Interner Lehrplan. Datum Dezember 2014
|
|
- Arwed Weiner
- vor 2 Jahren
- Abrufe
Transkript
1 Interner Lehrplan Fach Berufsmaturität Mathematik Typ Wirtschaft BM 2 berufsbegleitend Fachverantwortlicher Abteilung Reto Moser Berufsmaturität Datum Dezember 2014
2 1. Lektionen 240 Lektionen 2. Allgemeine Bildungsziele Mathematik im Grundlagenbereich vermittelt fachspezifische und fachübergreifende Kenntnisse, Fähigkeiten und Fertigkeiten. Das Fach leitet die Lernenden an, Problemstellungen zu analysieren, zu bearbeiten und zu lösen. Dadurch werden exaktes und folgerichtiges Denken, kritisches Urteilen sowie Sprachgebrauch ebenso wie geistige Beweglichkeit, Konzentrationsfähigkeit und Ausdauer geübt. Durch die Förderung des mathematisch-logischen Denkens leistet die Mathematik einen wesentlichen Beitrag zu Bildung und Kultur. Der Unterricht macht die Lernenden mit den spezifischen Methoden der Mathematik vertraut. Die heutigen technischen Hilfsmittel (Taschenrechner, Computer) erlauben die Visualisierung der Mathematik und unterstützen die Erforschung von mathematischen Sachverhalten. Es werden Fertigkeiten erlernt, die auf andere Situationen übertragen und in anderen Wissenschaftsbereichen angewendet werden können. Mathematik im Grundlagenbereich fördert insbesondere auch Kompetenzen wie Abstrahieren, Argumentieren und experimentelles Problemlösen und schafft damit bei den Lernenden das für ein Fachhochschulstudium erforderliche mathematische Verständnis. 3. Überfachliche Kompetenzen Die Lernenden werden in den folgenden überfachlichen Kompetenzen besonders gefördert: Reflexive Fähigkeiten: differenzierend und kritisch denken und urteilen; logisch argumentieren; mathematische Modelle (Formeln, Gleichungen, Funktionen, geometrische Skizzen, strukturierte Darstellungen, Ablaufpläne) in überfachlichen Anwendungen darstellen und kritisch reflektieren Sprachkompetenz: über die Mathematik als formale Sprache die allgemeine Sprachkompetenz in Wort und Schrift weiterentwickeln; umgangssprachliche Aussagen in die mathematische Fachsprache übersetzen und umgekehrt; sich in der interdisziplinären Auseinandersetzung mit Fachleuten und Laien sprachlich gewandt und verständlich ausdrücken Arbeits- und Lernverhalten: Beharrlichkeit, Sorgfalt, Konzentrationsfähigkeit, Exaktheit und Problemlöseverhalten durch mathematische Seite 2 von 14
3 Strenge weiterentwickeln und sich neues Wissen mit Neugier und Leistungsbereitschaft aneignen 1 Effizientes und systematisches Arbeiten; Mat Insbesondere die Schulung an mathematischen Methoden und Denkmodellen ermöglicht den Schülerinnen und Schülern ein zielgerichtetes Herangehen an Problemstellungen. Sie entwickeln Lösungsstrategien und können diese auch auf Aufgaben in Textform anwenden. Ferner werden analytische Fähigkeiten zur Problemlösung an mathematischen Objekten immer wieder eingeübt und gefördert. 2 Vernetztes Denken und Handeln; WR, FR, Mat Folgende Themen dienen zum Vernetzen mit den Wirtschaftsfächern WR/FR: - Kosten-, Erlös- und Gewinnfunktion mit Berechnung der Gewinn- respektive der Nutzschwelle - Angebots- und Nachfragefunktion (Volkswirtschaftslehre im Fach WR) - Lineare Optimierung als Mathematisierung von betriebswirtschaftlichen Fragestellungen - Finanzmathematische Fragestellungen wie Zinseszins- und Rentenrechnung 4. Interdisziplinarität Aufbau von Kompetenzen für interdisziplinäres Arbeiten: Das Fach Mathematik leistet in folgenden Bereichen einen wesentlichen Beitrag: - Arbeit in Lerngruppen - Ergebnisse strukturieren und visualisieren (z.b. graphische Darstellung von Funktionen) - Hypothesen aufstellen, Modelle bilden und verifizieren - Verantwortung für das eigene Lernen übernehmen Ebene 1 und 2 : Intradisziplinäres und Multidisziplinäres Lernen Mathematische Methoden werden auf wirtschaftliche Problemstellungen angewendet (WR und FR) - Lineare Optimierung von betriebswirtschaftlichen Prozessen (FR) - Kosten- und Erlösfunktion (FR) - Logarithmische Darstellung von Aktienkursen und Interpretation von Kursgraphiken (WR) - Finanzmathematische Konzepte: Berufliche Vorsorge, AHV, Amortisation von Hypotheken (WR) Mathematische Methoden werden im Bereich Technik und Umwelt eingesetzt Seite 3 von 14
4 - Lineare Regression - Wachstumsphänomene der Biologie (Problematik eines exponentiellen Bevölkerungswachstums) - Radioaktiver Zerfall Ebene 3 Die Mathematik unterstützt die Auswertung von Umfragen (kleinere Projektarbeiten, IDPA) durch die Anwendung der Datenanalyse. 5. Didaktisches Konzept Der römische Schriftsteller Stobäus berichtet, dass Euklid (er lebte im 4./3. Jahrhundert v. Chr.) von einem jungen Zuhörer gefragt worden sei, wozu die Mathematik nütze. Der Meister habe daraufhin einem Diener eine kleine Münze in die Hand gedrückt und gesagt: Gib ihm das er will mit der Mathematik Geld verdienen! Diese Anekdote ist Ausdruck des Selbstverständnisses dieses grossen Wissenschaftlers. Heute wie auch damals liegt der innere Antrieb mathematischen Forschens nicht in der direkten Anwendung und der direkten Nützlichkeit, denn vielmehr in der Schönheit, Ehrlichkeit und Wahrheit der Mathematik. Dabei sei dahingestellt, ob diese Empfindungen dem objektiven Sachverhalt entsprechen. Es lohnt sich aber von der Nützlichkeit auszugehen. Wirtschaft, Industrie und Handel setzen heute Mathematik in besseren Positionen voraus. Ebenso setzt sich heute im Berufsleben jener durch, der nicht nur eine Aufgabe nachvollziehen kann, sondern jener, der sich in einer bestimmten Situation analytische Vorgehensmodelle überlegen kann. Das beste Training hierfür ist die Mathematik. Wollen wir im Sport erfolgreich sein, trainieren wir in vielfältiger Art. Mathematik ist geistiges Joggen und bekanntlich ist joggen sehr schön, vorausgesetzt man trainiert! Das Lehrmittel hält die Theorie kurz, zeigt genaue Vorgehensschritte auf, löst eine Musteraufgabe (State oft he Art-Aufgabe), enthält viele Übungen und unterteilt diese von einfach bis schwer, Text- und Prüfungsaufgaben. 6. Qualifikationsverfahren Schriftliche Prüfung gegen Ende der Ausbildungszeit Prüfungszeit 120 min Seite 4 von 14
