Aussagenlogik. Aussagenlogik

Größe: px
Ab Seite anzeigen:

Download "Aussagenlogik. Aussagenlogik"

Transkript

1 Aussagenlogik 153 Syntax Semantik Formeln, Modelle, Tautologien und Anwendungen Folgerungen, Wissen Syntaktisch besondere Formeln und Formelgraphen, wichtige Algorithmen Axiomatiken, Kalküle

2 verwendet: Jeder korrekte axiomatisch-deduktive Kalkül 154 Junktorenbasis Ju definiert repräsentative Formelmenge Form(Ju): o sie produzieren alle Wahrheitswerteverläufe, und o zu jeder AL-Formel gibt es eine äquivalente Ju-Formel. Menge Ax von Axiomen, ausgewählte AL-Tautologien über Ju Menge Reg von Inferenz- oder Ableitungsregeln, ausgewählte AL-Folgerungen aus endlichen Formelmengen { ϕ 1,..., ϕ n } = ψ, allesamt Ju-Formeln.

3 Ableitungsschritt 155 Anwendung eines Axioms ψ bedeutet: Wahl einer Substitution z = A 1,..., A k / π 1,..., π k und Aufnahme von ψ [z] in die Menge der abgeleiteten Formeln. Man schreibt auch ψ [ z]. ψ Anwendung einer Regel R: { ϕ 1,..., ϕ n } = ψ bedeutet: Wahl einer Substitution z = A1,..., A k / π 1,..., π k, derart, dass ϕ 1 [ z],..., ϕ n [ z] bereits abgeleitet sind, und Aufnahme von ψ [z] in die Menge der abgeleiteten Formeln. Man schreibt auch 1 [ z],..., ϕ n [ z] ϕ [ z] Rψ. Anwendungsbeispiel: Ist R : A B = A B und z = A, B / C, D E und die Formel C ( D E) bereits abgeleitet, so erzeugt ein Ableitungsschritt mit R die Formel C ( D E) : C ( D E) C ( D E)

4 Regeln 156 Axiome sind praktisch spezielle Regeln = ψ mit leerer Menge von Prämissen. Wir reden daher jetzt oft einfach nur noch von Regeln. Die wichtigste Inferenzregel ist der Modus Ponens MP : A, A B = B. Vollständigkeit Den Kalkül nennt man vollständig, wenn es möglich ist, durch wiederholte Anwendung der Axiome und Regeln alle Tautologien über Ju und bei Vorgabe einer Wissensbasis M Form(Ju) alle Folgerungen aus M (über Ju) abzuleiten.

5 Ableitbare Formeln 157 Aus Formelmenge ableitbare Formeln: Induktiv Iterativ ϕ ist mittels eines Kalküls (Ju,Reg) aus M Form(Ju) ableitbar, wenn: ϕ M oder es existiert Menge M aus M ableitbarer Formeln und Regel R Reg derart, dass ϕ mittels R (und Substitution) in einem Schritt aus M ableitbar ist, M R ϕ. Menge der mittels eines Kalküls (Ju,Reg) aus M Form(Ju) ableitbaren Formeln: Abl 0 ( M) : M Reg = n+ 1 Reg ( M) : = Abl AblReg ( M) U R Reg AblReg ( M ) : = U n= 1 AblReg ( M). n n { ϕ Form Abl n Reg ( M) R ϕ }

6 Ableitung, Beweis 158 Ableitung/Beweis einer Formel ϕ (aus M mit Reg) := endliche Folge ϕ 1,..., ϕn mit ϕ = ϕn und derart, dass jedes ϕ k in M oder aus davorstehenden Formeln unmittelbar ableitbar ist: 1 ϕ k AblReg ({ ϕ1,..., ϕk 1}).

7 Kalkülbeispiele (1) 159 Junktorenbasis Axiome Inferenzregeln Hilbert-Ackermann, ( A A) A A ( A B) ( A B) ( B A) ( A B) ( ( C A Modifizierter Modus Ponens MMP =, A) ( C A B B B)) Mendelson Junktorenbasis, Axiome A ( B A) ( A ( B C)) (( A B) ( A C)) ( B A) (( B A) B) Inferenzregeln Modus Ponens Beide sind ableitungs- (und beweis-) korrekt und vollständig.

