können (wie groß müsste dann dieser Gewinn sein?) - Änderung der Gewinnquote man könnte für drei Sechsen z.b. etwas mehr als nur die 3 Euro plus Einsatz erhalten (wie viel dann?) - der Einsatz wird verringert bei Konstanthalten des Gewinnplanes (tatsächlich genügen 0,86 Euro für ein faires Spiel).

Welches Potenzial zur differenzierten mathematischen Kompetenzentwicklung bietet computergestütztes Lernen im MU? - Reduktion schematischer Abläufe (Befreiung von kognitiver Last) - Unterstützung beim Entdecken mathematischer Zusammenhänge - Unterstützung individueller Präferenzen und Zugänge - Verständnisförderung mathematischer Zusammenhänge Entscheidend: Ausprobieren und Kontrollieren ist möglich

*Vision* für einen rechnergestützten MU ab Kl.7 - Rechnernutzung als selbstverständliches und individuell freigestellt unterschiedlich eingesetztes Werkzeug insbesondere zur Entwicklung von Modellierungs- und Problemlösekompetenzen; - Rechner als Werkzeug zum besseren Mathematikverstehen - Rechner als Kontrollinstrument und Reflexionsanlass

Unterrichtskonzept von MABIKOM Unterrichtseinstieg KÜ Lernprotokoll Wahlaufgaben, Aufgabenset KÜ KÜ Checkliste LHA Blütenaufgaben Test

Methoden zur Diagnose und Prophylaxe Lernende als Experten... Semantische Netze... Modell der Lerntätigkeit nach Lompscher (1972, 1984) Differenzierende Einstiege Motivierung und Zielklärung Ziele Handlung Inhalt Verlauf Produkte Motive Ergebnisse Ausgangsniveauerfassung und Ausgangsniveausicherung Vermischte Kopfübungen unabhängig vom aktuellen Thema Lernprotokoll zum aktuellen Thema

Kopfrechenführerschein

Vermischte Kopfübung mit Diagnoseanteil (7) 1.Berechne 29 7 2.Ordne der Größe nach: 1/7, 1/3, 1/2 3.Notiere 4,3 cm in der nächst größeren und der nächst kleineren Einheit 4.Berechne 5,4 10,6 5.Wie viele Flächen sind bei einem Quader mindestens jeweils gleich groß? 6.Berechne: - 3 (- 11) 3 7.Es ist genau 8.00 Uhr. Welchen Winkel schließen Minuten- und Stundenzeiger ein? 8.In der Jahrgangstufe 7 sind 180 Schüler/innen; 2/3 kommen mit dem Bus zur Schule. Wie viele Schüler/innen sind das? 9.Herr Meyer trinkt jeden Morgen 150 ml O-Saft. Für wie viele Tage reicht eine 1-Liter-Flasche? 10.Berechne 20% von 45.

"Kopfübungen Klasse 7 als Diagnoseinstrument 1 Berechne: 29 7 2 Ordne der Größe nach: 1/7, 1/3, 1/2 3 Notiere 4,3 cm in der nächst größeren und der nächst kleineren Einheit 4 5,4 10,6 5 Wie viele Flächen sind mindestens bei einem Quader jeweils gleich groß? 6 Berechne: - 3 (- 11) 3 7 Es ist genau 8.00 Uhr. Welchen Winkel schließen Minuten- und Stundenzeiger ein? 8 In Jahrgangstufe 7 sind 180 Schüler; 2/3 kommen mit dem Bus zur Schule. Wie viele sind das? 9 Herr Meyer trinkt jeden Morgen 15o ml O-Saft. Für wie viele Tage reicht eine 1- Liter-Flasche? 10 Berechne. 20% von 45. 1 Woche später: 1 59 9 2 Ordne der Größe nach: 3/7, 3/4, 3/10 3 Gib als dm an: 1,82 m 4-5,4 + 10, 6 5 Aus welchen Flächen setzt sich eine vierseitige Pyramide zusammen? 6 Schreibe drei Multiplikationen auf, deren Ergebnis 6 ist. 7 Richtig oder falsch: In jedem Dreieck sind alle drei Winkel verschieden groß. 8 Gib 2/5 als Dezimalzahl an. 9 Gib die Koordinaten von zwei Punkten im Koordinatensystem an, die auf der y-achse liegen. 10 Von 32 Schülern kommen 24 mit dem Bus. Wie viel Prozent sind das?