5 7. Lehrmittel Mathematik für kaufmännische Berufsmaturitätsschulen, Alexis Cartier, Thomas Messmer-Meile und Reto Moser, Eigenverlag, 15. Auflage Lerngebiete Ausb.- Jahr Lerngebiet (Anz. L.) und Teilgebiete 1/ 1S 1.Arithmetik/Algebra (30 Lektionen) fachliche Kompetenzen Hinweise zum methodischdidaktischen Vorgehen Hinweise zu überfachlichen Kompetenzen Bemerkungen 1.1.Grundlagen (4L) 1.2.Zahlen und zugehörige Grundoperationen (8L) 1.3.Grundoperationen mit algebraischen Termen (14L) Strukturen von algebraischen Ausdrücken erkennen und beim Berechnen sowie Umformen entsprechend berücksichtigen die Eigenschaften der Zahlen verstehen (Vorzeichen, Betrag, Rundung, Ordnungsrelationen) und Zahlen nach Zahlenarten klassieren (N,Z,Q,R) Zahlenmengen, insbesondere Intervalle, notieren und mithilfe der Zahlengeraden visualisieren Grundoperationen in verschiedenen Zahlenmengen unter Einhaltung der Regeln (Vorzeichenregeln, Hierarchie der Operationen) durchführen Algebraische Terme unter Einhaltung der Regeln für die Grundoperationen umformen, ohne Polynomdivision Fragend-entwickelnde Unterrichtsmethode. In der Einführungsphase besteht eine begrenzte Eigenständigkeit, die in der Übungs-, Festigungs- und Vertiefungsphase in Partnerarbeit (PA), Gruppenarbeit (GA) und Werkstattunterricht übergeht. Wichtig ist das Visualisieren von algebraischen und arithmetischen Inhalten wie Binomialkoeffizienten und Pascal sches Zahlendreieck. Die Lernenden werden angeleitet zum Führen von Lernkarteien, Merkheften mit Musteraufgaben und Begriffserklärungen. Sprache der Mathematik verstehen und differenziert in anderen Wissenschaftsbereichen (z.b. Technik und Umwelt) anwenden können. Strukturen erkennen und entsprechende Regeln zur Vereinfachung von Termen anwenden können (Sprachkompetenzen und Konzentrationsfähigkeit und Ausdauer). Algebraische Lösungsstrategien in anderen Wissenschaften anwenden (z.b. Physik, Chemie) können (reflexive Fähigkeiten). Seite 5 von 14
6 Polynome 2. Grades in Linearfaktoren zerlegen 1.4.Potenzen (4L) die Potenzgesetze mit ganzzahligen Exponenten verstehen und auf einfache Beispiele anwenden die Hierarchie der Operationen erkennen und anwenden 10er-Potenzen und Massvorsätze anwenden und in wissenschaftlichen Texten verstehen können (Sprachkompetenzen). 1 / 1S 2.Gleichungen und Gleichungssysteme (20 Lektionen) 2.1.Grundlagen (4L) 2.2.Gleichungen (8L) 2.3. Lineare Gleichungssysteme (8L) den Typ einer Gleichung bestimmen und beim Lösen beachten, Lösungs- und Umformungsmethoden zielführend einsetzen und Lösungen überprüfen algebraische Äquivalenz erklären und anwenden gegebene Sachverhalte im wirtschaftlichen Kontext als Gleichung oder Gleichungssystem formulieren lineare Gleichungen lösen ein lineares Gleichungssystem mit zwei Variablen lösen die Lösungsmenge eines linearen Gleichungssystems mit zwei Variablen graphisch veranschaulichen und interpretieren In der Einführungsphase besteht wiederum eine stark eingeschränkte Eigenständigkeit, Arbeit im Klassenverband. Die Übungs-, Festigungs- und Vertiefungsphase verläuft schülerzentriert. Visualisierung der Aequivalenzumformungen (Waage). Lösungsstrategien werden entwickelt, der Alltagsbezug wird hergestellt durch das Lösen von Mischungs-, Zeit-, Verteilungs-, Geschwindigkeits- und Finanzproblemen in Textform. Die Lernenden werden angeleitet zum Führen von Lernkarteien, Merkheften mit Musteraufgaben und Begriffserklärungen. Aufgabenstellungen aus anderen wissenschaftlichen Disziplinen (Technik und Umwelt, Volkswirtschaftslehre) analysieren und entsprechende mathematische Lösungsmodelle erkennen (Sprachkompetenzen, reflexive Fähigkeiten und Selbstständigkeit und Selbstverantwortung). Seite 6 von 14
7 1 / 1S 3.Funktionen (30 Lektionen) 3.1.Grundlagen (8L) reelle Funktionen als Zuordnung/Abbildung zwischen dem reellen Definitionsbereich D und dem reellen Wertebereich W verstehen und erläutern mit Funktionen beschreiben wie sich Änderungen einer Grösse auf eine abhängige Grösse auswirken und damit auch den Zusammenhang als Ganzes erfassen reelle Funktionen verbal, tabellarisch, graphisch (in kartesischen Koordinaten) und (abschnittsweise) analytisch mit beliebigen Symbolen für Argumente und Werte lesen und interpretieren Funktionsgleichung, Wertetabelle und Graph kontextspezifisch anwenden Reelle Funktionen ( D W ) in verschiedenen Notationen lesen und schreiben Zuordnungsvorschrift x f (x) Funktionsgleichung mit y = f(x) Funktionsterm f(x) f : D W Wichtig ist hier die Interdisziplinarität zum Finanz- und Rechnungswesen und der Volkswirtschaftslehre aufzuzeigen (Gewinnschwellenanalyse, Gewinn- und Verlustzone). Die Einführungsphase erfolgt lehrerzentriert, Übungsphase schülerzentriert. Visualisierung: graphische Modelle analysieren. Quadratische Funktionen: Veranschaulichung Parabel mittels zerlegbarem Kegelmodell oder Computeranimationen (Öffnungskriterien, Scheitelpunkt, Achsenabschnitte), Bezug zu naturwissenschaftlichen Anwendungen herstellen (Bevölkerungswachstum oder ph-werte von Säuren/Basen). Die Lernenden werden angeregt zum Führen von Lernkarteien, Merkheften mit Musteraufgaben und Begriffserklärungen. Funktionen im Alltag erkennen und interpretieren können, insbesondere naturwissenschaftliche, funktionale Prozesse (Sprachkompetenzen). Tabellen und Graphen in naturwissenschaftlichen Teilbereichen und im Alltag interpretieren können (Sprachkompetenzen). 1 / 2S 3.2.Funktionsgra- aus der Gleichung einer Seite 7 von 14