8 Kalkülbeispiele (2) Mit Geschick reicht ein einziges (recht langes) Axiom. 160 Es gab schon sportliche Wettläufe um das jeweils kürzeste einzige Axiom in einer Junktorenbasis. Andere Axiomensysteme spendieren mehr Axiome: Hilbert-Bernays, Kleene, de Swart,...

9 Beweisbeispiele (1) 161 Beweis = Ableitung aus den Axiomen! A A im Mendelson-Kalkül 1. ( A ( B C)) (( A B) ( A C)) Axiom 2. ( A (( A A) A)) (( A ( A A)) ( A A)) 1, [ B, C / A A, A] 3. A ( B A) Axiom 4. A (( A A) A) 3, [ B / A A] 5. (( A ( A A)) ( A A)) 2, 4, MP 6. A ( A A) 3, [ B / A] 7. A A 5, 6, MP

10 Beweisbeispiele (2) 162 A A (d.h. A A ) im Hilbert-Ackermann-Kalkül 1. ( A B) ( ( C A) ( C B)) Axiom 2. ( A B) ( ( C A) ( C B)) 1, C / C 3. A ( A B) Axiom 4. A ( A A) 3, B / A 5. ( ( A A) A) ( ( A ( A A)) ( A A)) 2, A, B, C / A A, A, A 6. ( A ( A A)) ( A A) 4,5,MMP 7. A A 4,6,MMP Leichter nachzuprüfen als darauf zu kommen! Ü36

11 Berechtigte Fragen (1) 163 Wozu Kalküle und Beweise? Wir haben doch unsere Wahrheitstafeln und sonstigen Algorithmen! :-) (1) Komplexität Man beweist lieber ( A B C D E F G) A in wenigen Schritten im Kalkül als mittels Wahrheitstafel mit 128 Zeilen und 1792 Feldern. (2) Berechenbarkeit In der vollen Prädikatenlogik handeln die Formeln von Eigenschaften von potentiell unendlich vielen verschiedenen Objekten. Die kann man nicht mehr alle in einer Tabelle erfassen und durchrechnen. Da gibt es (beweisbar!) keinen sicher terminierenden Algorithmus zur Überprüfung der Erfüllbarkeit etc. wir sind auf Beweise angewiesen. :-(

12 Berechtigte Fragen (2) 164 Na gut, dann umgekehrt: Wozu diese ganzen Wahrheitstafeln und sonstigen Algorithmen? :-( In vielen praktischen Fragen gelingt es, das Ganze in Aussagenlogik auszudrücken. Und dann kann man zum Glück den Computer die algorithmische Arbeit erledigen lassen. :-)

13 Natürliches Schließen und unser Werkzeugkasten 165 In den 1930er Jahren erweiterte Gerhard Gentzen die axiomatischen Kalküle gewissermaßen um das Deduktionstheorem und erhielt so seinen (formalen) Kalkül des natürlichen Schließens, der weitgehend das formlose Beweisen in Mathematikbüchern streng formal nachbildet. Seine Beweise sind nicht reine Folgen von Formeln, wie im Vorigen, sondern haben teilweise eine Blockstruktur: Annahme: ϕ Hier darf ϕ benutzt werden. M ψ ϕ ψ + die bisher abgeleiteten Formeln, + die noch von oben geltenden Annahmen (aus umgebenden Blöcken) bedingter Beweis

14 GNS-Beispiel Ableitung von ( A B) (( B C) ( A C)) nach unserer GNS-Definition, annotiert, in einer Baumschreibweise mit Einrückung (traditionelle Schreibweise anders): 166 Nr. Formel Regel,-Pr. 1 Ann: A B AE 2 Ann: B C AE 3 Ann: A AE 4 B FB,1,3 5 C FB,2,4 6 A C FE,3,5 7 ( B C) ( A C) FE,2,6 8 ( A B) (( B C) ( A C)) FE,1,7

15 GNS-Beispiel, historisch Ableitung von ( A B) (( B C) ( A C)) 167 traditionelle Schreibweise [A]1 [ A B]3 B FB [ B C ]2 C A C ( B C) ( A C) ( A B) (( B C) ( A C)) FB FE1 FE2 FE3