Inhalte von Kopfübungen systematische Begleitung im MU - Rechenfertigkeiten in den Grundoperationen - Umrechnen von Einheiten, Zahl- und Größenvorstellungen - Dreisatz (z.b. Maßstab) - Zahlen/Anteile/Verhältnisse in verschiedenen Darstellungsformen angeben - Punkte im Koordinatensystem - Übersetzungsbausteine (Termstrukturen, funktionale Zusammenhänge) - Basiswissen Geometrie (Winkel, Flächenberechnung...) - Ebenes und Raumvorstellungsvermögen (Skizzieren, Identifizieren) - Logisch-kombinatorisches Denken

Kopfübungen und Führerscheine Querfeldeinführerschein zum Halbjahr bzw. Schuljahresende (Basics aller Gebiete, die bis dahin überhaupt im MU behandelt wurden orientiert an allgemeinbildenden, realitätsbezogenen Anwendungskompetenzen) Vermischte Kopfübung (wöchentlich 10min) als Instrument, Basics wachzuhalten und an ein Umschalten zwischen verschiedenen Themen zu gewöhnen

Was auch zum Abitur noch ohne Rechner gekonnt werden sollte Dreisatz, auch Maßstab Maßstab 1: 500.000 4cm werden gemessen Wie viele km sind das in der Natur? Prozent- und Zinsrechnung Jemand erhält am Jahresende 450 Zinsen. Das Guthaben wurde mit 3% verzinst. Wie viel Geld wurde zum Jahresbeginn eingezahlt, das diese Zinsen gebracht hat? Gleichungen: Gib jeweils die Lösungsmenge im Bereich der reellen Zahlen an! a) 6x - 1 = 2x + 15 b) 0 = (a + 3) (a - 4) g) 2a 3b = -11 und c) 2y 2 + 9 = 81 d) sin x - 11 = 7 4a = 8b - 32 e) 3r 3-17 = 2r 3 + 10 f) z 2 2z - 8 = 0 Freie Bilder zeichnen Schaubild einer Wurzelfunktion, Exponentialfunktion und Hyperbel Schrägbild einer Pyramide mit quadratischer Grundfläche usw.

Methoden zur Diagnose und Prophylaxe Lernende als Experten... Semantische Netze... Modell der Lerntätigkeit nach Lompscher (1972, 1984) Differenzierende Einstiege Motivierung und Zielklärung Ziele Handlung Inhalt Verlauf Produkte Motive Ergebnisse Ausgangsniveauerfassung und Ausgangsniveausicherung Vermischte Kopfübungen unabhängig vom aktuellen Thema Lernprotokoll zum aktuellen Thema

Beispiel für ein Lernprotokoll (Klasse 9): 1. Wie kann man die Länge einer unzugänglichen Strecke bestimmen, wenn ein Maßband und ein Winkelmessgerät zur Verfügung stehen? (Einführungsbeispiel erläutern) 2a) Stelle zur gegebenen Strahlensatzfigur zwei passende Gleichungen auf! (Zeichnung vorgeben) 2b) Zeichne eine Strahlensatzfigur, für die folgendes gilt: x : 20 = (x + 40) : 28 3. Welche Fehler können passieren, wenn man die Strahlensätze für Berechnungen anwendet? 4. Wann kann man Strahlensätze anwenden und wann nicht? Gib jeweils ein Beispiel an!