8 phen (4L) elementaren Funktion den Graphen skizzieren und aus dem Graphen einer elementaren Funktion seine Funktionsgleichung bestimmen 3.3. Lineare Funktionen (12L) eine lineare Funktion als Gerade in der kartesischen Ebene graphisch darstellen die Koeffizienten der Funktionsgleichung geometrisch interpretieren (Steigung, Achsabschnitt) die Funktionsgleichung einer Geraden aufstellen Schnittpunkte von Funktionsgraphen graphisch bestimmen und berechnen Lineare Funktionen aus wirtschaftlichem Kontext herleiten, z.b. Preis-Absatz- Funktion, Kosten-, Erlös- und Gewinnfunktion 5.3. Preisbildung (8L) Probleme der vollkommenen Konkurrenz mit linearen Funktionen für Angebot und Nachfrage modellieren und algebraisch lösen z.b. Bestimmen der Extremstelle einer quadratischen Gewinnfunktion ohne Differentialrechnung. 1 / 2S 5. Elemente der die Preisbildung bei Monopolen erklären sowie mit einfachen Modellen den optimalen Preis und die Gewinnzone ermitteln Seite 8 von 14
9 Wirtschaftsmathematik (20 Lektionen) 5.1.Grundlagen (4L) lineare Optimierung vertieft verstehen mathematische Modelle zur Lösung einfacher Probleme aus dem wirtschaftlichen Kontext einsetzen Sprachkompetenzen und Konzentrationsfähigkeit und Ausdauer werden gefördert. 5.4.Ungleichungen, Ungleichungssysteme und lineare Optimierung (16L) lineare Ungleichungen mit einer Variablen lösen gegebene Sachverhalte im wirtschaftlichen Kontext als Ungleichung oder Ungleichungssystem formulieren die Lösungsmenge eines linearen Gleichungs- oder Ungleichungssystems mit zwei Variablen graphisch veranschaulichen und interpretieren lineare Optimierungsprobleme mit zwei Variablen graphisch veranschaulichen und lösen (Formulierung und Darstellung der Nebenbedingungen als Ungleichungen, Formulierung und Darstellung der Zielfunktion; Suchen und Berechnen des Optimums durch Translation des Graphen der Zielfunktion) 1 / 2S 1.Arithmetik/Algebra Aufgabenstellungen aus Seite 9 von 14
10 (20 Lektionen) 1.4. Potenzen (8L) 1.5 Logarithmen (12) Potenzgesetze mit rationalen Exponenten verstehen und auf einfache Beispiele anwenden eine Exponentialgleichung in die entsprechende Logarithmusgleichung umwandeln und umgekehrt a x b x log ( b) mit a, b R, a 1 a anderen wissenschaftlichen Disziplinen analysieren und entsprechende mathematische Lösungsmodelle erkennen (Sprachkompetenzen und reflexive Fähigkeiten). die Logarithmengesetze bei Berechnungen anwenden mit Logarithmen in verschiedenen Basen numerisch rechnen 2 / 1 S 2.Gleichungen und Gleichungssyste- quadratische Gleichungen lösen Prozesse in Gleichungen abbilden können Seite 10 von 14
11 me (30 Lektionen) 2.2.Gleichungen elementare Potenzgleichungen mit ganzzahligen und rationalen Exponenten lösen (Prozessdenken). elementare Exponential- und Logarithmusgleichungen lösen 2 / 1 S 3. Funktionen (10 Lektionen) 3.4. Quadratische Funktionen den Graphen einer quadratischen Funktion als Parabel visualisieren die verschiedenen Darstellungsformen der Funktionsgleichung geometrisch interpretieren (Öffnung, Nullstellen, Scheitelpunkt, Achsenabschnitte) Schnittpunkte von Funktionsgraphen graphisch und rechnerisch bestimmen Aufgaben aus 5.3., die auf eine quadratische Funktion zurückgeführt werden können, werden hier behandelt. Funktionen im Alltag erkennen und interpretieren können, insbesondere naturwissenschaftliche funktionale Prozesse (Prozesse sind als Veränderung abhängiger Grössen zu verstehen, Prozessdenken). Kenntnisse über quadratische Funktionen und deren Scheitelpunkte in naturwissenschaftlichen Anwendungsaufgaben zur Optimierung einsetzen (reflexive Fähigkeiten). 2/ 1 S 4.Datenanalyse (20 Lektionen) 4.1. Grundlagen (4L) Grundbegriffe der Datenanalyse (Grundgesamtheit, Urliste, Stichprobe, Stichprobenumfang, Rang) erklären Einführungsphase: fragend-entwickelnde Unterrichtsmethode. Klassenarbeit (KA). Übungs-, Festigungs- und Vertiefungsphase: Werkstattunterricht, Modelle kritisch beurteilen. Wissenschaftliche Methoden unterscheiden. Seite 11 von 14
12 4.2.Diagramme (8L) Datengewinnung und qualität diskutieren (Fragebogen) Univariate Daten charakterisieren (kategorial, diskret, stetig),ordnen, klassieren (Rangliste, Klasseneinteilung) und visualisieren (Kreisdiagramm, Stabdiagramm, Kurvendiagramm, Histogramm, Boxplot) Diagramme charakterisieren und interpretieren (symmetrisch, schief, unimodal/multimodal) bivariate Daten charakterisieren, visualisieren und interpretieren Lerngruppen, Partnerarbeit (PA) und Gruppenarbeit (GA). Fächerübergreifende Möglichkeiten: Wirtschaft (aktuelle Aktienkurse). Beschreibende Statistik für die Datenanalyse (IDPA: handlungsorientierte Methoden zur Auswertung von Umfragen), Informatik. Die Lernenden werden angeleitet zum Führen von Lernkarteien, Merkheften mit Musteraufgaben und Begriffserklärungen. Datentypen unterscheiden können. Die wichtigsten Begriffe der Datenanalyse in eigenen Worten und an Beispielen erklären können (Sprachkompetenzen und Arbeit mit Diagrammen und Statistiken). Entscheiden, wann welches Diagramm angemessen ist 4.3. Masszahlen (8L) Lagemasse (Mittelwerte (geometrisches und arithmetisches Mittel), Median, Modus) und Streumasse (Standardabweichung, Quartilsdifferenz) berechnen, interpretieren sowie auf ihre Plausibilität hin prüfen Wissen im Sinne kritisch forschenden Denkens anwenden können (Relevanz von Massen). 2 / 2 S 3. Funktionen (30 Lektionen) Entscheiden, wann welche Masszahl relevant ist 3.5. Potenz- und Wurzelfunkonen (15L) die Wurzelfunktion als Umkehrfunktion der Potenzfunktion mit ganzzahligem Exponenten berechnen, Seite 12 von 14