16 Zielformulierung begin Ziel erreicht end Beispiel in Werkzeugkastenversion Zeige ( A B) (( B C) ( A C)) 1. A B Ann Zeige ( B C) ( A C) 2. B C Ann Zeige ( A C) 3. A Ann 4. B MP,1,3 5. C MP,2,4 6. A C BB 7. ( B C) ( A C) BB 8. ( A B) (( B C) ( A C)) BB 168 Unser Werkzeugkasten (erweitertes GNS) wird noch weitere Regeln enthalten, und die damit gebauten Beweise werden sehr natürlich und doch exakt sein.

17 Werkzeugkasten Beweisaufbau Zeilentypen 169 ohne Ableitungsbegründung: 1. Zuerst die Prämissen Ausgangsannahmen, aus denen gefolgert werden soll sofern vorhanden: keine bei Beweisen von Tautologien: ϕ Gegeben 2. Zielformeln (eine erste unmittelbar nach den Prämissen): Zeige ϕ 3. ad hoc angenommene Formeln, für IB/BB-Blöcke: ϕ Annahme mit Ableitungsbegründung: 4. abgeleitete Formeln: ϕ Regel, Prämissennummer(n) speziell: Erfüllungszeilen ϕ Beweistyp (DB/IB/BB) Alle (außer Zielformeln) sind jeweils durchnummeriert wegen späterer Verweise als Prämissennummern.

18 Werkzeugkasten Beweisaufbau Blöcke 170 Auf die Prämissen folgt der Haupt-Block. 5. Ein Block beginnt mit einer Zielzeile (Zeige ϕ), dann kommt (eingerückt) der Blockkörper, Die letzte Formel im eingerückten Blockkörper muss jeweils abgeleitet sein. am Ende (nicht mehr eingerückt) die Erfüllungszeile ϕ. Es gibt 4 Blockschemata, den 4 Beweismethoden entsprechend, Tabelle. Im Blockkörper stehen angenommene Formeln und Erfüllungszeilen nur dort, wo im Blockschema gezeigt (oder entsprechend in Unterblöcken), abgeleitete Formeln und Unterblöcke (Zwischenbeweise) aber nach Belieben.

19 Wie wird abgeleitet? 171 per Blockschema/Beweismethode oder per Ableitungsregeln/Schlussregeln Tabelle In der Regelanwendung verfügbare Voraussetzungen (Prämissen) sind frühere Formeln aus dem laufenden oder dessen umgebenden Blöcken.

20 Beweis-Methoden (1) a) Direkter Beweis Blockbeginn: Zeige ϕ. Sobald im Blockkörper ϕ abgeleitet, Blockende: Erfüllungszeile ϕ DB. dienen der Zerlegung in Teilaufgaben. b) Bedingter Beweis Blockbeginn: Zeige ϕ ψ, Annahmezeile ϕ Ann Sobald im gleichen Block ψ abgeleitet, Blockende: Erfüllungszeile ϕ ψ BB. 172 Direkter Beweis: Bedingter Beweis: Zeige ϕ Zeige ϕ ψ M ϕ Ann ( ϕ) weglassbar s.u. M ϕ DB ψ ϕ ψ BB

21 (Zwischen) Beweis-Methoden (2) c) Indirekter Beweis 1 Blockbeginn: Zeige ϕ, im Blockkörper unmittelbar gefolgt von ϕ Ann Sobald im Blockkörper (Widerspruch) abgeleitet, Blockende: ϕ IB1 d) Indirekter Beweis 2 Blockbeginn: Zeige ϕ, im Blockkörper unmittelbar gefolgt von ϕ Ann Sobald im gleichen Block (Widerspruch) abgeleitet, Blockende: ϕ IB2 173 Indirekter Beweis 1: Indirekter Beweis 2: Zeige ϕ Zeige ϕ ϕ Ann ϕ Ann M M ϕ IB1 ϕ IB2