Lernziel gestellt Lernziel angekommen? Grundverständnis sichern mit einem Lernprotokoll Aufgabenformate für Lernprotokolle Worum ging es im Einführungsbeispiel in der letzten Stunde? (Erläuterung) Grundaufgabe und ihre Umkehrung Wir haben ein neues Verfahren (Begriff, Satz) kennen gelernt: Gib ein Beispiel an, wo man dieses Verfahren anwenden kann und eins, wo das nicht möglich ist! (Beispiel Gegenbeispiel) Welche Fehler können passieren, wenn man das Verfahren... anwendet?

2.Beispiel für ein Lernprotokoll Welche Möglichkeiten kennst Du, um Zuordnungen darzustellen? Gib ein Beispiel für eine proportionale Zuordnung an und nenne ein Beispiel, das keine proportionale Zuordnung ist. Welchen Vorteil kann eine mathematische Beschreibung von Zuordnungen haben? Beispiel dafür Beispiel dagegen Mehrwert?? Löse die beiden Aufgaben! Um sein Budget aufzubessern arbeitet ein Student als Hilfskraft pro Woche vier Stunden und verdient 32. Wie viel hat er in einer halben Stunde verdient? Bei einer Gartenarbeit habt Ihr zu dritt mit angepackt und vier Stunden benötigt. Wie viele Helfer hättet Ihr gebraucht, um in einer halben Stunde die Arbeit abzuschließen? Wie realistisch ist das?

Lernprotokoll als Diagnoseinstrument Was ist das? Wie funktioniert das? -es geht um das Feststellen des Verständnisses neuen Stoffes -1-3 Aufgaben zum Nachdenken über das neu Gelernte am Ende einer Unterrichtsstunde oder zu Beginn der nächsten -die Aufgaben werden von allen Lernenden jeweils für sich bearbeitet (ca. 15 min) - eignet sich auch als Hausaufgabenkontrolle -wird nicht benotet! -dient dazu, den Lernenden zu zeigen, wo sie stehen, was sie schon wissen und können und wo noch Unsicherheiten sind - eignet sich auch als letzte Phase beim Stationenlernen

Methoden zur Diagnose, Prophylaxe und Therapie Lernende als Experten... Semantische Netze... Differenzierende Einstiege Motivierung und Zielklärung Modell der Lerntätigkeit nach Lompscher (1972, 1984) Ziele Motive Handlung Inhalt Verlauf Produkte Ergebnisse Übernahme von Verantwortung für das eigene Lernen Checkliste Langfristige Hausaufgaben Ausgangsniveauerfassung und Ausgangsniveausicherung Vermischte Kopfübungen unabhängig vom aktuellen Thema Lernprotokoll zum aktuellen Thema Differenzierung mit Aufgaben Wahlaufgaben Aufgabenset Blütenaufgaben

Kritisch sehen: Ich kann Geraden und Halbgeraden zeichnen. Ich kann Strecken genau messen. Ich kann Strecken in beliebige Anteile teilen. Ich kann Winkel messen. Ich kann spitze und stumpfe Winkel mit vorgegebenen Gradzahlen zeichnen. Ich kann überstumpfe Winkel mit vorgegebener Gradzahl zeichnen. Ich kann ein Lot mit dem Geodreieck zeichnen. Ich kann mit dem Zirkel umgehen. Ich kann mit dem Zirkel verschiedene Kreise zeichnen. Ich kann Kreise mit vorgegebenen Radius oder Durchmesser zeichnen. Ich kann die Zeichen und Beschriftungen am Geodreieck erklären und damit umgehen. Ich weiß, wie ich das Geodreieck benutzen muss. Ich kann Tangenten am Kreis zeichnen. Ich behalte auch bei schwierigen Konstruktionen den Überblick. Ich kann geometrische Objekte richtig bezeichnen. Ich kann Neben- und Scheitelwinkel ausrechnen. Ich kann Stufen- und Wechselwinkel ausrechnen.