13 interpretieren und graphisch darstellen 2 / 2 S 3.6.Exponentialund Logarithmusfunktion (15L) 5. Elemente der Wirtschaftsmathematik (30 Lektionen) 5.1 Grundlagen (10L) 5.2.Zinseszins- und Rentenrechnung (20L) die Koeffizienten a, b und c der Exponentialfunktion f : x a e bx interpretieren (Wachstums-, Zerfalls- und Sättigungsprozesse) die Logarithmusfunktion als Umkehrfunktion der Exponentialfunktion berechnen und visualisieren c Finanzmathematik vertieft verstehen arithmetische und geometrische Folgen und Reihen verstehen Probleme der einfachen und gemischten Verzinsung verstehen und lösen Endwert und Barwert eines Kapitals, Anlagedauer und Zins mit Hilfe der Grundformel der Zinseszinsrechnung berechnen Begriff und Arten der Renten kennen Einführungsphase: fragend-entwickelnde Unterrichtsmethode, Klassenarbeit (KA). Übungs-, Festigungs- und Vertiefungsphase: Werkstattunterricht, Lerngruppen, Partnerarbeit (PA) und Gruppenarbeit (GA). In der Vertiefungsphase ist Wert auf die Interdisziplinarität zum Finanz- und Rechnungswesen (Renten, berufliche Vorsorge (2. und 3. Säule), Immobilien, AHV) zu legen. Praxisorientierte Aufgaben Logarithmische Skalen interpretieren und Anwendungsbereiche aufzählen können (Sprachkompetenzen). Exponentielles Wachstum und exponentiellen Zerfall erklären und anwenden können (z.b. Wachstum von Populationen, radioaktiver Zerfall, Radiokarbon- Methode zur Altersbestimmung etc., Bezug zu Technik und Umwelt). Sprachkompetenzen werden gefördert. Die Lernenden sind in der Lage, einfachen Fachgesprächen über finanzmathematische Themen zu folgen. Seite 13 von 14
14 Rentenrechnung bei jährlichen Zins- und Rententerminen Endwerte und Barwerte und Laufzeit berechnen Laufzeit einer Rente berechnen Kapitalaufbau- und Kapitalabbauformel anwenden Probleme der Abschreibungen, Tilgung von Darlehen und Schulden (Annuitäten) Zinssatz und Anlagedauer und deren Einfluss auf Endwert und Barwert erkennen sind in EA/PA zu lösen, die einen Bezug zu Situationen aufweisen, welche die Lernenden im kaufmännischen Berufskontext und /oder im Alltag erleben (Amortisation von Immobilien, Abzahlungsgeschäfte). Die Lernenden werden angeleitet zum Führen von Lernkarteien, Merkheften mit Musteraufgaben und Begriffserklärungen. Seite 14 von 14
Mathematik. Stoffplan Wirtschaftsschule Thun. Kaufleute M-Profil (BM 1)
Mathematik Stoffplan Wirtschaftsschule Thun Kaufleute M-Profil (BM 1) Der römische Schriftsteller Stobäus berichtet, dass Euklid (er lebte im 4./3. Jahrhundert v.chr.) von einem jungen Zuhörer gefragt
Fachlehrplan Mathematik - Berufsmaturität Natur, Landschaft und Lebensmittel
Fachlehrplan Mathematik - Berufsmaturität Natur, Landschaft und Lebensmittel 1. Allgemeine Bildungsziele Mathematik im Grundlagenbereich vermittelt fachspezifische und fachübergreifende Kenntnisse, Fähigkeiten
Fachlehrplan Mathematik - Berufsmaturität Technik, Architektur, Life Sciences
Fachlehrplan Mathematik - Berufsmaturität Technik, Architektur, Life Sciences 1. Allgemeine Bildungsziele Mathematik im Grundlagenbereich vermittelt fachspezifische und fachübergreifende Kenntnisse, Fähigkeiten
1. Mathematik-Schularbeit 6. Klasse AHS
. Mathematik-Schularbeit 6. Klasse AHS Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: (Un-)Gleichungen und Gleichungssysteme: AG. Einfache Terme und Formeln aufstellen, umformen und
Technische Mathematik
Lehrplan Technische Mathematik Fachschule für Technik Fachrichtungsbezogener Lernbereich Ministerium für Bildung, Kultur und Wissenschaft Hohenzollernstraße 60, 66117 Saarbrücken Postfach 10 24 52, 66024
Schulcurriculum DSW Mathematik Klasse 9
Schulcurriculum DSW Mathematik Klasse 9 Das Schulcurriculum orientiert sich an den Lehrplänen für Mathematik des Landes Thüringen. Hierbei sind die Anforderungen, die für den Realschulabschluss relevant
Kern- und Schulcurriculum Mathematik Klasse 9/10. Stand Schuljahr 2009/10
Kern- und Schulcurriculum Mathematik /10 Stand Schuljahr 2009/10 Fett und kursiv dargestellte Einheiten gehören zum Schulcurriculum In allen Übungseinheiten kommt die Leitidee Vernetzung zum Tragen - Hilfsmittel
Mathematikaufgaben zur Vorbereitung auf das Studium
Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Informatik Medieninformatik Wirtschaftsinformatik Wirtschaftsingenieurwesen
Erläutern von Arbeitsschritten bei mathematischen. Vergleichen und Bewerten verschiedener Lösungswege
Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen / Schwerpunkte Arithmetik/Algebra mit Zahlen und Symbolen umgehen Termumformungen Lineare Gleichungen mit zwei Variablen - Systeme linearer Gleichungen
5. MATHEMATIK, NATURWISSENSCHAFTEN UND ERNÄHRUNG 5.1 ANGEWANDTE MATHEMATIK
72 I. Jahrgang: 1. und 2. Semester: 5. MATHEMATIK, NATURWISSENSCHAFTEN UND ERNÄHRUNG 5.1 ANGEWANDTE MATHEMATIK Zahlen und Maße: - die Bezeichnungen, den Aufbau und die Eigenschaften der Zahlenmengen (N,
Wirtschaftsmathematik und Statistik
Lehrplan Wirtschaftsmathematik und Statistik Akademie für Betriebs- und Unternehmensführung Ministerium für Bildung, Familie, Frauen und Kultur Hohenzollernstraße 60, 66117 Saarbrücken Postfach 10 24 52,
Die grau geschriebenen Inhalte sind verschiedenen Leitideen zugeordnet, und somit doppelt vertreten.
Kepler-Gymnasium Freudenstadt Mathematikcurriculum Klasse 9/10 Legende: Kerncurriculum: normale Darstellung Schulcurriculum: gelb hinterlegt Wahlberreich: blaugrau unterlegt und (geklammert) Die grau geschriebenen
Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11.