22 Oder- Einführung Und- Einführung Und- Benutzung Doppelte Negations- Einführung DN E Doppelte-Negation-Benutzung ϕ Gdw- Einführung Widerspr.- Einführung Folgerungs- Benutzung Modus Ponens Werkzeugkasten Schlussregeln (1) ϕ OE, ϕ ψ ψ ϕ ψ Oder-Benutzung ϕ ψ, ϕ ϕ ψ, ψ OB 1, ψ ϕ ϕ, ψ ϕ ψ, ϕ, UE Oder-Benutzung ϕ OB ψ 2 2 ρ ϕ ψ ϕ ψ UB, Wieder- ϕ WDH ϕ ψ ϕ holung ϕ ϕ ψ, ψ ϕ G E Gdw-Benutzung ϕ ψ links/ rechts W E ϕ, ϕ Widerspruch- Benutzung ϕ, ϕ ψ Folgerungs- MP ψ Benutzung Modus Tollens DNB G B WB MT ϕ ϕ ϕ ψ, ϕ ψ ϕ ϕ ψ ψ ϕ ϕ ψ, ψ ϕ ρ ψ ρ

23 Werkzeugkasten Schlussregeln (2) 175 Nicht-Und- Benutzung ( ϕ ψ ) ( ϕ ψ ) NUB, Nicht-Oder- ϕ ψ ψ ϕ Benutzung ( ϕ ψ ) NFB Nicht-Gdw- ϕ ψ Benutzung Nicht- Folgerungs- Benutzung NOB NGB ( ϕ ψ ) ( ϕ ψ ), ϕ ψ ( ϕ ψ ) ( ϕ ψ ), ϕ ψ ϕ ψ Weitere Regeln sind aus Äquivalenz- und Implikation-Tautologien herleitbar. Modularität: Sinnvoll ist in der Praxis auch das Einfügen von anderswo bewiesenen Tautologien oder Folgerungen aus M (mit einer Quellenangabe an Stelle der Ableitungsbegründung). Autoren von Mathematikbüchern zitieren z.b. oft früher (im gleichen Buch oder anderswo) bewiesene Sätze in Beweisen späterer Sätze, anstatt deren komplette Beweise in den neuen Beweis einzubauen.

24 Werkzeugkasten 3 Beweisstrategien 176 Zeige ϕ ψ Zeige ϕ ψ Zeige ϕ ψ Zeige ϕ Zeige ϕ ψ ( ϕ ψ ) AE M M ϕ NOB ϕ ϕ ψ ψ NOB Zeige ψ Zeige ψ ϕ M M M ψ ψ ϕ ϕ ψ IB1 ϕ ψ UE ϕ ψ GE

25 Werkzeugkasten Nutzen 177 Satz: Der Werkeugkasten für Aussagenlogik ist (ableitungs- und beweis-) korrekt und vollständig. Der Werkeugkasten formalisiert die manuell üblichen Beweise und macht sie dadurch maschinell überprüfbar. Aber er führt (wie manuelle Beweisversuche) nicht zwingend zum Beweis einer korrekten Tautologie oder Folgerung. Er verwendet implizit das Deduktionstheorem (siehe bedingter Beweis). Dies erlaubt kürzere Beweise als z.b. nur mit Axiomen und Modus Ponens.

26 Vergleich axiomatischer und Werkzeugkasten-Beweis Erinnerung: A A im Mendelson-Kalkül 1. ( A ( B C)) (( A B) ( A C)) Axiom 2. ( A (( A A) A)) (( A ( A A)) ( A A)) 1, [ B, C / A A, A] 3. A ( B A) Axiom 4. A (( A A) A) 3, [ B / A A] 5. (( A ( A A)) ( A A)) 2, 4, MP 6. A ( A A) 3, [ B / A] 7. A A 5, 6, MP 178 Neu: A A mit Werkzeugkasten Zeige A A 1. A Ann 2. A Wdh, 1 3. A A BB Ü37 Ü38 Ü39

27 Exkurs: Interessante mathematische Sätze über AL 179 Interpolationssätze Kompaktheitssätze Mathematiker Nichtmathematiker