Unterrichtskonzept von MABIKOM Unterrichtseinstieg KÜ Lernprotokoll Wahlaufgaben, Aufgabenset KÜ KÜ Checkliste LHA Blütenaufgaben Test

Methoden zur Diagnose, Prophylaxe und Therapie Lernende als Experten... Semantische Netze... Modell der Lerntätigkeit nach Lompscher (1972, 1984) Differenzierende Einstiege Motivierung und Zielklärung Ziele Handlung Inhalt Verlauf Produkte Motive Ergebnisse Ausgangsniveauerfassung und Ausgangsniveausicherung Vermischte Kopfübungen unabhängig vom aktuellen Thema Lernprotokoll zum aktuellen Thema Differenzierung mit Aufgaben Wahlaufgaben Aufgabenset Blütenaufgaben

Binnendifferenzierung durch Wahlaufgaben mit unterschiedlichen Anforderungen große Unterschiede im Arbeitstempo, Festigungsbedarf und im kognitiven Leistungsvermögen => Wahlmöglichkeiten Übertragen von Eigenverantwortung bei der Schwierigkeitsauswahl Organisatorisch: I. eine bestimmte Anzahl von Aufgaben ansteigender Schwierigkeit soll in einer verabredeten Zeit bearbeitet werden (z.b. mindestens 5 von 10 Aufgaben) II. Wahlmöglichkeit bei ausgewiesener Schwierigkeit *, **, *** gefordert sind z.b. 10 Sternchen stelle selbst zusammen Alle üben alles?

Aufgabenset Nullstellenberechnungen von linearen Funktionen Wähle mindestens fünf der folgenden Aufgaben aus und löse sie (15min) Gesucht ist jeweils die Nullstelle der folgenden linearen Funktionen: 1. f(x) = x - 5 2. f(x) = 2x + 6 3. f(x) = - 5x 2,5 4. Zeichne eine lineare Funktion mit einer Nullstelle bei x = - 3 5. Was kann eine Nullstelle einer linearen Funktion praktisch bedeuten? ------------------------------------------------------------------------------------------------------------- 6. Gib die Gleichungen zweier linearer Funktionen an, die bei x = 4 ihre Nullstelle haben. 7. Notiere die Gleichung einer linearen Funktion, die keine Nullstelle hat. 8. Überlege Dir einen Sachverhalt, der mit Hilfe einer linearen Funktion beschrieben werden kann, welche bei P(1;0) eine Nullstelle hat. ------------------------------------------------------------------------------------------------------------ 9. Können lineare Funktionen mehr als eine Nullstelle haben? 10. Finde einen Ausdruck zur Bestimmung der Nullstelle für eine beliebige lineare Funktion: f(x) = mx + b und gib dazu evtl. notwendige Bedingungen für m,x und b an!

Kein gelungenes Beispiel für ein differenzierendes Aufgabenset

Gezielte Abwandlung/Variation von Aufgaben für Wahlangebote Reflexion anregen, Flexibilität fördern, Transfer fördern Annahme: Je vielseitiger die Palette der innerhalb einer Unterrichtseinheit angebotenen Aufgaben ist, desto mehr Schüler können in ihrer Vielfalt kognitiv angesprochen werden. Eine praktikable Möglichkeit, die Vielfalt von Aufgaben strukturiert zu beschreiben und auch gezielt umzusetzen, bietet die Aufgabentypologie nach Bruder