ETH EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE ZÜRICH Analysis mit dem Computer-Algebra-System des TI-92 Anhang 2: Gedanken zum Lehrplan Beat Eicke und Edmund Holzherr 11. November 1997 Eidgenössische Technische
LP Angewandte Mathematik ALW (Aufbaulehrgang wirtschaftliche Berufe)
5.1 ANGEWANDTE MATHEMATIK Ergänzende Bildungs- und Lehraufgabe zur Angewandten Mathematik Die Schülerin/Der Schüler - kennt die grundlegenden, allgemeinen mathematischen Strukturen; - kann selbständig
Arithmetik/Algebra mit Zahlen und Symbolen umgehen
UNTERRICHTSVORHABEN 1 Arithmetik/Algebra mit Zahlen und Symbolen umgehen ggf. fächerverbindende Kooperation mit Thema: Umfang: 8 Wochen Jahrgangsstufe 9 Zehnerpotenzen/ Potenzschreibweise mit ganzzahligen
MATHEMATIK & WIRTSCHAFT
MATHEMATIK & WIRTSCHAFT 2 MATHEMATIK & WIRTSCHAFT 2 MATHEMATIK & WIRTSCHAFT Timischl Prugger 2 Kompetenzliste Inhaltsverzeichnis / Impressum Inhaltsverzeichnis Inhalts- und Handlungsbereiche des Kompetenzmodells
Mathematik kaufmännischer Typ (K) hauswirtschaftlicher Typ (H) landwirtschaftlicher Typ (L) Berufsoberschule Mittelstufe (Berufsaufbauschule)
Mathematik (K, H, L) 43 Berufsoberschule Mittelstufe (Berufsaufbauschule) Mathematik kaufmännischer Typ (K) hauswirtschaftlicher Typ (H) landwirtschaftlicher Typ (L) Schuljahr 1 44 Mathematik (K, H, L)
Vorbereitungskurse Mathematik für zukünftige Bachelor-Studierende an der Hochschule Luzern Wirtschaft
Vorbereitungskurse Mathematik für zukünftige Bachelor-Studierende an der Bei Studienbeginn am 19. September 2016 wird im Fach Mathematik die Beherrschung des Stoffes der kaufmännischen Berufsmatura vorausgesetzt.
Mathematik Akzentfach
Mathematik Akzentfach 1. Stundendotation Klasse 1. Klasse 2. Klasse 3. Klasse 4. Klasse Wochenlektionen 3 3 2. Didaktische Konzeption Überfachliche Kompetenzen Das Akzentfach Mathematik fördert besonders...
Mathematik 9 Version 09/10
Verbalisieren Erläutern mathematischer Zusammenhänge und Kommunizieren Überprüfung und Bewertung von Problembearbeitungen Vergleichen und Bewerten von Lösungswegen und Problemlösungsstrategien (Funktionsplotter)
MATHEMATIKLEHRPLAN 4. SCHULJAHR SEKUNDARSTUFE
Europäische Schulen Büro des Generalsekretärs Abteilung für pädagogische Entwicklung Ref.:2010-D-581-de-2 Orig.: EN MATHEMATIKLEHRPLAN 4. SCHULJAHR SEKUNDARSTUFE Kurs 4 Stunden/Woche VOM GEMISCHTER PÄDAGOGISCHER
Schulcurriculum des Faches Mathematik. für die Klassenstufen 5 10
Schulcurriculum des Faches Mathematik für die Klassenstufen 5 10 Mathematik - Klasse 5 Ganze Zahlen Potenzen und Zweiersystem /das unendlich Große in der Mathematik Messen und Rechnen mit Größen Messungen
Schulcurriculum Mathematik, Klasse 05-06
Schulcurriculum Mathematik, Klasse 05-06 Themen/Inhalte: Die Nummerierung schreibt keine verbindliche Abfolge vor. Fakultative/schulinterne Inhalte sind grau hinterlegt. Kompetenzen Leitideen (= inhaltsbezogene
Schulcurriculum für das Fach Mathematik Jahrgangsstufen 9/10
Schulcurriculum für das Fach Mathematik Jahrgangsstufen 9/10 [Text eingeben] Seite 1 2 Operatoren Es gilt die vom BLASchA genehmigte Operatorenliste für die Sekundarstufe I für das Fach Deutsch Operatoren
Zuammenfassung: Reelle Funktionen
Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,
Mathematik I. Modulbezeichnung Mathematik I Modulverantwortliche(r) Hofmann. EDV-Bezeichnung - Modulumfang (ECTS) 5 Semester 1 Lernziele & Kompetenzen
Mathematik I Modulbezeichnung Mathematik I Modulverantwortliche(r) Hofmann Modulniveau Bachelor - Modulumfang (ECTS) 5 Semester 1 Lernziele & Kompetenzen Die Vorlesung behandelt die wichtigsten Grundlagen
Wolfgang Kohn Riza Öztürk. Mathematik für Ökonomen. Ökonomische Anwendungen der linearen. Algebra und Analysis mit Scilab
Wolfgang Kohn Riza Öztürk Mathematik für Ökonomen Ökonomische Anwendungen der linearen Algebra und Analysis mit Scilab 3., erweiterte und überarbeitete Auflage ^ Springer Gabler Inhaltsverzeichnis Teil
Lerninhalte und Kompetenzerwartungen in der Klasse 8 mit Bezug zum eingeführten Lehrwerk: Mathematik Neue Wege 8 (Schroedel-Verlag Bestell.-Nr.
Lerninhalte und Kompetenzerwartungen in der Klasse 8 mit Bezug zum eingeführten Lehrwerk: Mathematik Neue Wege 8 (Schroedel-Verlag Bestell.-Nr. 85478) Viele der im Kernlehrplan aufgeführten Kompetenzbereiche
Mathematik Grundlagenfach
Grundlagenfach UNTERRICHTSORGANISATION Anzahl Lektionen pro Semester Vorkurs 1. Semester 2. Semester 3. Semester 4. Semester 5. Semester 6. Semester Grundlagenfach 2 1 2 2 2 2 2 Schwerpunktfach Ergänzungsfach
Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B
Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl0-Gruppe B. Gegeben ist die Exponentialfunktion y=f x =0.8 2 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,
Übungsbuch Algebra für Dummies
...für Dummies Übungsbuch Algebra für Dummies von Mary Jane Sterling, Alfons Winkelmann 1. Auflage Wiley-VCH Weinheim 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 527 70800 0 Zu Leseprobe
Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A
Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A 1. Gegeben ist die Exponentialfunktion y=f x = 0,5 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,
Inhaltsverzeichnis 1 Rechnen 1.1 Die Zahlen 1.2 Zahlen darstellen 1.3 Addieren 1.4 Subtrahieren 1.5 Vereinfachen algebraischer Summen
6 Inhaltsverzeichnis 1 Rechnen... 11 1.1 Die Zahlen... 11 1.1.1 Zahlenmengen und ihre Darstellung... 11 1.1.2 Übersicht über weitere Zahlenmengen... 17 1.1.3 Zahlen vergleichen... 18 1.1.4 Größen, Variablen
H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen
H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Rheinland-Pfalz Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen Vorwort Vorwort Erfolg von Anfang an Dieses Übungsbuch ist auf die
Schulcurriculum idsb (Stand 10. September 2012)
lnternationale DEUTSCHE SCHULE BRÜSSEL Zertifiziert als Exzellente Deutsche Auslandsschule Schulcurriculum idsb (Stand 10. September 2012) Jahrgangstufe 5... 2 Jahrgangstufe 6... 5 Jahrgangstufe 7... 7
Anforderungen an Lehrpersonen. an BHS (Berufsbildende höhere Schulen) in Angewandter Mathematik
Schultypen Anforderungen an Lehrpersonen an BHS (Berufsbildende höhere Schulen) in Angewandter Mathematik Anforderungen Materialien Planung Methoden Beurteilung Fortbildung Anforderungen Materialien Planung