28 Interpolationssätze der AL 180 Craigs Interpolationssatz für AL Wenn für zwei Formeln ϕ, ψ gilt: = ϕ ψ, dann kommt entweder eine Aussagevariable P sowohl in ϕ als auch in ψ vor, und dann existiert auch eine Formel π, deren sämtliche Aussagevariablen sowohl in ϕ als auch in ψ vorkommen, derart dass = ϕ π und = π ψ. oder sie haben keine Aussagevariable gemeinsam, und = ϕ oder = ψ. Beweis (mit Konstruktion für ein π): Wikipedia (englisch) Craig interpolation Lyndons Interpolationssatz für AL Wenn sich zwei Theorien S, T widersprechen, d.h. wenn für zwei Theorien S, T Theo( S T ) unerfüllbar ist, dann existiert eine Formel ϕ, deren sämtliche Aussagevariablen sowohl in S als auch in T vorkommen und derart dass S = ϕ und T = ϕ... (+ weitere Eigenschaften von ϕ ) E12

29 Kompaktheitssätze der AL 181 Eine Formelmenge M ist erfüllbar genau dann, wenn jede endliche Teilmenge von M erfüllbar ist. Aus einer Formelmenge M folgt eine Formel ψ, M = ψ, genau dann, wenn ψ bereits aus einer endlichen Teilmenge N M folgt: N = ψ. Ein möglicher Beweisweg der oberen Aussage für abzählbare M verwendet Königs Lemma. Für beliebige M aber verwendet man das Lemma von Zorn: In jeder nicht-leeren partiellen Ordnung, in der jede Kette nach oben beschränkt ist, existiert ein maximales Element. nette Übung in Prädikatenlogik und Mengenlehre Das geht aber nur in einer Mengenlehre mit Auswahlaxiom. Das Auswahlaxiom kommt den meisten intuitiv selbstverständlich vor, hat aber Konsequenzen, die den meisten (zunächst?) intuitiv falsch vorkommen. Banach-Tarski-Paradoxon

2.3 Deduktiver Aufbau der Aussagenlogik

2.3 Deduktiver Aufbau der Aussagenlogik 2.3 Deduktiver Aufbau der Aussagenlogik Dieser Abschnitt beschäftigt sich mit einem axiomatischen Aufbau der Aussagenlogik mittels eines Deduktiven Systems oder eines Kalküls. Eine syntaktisch korrekte

Mehr

Satz 1.18 (Kompaktheitssatz der Aussagenlogik)

Satz 1.18 (Kompaktheitssatz der Aussagenlogik) Satz 1.18 (Kompaktheitssatz der Aussagenlogik) Σ F ist erfüllbar genau dann, wenn jede endliche Teilmenge von Σ erfüllbar ist. Σ F ist unerfüllbar genau dann, wenn es eine unerfüllbare endliche Teilmenge

Mehr

Formale Methoden II. Gerhard Jäger. SS 2005 Universität Bielefeld. Teil 3, 12. Mai Formale Methoden II p.1/23

Formale Methoden II. Gerhard Jäger. SS 2005 Universität Bielefeld. Teil 3, 12. Mai Formale Methoden II p.1/23 Formale Methoden II SS 2005 Universität Bielefeld Teil 3, 12. Mai 2005 Gerhard Jäger Formale Methoden II p.1/23 Logische Folgerung Definition 6 (Folgerung) Eine Formel ϕ folgt logisch aus einer Menge von

Mehr

Einführung in die Logik

Einführung in die Logik Einführung in die Logik Klaus Madlener und Roland Meyer 24. April 2013 Inhaltsverzeichnis 1 Aussagenlogik 1 1.1 Syntax................................. 1 1.2 Semantik............................... 3 1.3

Mehr

1 Aussagenlogik. 1.1 Aussagen. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage) Aussage = Behauptung Beispiele: Es regnet.

1 Aussagenlogik. 1.1 Aussagen. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage) Aussage = Behauptung Beispiele: Es regnet. Grundlagen der Mathematik für Informatiker 1 1 Aussagenlogik 1.1 Aussagen Aussage = Behauptung Beispiele: Es regnet. Die Straße ist naß. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage)

Mehr

1 Aussagenlogik. 1.1 Aussagen. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage) Aussage = Behauptung Beispiele: Es regnet.