Aufgabenset zum Thema Scheitelpunkt von Parabeln In den ersten drei Aufgaben ist jeweils der Scheitelpunkt der quadratischen Funktionen gesucht: 1. f(x) = (x-3)²+7 2. f(x) = 3(x+5)²+4 3. f(x) = 0,5x²-6 4. Die Normalparabel wird um 2 Einheiten nach rechts und um 6,5 Einheiten nach unten verschoben. Wie lautet die Scheitelpunktform der neuen Parabel? 5. Bernd hat zu dem abgebildeten Graphen den Funktionsterm aufgestellt. Sein Ergebnis ist f(x) = 2(x-5)²+2 Erkläre, was Bernd falsch gemacht hat....... 6. Die Flugbahn eines Balles wird durch eine Parabel beschrieben. Was bedeuten in dieser Situation der Streckfaktor und der Scheitelpunkt? Welche Werte kann der Streckfaktor hier annehmen? 7. Die Normalparabel wurde so verschoben, dass sie die x-achse an den Stellen 1 und 5 schneidet. Wie lautet die neue Funktionsgleichung? 8. Gib die Gleichung von zwei möglichst unterschiedlichen Parabeln an, deren Scheitelpunkt im Punkt S(0/3) liegt.. 9. Welchen Einfluss haben die Parameter a und d in der Funktionsgleichung f(x)=a(x-d)²+0,1 auf die Anzahl der Nullstellen? 10. In der Abbildung ist der Graph der quadratischen Funktion f(x)=0,5(x-3)²-1 dargestellt. Leider wurde vergessen, die Koordinatenachsen einzuzeichnen und zu beschriften. Ergänze sie.

Blütenaufgaben - drei bis fünf Teilaufgaben - steigender Schwierigkeitsgrad - evtl. zunehmende Öffnung - gemeinsamer Kontext erleichtert konzentrierte Bearbeitung vereinfacht das Besprechen der Teilaufgaben

Blütenaufgaben mit aufsteigender Komplexität und Offenheit An der Anlegestelle einer großen Fähre steht: Karte 1 Person 50 Blockkarte 8 Personen 380 Blockkarte 20 Personen 900 a) Welchen Preis hat eine Gruppe von 4 Personen zu zahlen? b) Wie viele Karten bekommt man für 300? a) (x x -) b) (- x x) c) (x - -) d) ((-) (-)) c) Für 24 Schüler rechnet Frank einen Preis von 1140 aus. Maike meint, dass die Gruppe noch günstiger fahren kann. Hat Maike recht? Begründe. d) Die Fährgesellschaft will eine Blockkarte für 50 Personen einführen. Was wäre ein angemessener Preis? Quelle: Jordan, Univ. Kassel, 2004

Blütenaufgabe Teelichter a) Ein Discounter bietet zwei verschieden große Teelicht - Packungen an. Welches Angebot ist günstiger? b) Ein weiterer Discounter bietet folgendes Angebot Wie lange brennen herkömmliche Teelichte? c) Welches Angebot ist (bezogen auf die Brenndauer) günstiger? d) Ein dritter Discounter hat Teelichte mit 5 Stunden Brenndauer entwickelt. Entwerfe für diesen Discounter ein Angebot. Setze dazu auch den Preis und die Anzahl der Teelichte in einer Packung fest. Begründe deine Entscheidungen!

Zielniveaus einer Blütenaufgabe Regelstandard (x--) schwierige Bestimmungs- aufgabe oder Begründung (xx) ((-)-(-)) offene Problemstellung oder selbst eine Aufgabe erfinden (-x-) (xx-) Grundaufgabe (-xx) Umkehraufgabe Mindeststandard

Bearbeitungsmöglichkeiten einer Blütenaufgabe Soweit wie möglich kommen in geg. Zeit (x--) schwierige Bestimmungs- aufgabe oder Begründung (x-x) ((-)-(-)) offene Problemstellung oder selbst eine Aufgabe erfinden (-x-) Mindestens zwei Teilaufgaben schaffen in geg. Zeit - mit unterschiedlichem Einstieg (xx-) Grundaufgabe (-xx) Umkehraufgabe

Unterschied Blütenaufgabe-Aufgabenset A u f g a b e n s e t B l ü t e n a u f g a b e meist innermathematische formale Übungsaufgaben Erstbegegnung mit den neuen Lerninhalten sorgt für grundlegendes Verstehen - allerdings bereits auf unterschiedlichen Niveaus Meist Anwendungsaufgaben Komplexen Übungen und Anwendungen Kompetenzprofil breiter und anspruchsvoller angelegt

Ergebnisauswertung zu Aufgabensets Eine Selbstkontrolle mit Musterlösung für die Basisaufgaben Eine zentrale Sicherungsphase für die Regelstandardsaufgaben detaillierte Besprechung der vertiefenden Aufgaben für alle idr nicht sinnvoll Alternativ: eine Aufgabenbesprechung in homogenen Gruppen=> Lösungszetteln oder -Folien zur Verfügung stellen, die für Kleingruppen einen Gesprächsanlass darstellen können.