Wirtschaftsmathematik für Dummies
Christoph Mayer, Sören Jensen, Suteika Bort, beborah Rumsey, Mark Ryan und Mary Jane Sterling Wirtschaftsmathematik für Dummies Herausaegeben Von Christoph Mayer, Sören Jensen und Suteika Bort WILEY- VCH
Abitur in Mathematik Operatoren. 2 Operatoren Anforderungen und Arbeitsaufträge in den Abiturprüfungen
2 Anforderungen und Arbeitsaufträge in den Abiturprüfungen Durch die in den Abituraufgaben verwendeten Arbeitsaufträge und Handlungsanweisungen oder auch genannt wie z. B. begründen, herleiten oder skizzieren
Berufsmatura / Physik Seite 2/18
Berufsmatura / Physik Seite 1/18 Schulinterner Lehrplan nach RLP 001 Gültig ab 005 Physik BM 1 SLP 005 Allgemeine Bildungsziele Physik erforscht mit experimentellen und theoretischen Methoden die messend
Lehrplan. Mathematik. Fachoberschule. Fachbereich Wirtschaft. Ministerium für Bildung, Kultur und Wissenschaft
Lehrplan Mathematik Fachoberschule Fachbereich Wirtschaft Ministerium für Bildung, Kultur und Wissenschaft Hohenzollernstraße 60, 66117 Saarbrücken Postfach 10 24 52, 66024 Saarbrücken Saarbrücken 2007
IGS Robert-Schuman-Schule Frankenthal
Thema: Gleichungen und Ungleichungen Zeitraum: September - November Terme Rechengesetze Umkehren von Rechenoperationen Systematisches Probieren Terme auswerten und interpretieren Terme aufstellen und für
1. Funktionale Zusammenhänge & Sachsituationen Aufgabenbeispiele für Lernende in separater Beilage
Funktionale Zusammenhänge & Sachsituationen Aufgabenbeispiele für Lernende in separater Beilage Tabellen und Funktionsgraphen interpretieren und darstellen Wertetabellen lesen und beschreiben. Daten in
Funktionen (linear, quadratisch)
Funktionen (linear, quadratisch) 1. Definitionsbereich Bestimme den Definitionsbereich der Funktion f(x) = 16 x 2 2x + 4 2. Umkehrfunktionen Wie lauten die Umkehrfunktionen der folgenden Funktionen? (a)
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen
Schulinterne Richtlinien Mathematik auf der Grundlage des Kernlehrplans 2005
Schulinterne Richtlinien Mathematik auf der Grundlage des Kernlehrplans 2005 Klasse 5 I Natürliche Zahlen 1 Zählen und darstellen 2 Große Zahlen 3 Rechnen mit natürlichen Zahlen 4 Größen messen und schätzen
Inhaltsverzeichnis. Inhaltsverzeichnis. Vorwort zur 7. Auflage 5
Inhaltsverzeichnis Vorwort zur 7. Auflage 5 1 Potenzrechnung 11 1.1 Darstellung 11 1.1.1 Begriff 11 1.1.2 Vorzeichenregel 11 1.1.3 Addition und Subtraktion von Potenzen 12 1.1.4 Multiplikation von Potenzen
Mathematik. 2-jährige zur Prüfung der FSR führende Berufsfachschule. Schuljahr 1 und 2. Mathematik 1
Mathematik 1 Zweijährige zur Prüfung der Fachschulreife führende Berufsfachschule Mathematik Schuljahr 1 und 2 2 Mathematik Vorbemerkungen Der Mathematikunterricht der zweijährigen zur Prüfung der Fachschulreife
Schullehrplan IDAF. BM I Typ Wirtschaft. 1. Allgemeines. 2. Richtlinien zum interdisziplinären Arbeiten
1. Allgemeines Grundlagen - Verordnung über die eidgenössische Berufsmaturität (Berufsmaturitätsverordnung BMV) 2009 - Rahmenlehrplan für die Berufsmaturität 2012 - Kant. Verordnung zum Einführungsgesetz
Materialien/ Anregungen. Jahrgangsstufe 9: Thema Bezug zum Lehrbuch Ähnlichkeit Lernfeld: Gleiche Form andere Größe (Kapitel 1)
HARDTBERG GYMNASIUM DER STADT BONN Stand: Oktober 2014 Schulinternes Curriculum Mathematik Das schulinterne Curriculum folgt dem Kernlehrplan für das Gymnasium Sekundarstufe I (G8) in Nordrhein-Westfalen
STUDIENBEREICH MATHEMATIK MATHEMATIK LEHRPLAN DER GYMNASIALSTUDIEN. 1. Stundendotation pro Woche
Direction de l'instruction publique, de la culture et du sport Direktion für Erziehung, Kultur und Sport Service de l enseignement secondaire du deuxième degré Amt für Unterricht der Sekundarstufe 2 CANTON
Didaktik der Algebra Jürgen Roth Didaktik der Algebra 4.1
Didaktik der Algebra 4.1 Didaktik der Algebra Didaktik der Algebra 4.2 Inhalte Didaktik der Algebra 1 Ziele und Inhalte 2 Terme 3 Funktionen 4 Gleichungen Didaktik der Algebra 4.3 Didaktik der Algebra
Kirsten Wüst. Finanzmathematik. Vom klassischen Sparbuch zum modernen Zinsderivat GABLER
Kirsten Wüst Finanzmathematik Vom klassischen Sparbuch zum modernen Zinsderivat GABLER I Inhaltsverzeichnis VORWORT V INHALTSVERZEICHNIS VII ABBILDUNGSVERZEICHNIS XV TABELLENVERZEICHNIS XVII 1 ZINSFINANZINSTRUMENTE
Bernd Kuppinger. Finanzmathematik. WlLEY
Bernd Kuppinger Finanzmathematik WlLEY 5 Inhalt Einleitung 13 1 Es geht ums Geld 17 1.1 Zeit und Geld 17 1.2 Inflation und Deflation 18 1.3 Barwert und Endwert 21 1.3.1 Nominalwert und Äquivalenzprinzip
x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt
- 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +
Unterlagen für die Lehrkraft
Ministerium für Bildung, Jugend und Sport Zentrale Prüfung zum Erwerb der Fachhochschulreife im Schuljahr 01/01 Mathematik. Juni 01 09:00 Uhr Unterlagen für die Lehrkraft 1. Aufgabe: Differentialrechnung
Mathematik für Techniker
Mathematik für Techniker 5. Auflage mit 468 Bildern, 531 Beispielen und 577 Aufgaben mit Lösungen rs Fachbuchverlag Leipzig im Carl Hanser Verlag Inhaltsverzeichnis 1 Rechenoperationen 15 1.1 Grundbegriffe
Lehrplan Physik. Bildungsziele
Lehrplan Physik Bildungsziele Physik erforscht mit experimentellen und theoretischen Methoden die messend erfassbaren und mathematisch beschreibbaren Erscheinungen und Vorgänge in der Natur. Der gymnasiale
Angewandte Mathematik
Informelle Kompetenzmessung zur standardisierten kompetenzorientierten schriftlichen Reife- und Diplomprüfung BHS Jänner 2015 Angewandte Mathematik Teil A + Teil B (Cluster 8) Korrekturheft Aufgabe 1 Bevölkerungswachstum
Lambacher Schweizer. Mathematik für die Fachhochschulreife Wirtschaft und Verwaltung
a richt an beruflichen Schulen für Wirtschaft und t des Lehrwerkes. eren Anforderungen der Bildungsgänge ein, die schülergerechten, klar strukturierten Lehrgang. d Elementares Rechnen ünschenswerten mathematischen
Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS. Prof. Dr. M. Voigt
Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS Prof. Dr. M. Voigt 2. März 2015 II Inhaltsverzeichnis 5 Grundlagen 1 5.1 Funktionen einer Variablen...................... 1 5.2 spezielle Funktionen.........................