1 Aussagenlogik. 1.1 Aussagen. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage) Aussage = Behauptung Beispiele: Es regnet. Grundlagen der Mathematik für Informatiker 1 1 Aussagenlogik 1.1 Aussagen Aussage = Behauptung Beispiele: Es regnet. Die Straße ist naß. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage)

Mehr

Hilbert-Kalkül (Einführung)

Hilbert-Kalkül (Einführung) Hilbert-Kalkül (Einführung) Es gibt viele verschiedene Kalküle, mit denen sich durch syntaktische Umformungen zeigen läßt, ob eine Formel gültig bzw. unerfüllbar ist. Zwei Gruppen von Kalkülen: Kalküle

Mehr

Jeder Aussage p kann ein Wahrheitswert W(p) {0, 1} zugeordnet werden. Beispiele: W(Es regnet.) =? (je nach Lage der Dinge) W(Die Straße ist naß.) =?

Jeder Aussage p kann ein Wahrheitswert W(p) {0, 1} zugeordnet werden. Beispiele: W(Es regnet.) =? (je nach Lage der Dinge) W(Die Straße ist naß.) =? Grundlagen der Mathematik für Informatiker 1 Grundlagen der Mathematik für Informatiker 2 1 Aussagenlogik 1.1 Aussagen Aussage = Behauptung Beispiele: Es regnet. Die Straße ist naß. 15 ist eine Primzahl.

Mehr

5.1 Inferenz. Theorie der Informatik. Theorie der Informatik. 5.1 Inferenz. 5.2 Resolutionskalkül. 5.3 Zusammenfassung. Inferenz: Motivation

5.1 Inferenz. Theorie der Informatik. Theorie der Informatik. 5.1 Inferenz. 5.2 Resolutionskalkül. 5.3 Zusammenfassung. Inferenz: Motivation Theorie der Informatik 9. März 2015 5. Aussagenlogik III Theorie der Informatik 5. Aussagenlogik III 5.1 Inferenz Malte Helmert Gabriele Röger 5.2 Resolutionskalkül Universität Basel 9. März 2015 5.3 Zusammenfassung

Mehr

Was bisher geschah Modellierung in Logiken: klassische Prädikatenlogik FOL(Σ, X) Spezialfall klassische Aussagenlogik AL(P)

Was bisher geschah Modellierung in Logiken: klassische Prädikatenlogik FOL(Σ, X) Spezialfall klassische Aussagenlogik AL(P) Was bisher geschah Modellierung in Logiken: klassische Prädikatenlogik FOL(Σ, X) Spezialfall klassische Aussagenlogik AL(P) Syntax Semantik Signatur, Variablen Terme (induktive Definition, Baumform) Atome

Mehr

2.6 Natürliches Schließen in AL

2.6 Natürliches Schließen in AL 2.6 Natürliches Schließen in AL Bisher wurde bei der Überprüfung der Gültigkeit von Schlüssen oder Schlussschemata insofern ein semantisches Herangehen verfolgt, als wir auf die Bewertung von Formeln mit

Mehr

TU7 Aussagenlogik II und Prädikatenlogik

TU7 Aussagenlogik II und Prädikatenlogik TU7 Aussagenlogik II und Prädikatenlogik Daniela Andrade daniela.andrade@tum.de 5.12.2016 1 / 32 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds

Mehr

Frank Heitmann 2/48. 2 Substitutionen, um formal auszudrücken wie in Formelmengen. auf!

Frank Heitmann 2/48. 2 Substitutionen, um formal auszudrücken wie in Formelmengen. auf! Motivation ormale der Informatik 1 Kapitel 17 und rank Heitmann heitmann@informatik.uni-hamburg.de Der Sinn von : Aufgrund syntaktischer Eigenschaften von ormeln/ormelmengen auf semantische Eigenschaften

Mehr

Der Hilbert-Kalkül für die Aussagenlogik (Notizen zur Vorlesung Logik im Wintersemester 2003/04 an der Universität Stuttgart)

Der Hilbert-Kalkül für die Aussagenlogik (Notizen zur Vorlesung Logik im Wintersemester 2003/04 an der Universität Stuttgart) Der Hilbert-Kalkül für die Aussagenlogik (Notizen zur Vorlesung Logik im Wintersemester 2003/04 an der Universität Stuttgart) Javier Esparza und Barbara König 4. Dezember 2003 Für eine gegebene aussagenlogische

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 4 Die Ableitungsbeziehung Definition 4.1. Es sei Γ L V eine Ausdrucksmenge in der Sprache der Aussagenlogik zu einer

Mehr

1.1 Motivation. Theorie der Informatik. Theorie der Informatik. 1.1 Motivation. 1.2 Syntax. 1.3 Semantik. 1.4 Formeleigenschaften. 1.