Ergebnisauswertung zu einer Blütenaufgabe (x--) schwierige Bestimmungs- aufgabe oder Begründung (xx) ((-)-(-)) offene Problemstellung oder selbst eine Aufgabe erfinden (-x-) (xx-) Grundaufgabe (-xx) Umkehraufgabe Selbstkontrolle

Ergebnisauswertung zu einer Blütenaufgabe Besprechung im Plenum- Lernzuwachs für viele Schüler ermöglichen (x--) schwierige Bestimmungs- aufgabe oder Begründung (xx) ((-)-(-)) offene Problemstellung oder selbst eine Aufgabe erfinden (-x-) (xx-) Grundaufgabe (-xx) Umkehraufgabe

Zeitökonomische Ergebnisauswertung zu einer Blütenaufgabe (xx-) Grundaufgabe (x--) schwierige Bestimmungs- aufgabe oder Begründung (x-x) (-xx) Umkehraufgabe ((-)-(-)) offene Problemstellung oder selbst eine Aufgabe erfinden (-x-) Besprechung individuell nur mit denen, die es bearbeitet haben

Umgang mit Wahlmöglichkeiten Eine realistische Selbsteinschätzung einzelner Schüler gelingt nicht immer Die Bereitschaft leistungsstärkerer Lernender sich mit den schwierigeren Aufgaben auseinander zu setzten bleibt manchmal aus Frustration bei schwächeren Schülern Erwartungshorizont beim Arbeiten mit Wahlaufgaben erstellen günstiges Lernklima durch individuelle Rückmeldungen schaffen Auswahl üben (begründen und reflektieren lassen) Überforderung in den Auswahlsituationen

Erfahrungen mit Wahlaufgaben Sinnvoll und notwendig, Leistungsstärkere ausreichend gefördert Schüler arbeiten konzentriert beim Einsatz von Aufgabensets im Unterricht, Motivationssteigerung durch Wahlaufgaben Variation der Aufgabenstellungen verschiedene Blickwinkel des Sachverhalts größere Flexibilität und Kreativität im Denken die Schüler lernen sich besser selbst einzuschätzen Aufgabensets haben gegenüber zwei differenzierenden Arbeitsblättern den Vorteil eines fließenden Übergangs der Niveaustufen und ermöglichen so eine Zuordnung auf vielen unterschiedlichen Niveaustufen und dies ohne großen Aufwand

Konzept für einen langfristigen Kompetenzaufbau: Zielklarheit sichern (Mind map, Checkliste) Arbeiten mit niedrigschwelligen Aufgaben mit aufsteigenden Teilaufgaben in der Schwierigkeit und Offenheit (Blütenmodell) für selbständige oder Partnerarbeit Arbeiten mit eingangsoffenen Aufgaben (Trichtermodell) in heterogenen Kleingruppen mit gegenseitiger Unterstützung Keine Lösungswege mit dem Rechner vorschreiben, aber Muster und klare Orientierungen geben für Erwartungsbilder an die Dokumentation Werkzeugkompetenz unterstützen (TC-Hilfen) Basiswissen ausweisen und Lerngelegenheiten zum Wachhalten

Vielen Dank für Ihre Aufmerksamkeit! Kontakt: bruder@mathematik.tu-darmstadt.de jreibold@mathematik.tu-darmstadt.de www.madaba.de Aufgabendatenbank www.math-learning.com Vorträge zum download www.prolehre.de Fortbildungsangebote