Hausinternes Curriculum Alfred-Krupp-Schule
Hausinternes Curriculum Alfred-Krupp-Schule Jahrgangsstufe 5 Fach: Mathematik Version vom 12.11.2008 (Jan, Hö) Natürliche Zahlen Symmetrie Schätzen Rechnen Überschlagen Flächen Körper Ganze Zahlen - natürliche
Die Eulersche Zahl. Halbjährliche Verzinsung: (50%=0,5)... n- malige Verzinsung:
1 Die Eulersche Zahl Euler war als Mathematiker ein großer Experimentator. Er spielte mit Formeln so, wie ein Kind mit seinem Spielzeug und führte alle möglichen Substitutionen durch, bis er etwas Interessantes
Fachschaft Mathematik. Schuleigenes Curriculum für die Klassen 7 und 8
Fachschaft Schuleigenes Curriculum für die 01. Januar 2011 Bildungsplan für die Klassen 7 u. 8 Stufenspezifische Hinweise (Klasse 7 und 8) Kurzform: soll als nutzbringendes und kreatives Betätigungsfeld
Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1
.1 Dr. Jürgen Roth Fachbereich 6: Abteilung Didaktik der Mathematik Elemente der Algebra . Inhaltsverzeichnis Elemente der Algebra & Argumentationsgrundlagen, Gleichungen und Gleichungssysteme Quadratische
Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft
Berufsbildende Schule 11 der Region Hannover Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Das folgende Material soll Ihnen helfen sich einen Überblick
Zeitraum prozessbezogene Kompetenzen inhaltsbezogene Kompetenzen Lambacher Schweizer 5 Seiten. Größen und Messen Konstruieren Winkel zeichnen
Zeitraum prozessbezogene Kompetenzen inhaltsbezogene Kompetenzen Lambacher Schweizer 5 Seiten Mit symbolischen, formalen und technischen Elementen der Mathematik umgehen Symbolschreib- symbolische und
Computer im mathbuch Detaillierte Auflistung der Verwendungsmöglichkeit eines Computers im Mathematikunterricht mit dem mathbu.
Computer im mathbuch Detaillierte Auflistung der Verwendungsmöglich eines Computers im Mathematikunterricht mit dem mathbu.ch 7 9 / 9+ Sj LU Aufgabe(n) Adressat Lernphase Mathematischer Inhalt Beschreibung
Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben
Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben an der Fachhochschule Heilbronn im Wintersemester 2002/2003 Dr. Matthias Fischer Friedrich-Alexander-Universität Erlangen-Nürnberg Lehrstuhl für
Inhaltsverzeichnis. TEIL I: Einführung in EXCEL
Inhaltsverzeichnis TEIL I: Einführung in EXCEL 1 Das Tabellenkalkulationsprogramm EXCEL... 1 1.1 Tabellenkalkulation... 1 1.2 Anwendungsgebiete... 1 1.3 Hilfefunktionen... 2 2 Benutzeroberflächen der Versionen
Schullehrplan IDAF. MMK BM I, Wirtschaft. 1. Allgemeines. 2. Richtlinien zum interdisziplinären Arbeiten
1. Allgemeines Grundlagen - Verordnung über die eidgenössische Berufsmaturität (Berufsmaturitätsverordnung BMV) 2009 - Rahmenlehrplan für die Berufsmaturität 2012 - Kant. Verordnung zum Einführungsgesetz
Einführung in die Mathematik für Volks- und Betriebswirte
Einführung in die Mathematik für Volks- und Betriebswirte Von Prof. Dr. Heinrich Bader und Prof. Dr. Siegbert Fröhlich Mit 45 A bbildungen 8. A uflage R. Oldenbourg Verlag München Wien INHALTSVERZEICHNIS
Gleichungen und Ungleichungen
Gleichungen Ungleichungen. Lineare Gleichungen Sei die Gleichung ax = b gegeben, wobei x die Unbekannte ist a, b reelle Zahlen sind. Diese Gleichung hat als Lösung die einzige reelle Zahl x = b, falls
Brüche. Zuordnungen. Arithmetik/Algebra. 1 Multiplizieren von Brüchen 2 Dividieren von Brüchen 3 Punkt vor Strich. Klammern Üben Anwenden Nachdenken
Brüche Schuleigener Lehrplan Mathematik Klasse 7 auf der Basis der Kernlehrpläne Stand August 2009 Zeitraum Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Schnittpunkt 7 5 Doppelstunden Kommunizieren
inhaltsbezogene Kompetenzbereiche/Kompetenzen Ordnen und vergleichen Zahlen
Arithmetik/Algebra 1. Rechnen mit Brüchen Vergleichen und bewerten Lösungswege Argumentationen und Darstellungen Erkunden Untersuchen Muster und Beziehungen bei Zahlen und Figuren und stellen Vermutungen
Schulinternes Curriculum. Mathematik
Gymnasium Zitadelle Schulinternes Curriculum (G 8) Stand: Schuljahr 2012/13 Gymnasium Zitadelle Schulinternes Curriculum Seite 1 EF Eingeführtes Lehrbuch: Lambacher Schweizer 10 Einführungsphase Funktionen
Funktionaler Zusammenhang. Lehrplan Realschule
Funktionaler Bildungsstandards Lehrplan Realschule Die Schülerinnen und Schüler nutzen Funktionen als Mittel zur Beschreibung quantitativer Zusammenhänge, erkennen und beschreiben funktionale Zusammenhänge
Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen
TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.3 Algebra Gleichungen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 877 Nidfurn 055-654 1 87 Ausgabe: Februar 009
Inhaltsübersicht. Jahrgang: 6 Schuljahr: 2015/2016 Halbjahr: 1/2. inhaltsbezogene prozessbezogene Kompetenzen. Halbjahr/1 Zeit (in Wochen)
Halbjahr/1 Zeit (in Wochen) Inhalte Seite inhaltsbezogene Kompetenzen prozessbezogene Kompetenzen / mögliche Berufsfelder / 1 6 Wochen 1 18.09.15 1. Teilbarkeit 1.1 Noch fit? 1.2 Teiler und Vielfache 1.3
Bedeutung des Teilbildungsbereichs ( Grobziele und Inhalte / Treffpunkte)
KK/Werkjahr mit Mindeststandards [Druckversion] Leitdeen/Richtziele Stundentafeln Sprache Geometrisches Zeichnen Mensch und Umwelt Gestalten und Musik Sport Individuum und Gemeinschaft Niveaus E P Links
MatheBasics Teil 4 Grundlagen der Mathematik
Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft MatheBasics Teil 4 Grundlagen der Mathematik Version vom 02.11.2015 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der
Kompetenzerwartungen am Ende der Jahrgangsstufe 5
Kompetenzerwartungen am Ende der Jahrgangsstufe 5 Arithmetik/Algebra mit Zahlen und Symbolen umgehen Zahlen Runden und Schätzen Große Zahlen Zahlen in Bildern Größen Längen Zeit Gewichte Rechnen Addition
1. Terme und Gleichungen mit Klammern Leitidee L4: Funktionaler Zusammenhang: Terme und Gleichungen 1.1 Terme mit mehreren Variablen
Stoffverteilungsplan EdM 8RhPf Abfolge in EdM 8 Bleib fit im Umgang mit rationalen Zahlen Kompetenzen und Inhalte Umgang mit rationalen Zahlenim Zusammenhang 1. Terme und Gleichungen mit Klammern Leitidee
Klaus-Groth-Schule - Neumünster Fachcurriculum Mathematik
Jahrgang 10 Funktionen Funktionsbegriff - Definition - vielfältige Anwendungen - Umkehrbarkeit (intuitiv, Anwendungen) ganzrationale Funktionen Modellierung - Ablesen der Werte - Ungefähre Bestimmung der
Aufgabe 1: Malerarbeiten
Aufgabe 1: Malerarbeiten Fritz braucht zwei Stunden, um ein Zimmer zu streichen. Susi braucht für das gleiche Zimmer drei Stunden. Wie lange brauchen beide zusammen, um das Zimmer zu streichen? Lösung:
Lernstandserhebungen in Klasse 8
Lernstandserhebungen in Klasse 8 Ergebnisse 2014 Justus-von-Liebig-Realschule Städt. Realschule - Sekundarstufe I - 158586 27. Mai 2014 Standorttyp: 5 1 / 21 Inhalt Einführung: Unterschied Diagnose - Klassenarbeit
Mathematik für Ökonomen
Springer-Lehrbuch Mathematik für Ökonomen Ökonomische Anwendungen der linearen Algebra und Analysis mit Scilab Bearbeitet von Wolfgang Kohn, Riza Öztürk 1. Auflage 2012. Taschenbuch. xv, 377 S. Paperback
Dabei wird man merken, dass verschiedene Gleichungsarten und jeweils auch unterschiedlich strukturierte Gleichungen auftreten.
Gleichungen in neuer Sicht 55 Anhang Gleichungen in neuer Sicht Die folgenden Ausführungen sind für Lehrerinnen und Lehrer bestimmt, münden jedoch in einen Arbeitsbogen für Schüler, der einen neuartigen
Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( )
1.1 Der Kreis Der Kreis Umfang Flächeninhalt Der Kreissektor (Kreisausschnitt) mit Mittelpunktswinkel Bogenlänge Flächeninhalt Grundwissen 10. Klasse Mathematik Wie ändert sich der Flächeninhalt eines
Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I
Bayern FOS BOS Fachabiturprüfung 05 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I.0 Nebenstehende Abbildung zeigt den Graphen G f ' der ersten Ableitungsfunktion einer in ganz 0 definierten
Mathematik-Dossier. Die lineare Funktion
Name: Mathematik-Dossier Die lineare Funktion Inhalt: Lineare Funktion Lösen von Gleichungssystemen und schneiden von Geraden Verwendung: Dieses Dossier dient der Repetition und Festigung innerhalb der
Kompetenzen. Mit dem Zinsfaktor rechnen. Vernetzen: Aktien Lernkontrolle. Schülerinnen und Schüler beschreiben geometrische Sachverhalte
1. Zinsrechnung Sparen - früher und heute Geld sparen und leihen 5 Wochen Grundaufgaben der Zinsrechnung Tageszinsen Grundwissen: Zinsrechnung Üben und Vertiefen Kommunizieren und Präsentieren: Gruppenpuzzle
Thüringer Kultusministerium
Prüfungstag: Mittwoch, den 07. Juni 2000 Prüfungsbeginn: 8.00 Uhr Thüringer Kultusministerium Realschulabschluss Schuljahr 1999/2000 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer
Umgekehrte Kurvendiskussion
Umgekehrte Kurvendiskussion Bei einer Kurvendiskussion haben wir eine Funktionsgleichung vorgegeben und versuchen ihre 'Besonderheiten' herauszufinden: Nullstellen, Extremwerte, Wendepunkte, Polstellen
B e s c h l u s s r e i fer Ent wurf
1 von 15 B e s c h l u s s r e i fer Ent wurf Verordnung der Bundesministerin für Unterricht, Kunst und Kultur, mit der die Verordnung über den Lehrplan der Bildungsanstalt für Kindergartenpädagogik sowie
EXCEL in der Wirtschaftsmathematik
Hans Benker EXCEL in der Wirtschaftsmathematik Anwendung von Tabellenkalkulationsprogrammen für Studenten, Dozenten und Praktiker Springer Vieweg Inhaltsverzeichnis TEIL I: Einführung in EXCEL 1 Das Tabellenkalkulationsprogramm
Kompetenzen. Umfang eines Kreises Flächeninhalt eines Kreises Mathematische Reise: Die Kreiszahl. bearbeiten Sachaufgaben
1. Wiederholung aus Jg 8 und Vorbereitung auf den Einstellungstest 3 Wochen Seiten 206-228 2. Potenzen und Wurzeln Seiten 32-45 3. Kreisumfang und Kreisfläche Brüche und Dezimalzahlen Brüche und Dezimalzahlen:
Die reellen Lösungen der kubischen Gleichung
Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................
Mathematik Grundlagenfach
Mathematik Grundlagenfach Allgemeine Bildungsziele Mathematikunterricht trägt zur Bildung der Schülerinnen und Schüler bei, indem besonders folgende Grunderfahrungen ermöglicht werden: soziale, kulturelle
Stoffverteilungsplan für Einblicke Mathematik 10 für Rheinland-Pfalz
Stoffverteilungsplan für Einblicke Mathematik 10 für Rheinland-Pfalz Monat Training Eignungstest - Vorbereitung auf Eignungstests bei Vorstellungsgesprächen - Beispielaufgaben zum Trainieren 6-9 K2: Geeignete
II* III* IV* Niveau das kann ich das kann er/sie. Mein Bericht, Kommentar (Einsatz, Schwierigkeiten, Fortschritte, Zusammenarbeit) Name:... Datum:...
Titel MB 7 LU Nr nhaltliche Allg. Buch Arbeitsheft AB V* Mit Kopf, Hand und Taschenrechner MB 7 LU 3 nhaltliche Allg. Buch Arbeitsheft AB einfache Rechnungen im Kopf lösen und den TR sinnvoll einsetzen