1.1 Motivation. Theorie der Informatik. Theorie der Informatik. 1.1 Motivation. 1.2 Syntax. 1.3 Semantik. 1.4 Formeleigenschaften. 1. Theorie der Informatik 19. Februar 2014 1. Aussagenlogik I Theorie der Informatik 1. Aussagenlogik I Malte Helmert Gabriele Röger Universität Basel 19. Februar 2014 1.1 Motivation 1.2 Syntax 1.3 Semantik

Mehr

Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser

Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser Informatik A Prof. Dr. Norbert Fuhr fuhr@uni-duisburg.de auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser 1 Teil I Logik 2 Geschichte R. Descartes (17. Jhdt): klassische

Mehr

Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s 1. und s 2 unterschiedliche Wahrheitswerte haben.

Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s 1. und s 2 unterschiedliche Wahrheitswerte haben. 2 Aussagenlogik () 2.3 Semantik von [ Gamut 4-58, Partee 7-4 ] Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s und s 2 unterschiedliche Wahrheitswerte haben. Beispiel: Es regnet.

Mehr

3. Grundlegende Begriffe von Logiken - Aussagenlogik

3. Grundlegende Begriffe von Logiken - Aussagenlogik 3. Grundlegende Begriffe von Logiken - Aussagenlogik Wichtige Konzepte und Begriffe in Logiken: Syntax (Signatur, Term, Formel,... ): Festlegung, welche syntaktischen Gebilde als Formeln (Aussagen, Sätze,

Mehr

Kapitel 1.5 und 1.6. Ein adäquater Kalkül der Aussagenlogik

Kapitel 1.5 und 1.6. Ein adäquater Kalkül der Aussagenlogik Kapitel 1.5 und 1.6 Ein adäquater Kalkül der Aussagenlogik Teil 1: Kalküle und Beweisbarkeit und die Korrektheit des Shoenfield-Kalküls Mathematische Logik (WS 2010/11) Kapitel 1.5 und 1.6: Kalküle 1 /

Mehr

Deduktion in der Aussagenlogik. Semantische Folgerungsbeziehung. Zusammenhang zwischen semantischer und syntaktischer Folgerung

Deduktion in der Aussagenlogik. Semantische Folgerungsbeziehung. Zusammenhang zwischen semantischer und syntaktischer Folgerung Deduktion in der Aussagenlogik Menge von Ausdrücken der Aussagenlogik beschreibt einen bestimmten Sachverhalt, eine "Theorie" des Anwendungsbereiches Was folgt logisch aus dieser Theorie? Deduktion: aus

Mehr

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 9.

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 9. Formale Logik PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg Wintersemester 16/17 Sitzung vom 9. November 2016 Weitere Begriffe Eine Zuweisung von Wahrheitswerten W bzw. F

Mehr

Rhetorik und Argumentationstheorie.

Rhetorik und Argumentationstheorie. Rhetorik und Argumentationstheorie 2 [frederik.gierlinger@univie.ac.at] Teil 2 Was ist ein Beweis? 2 Wichtige Grundlagen Tautologie nennt man eine zusammengesetzte Aussage, die wahr ist, unabhängig vom

Mehr

Deduktion in der Aussagenlogik

Deduktion in der Aussagenlogik Deduktion in der Aussagenlogik Menge von Ausdrücken der Aussagenlogik beschreibt einen bestimmten Sachverhalt, eine "Theorie" des Anwendungsbereiches. Was folgt logisch aus dieser Theorie? Deduktion: aus

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 1. Aussagenlogik I Malte Helmert Gabriele Röger Universität Basel 19. Februar 2014 Motivation Aufgabe von letzter Vorlesungsstunde Worin besteht das Geheimnis Ihres langen Lebens?

Mehr

Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie

Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie Was ist Logik? Geschichte der Logik eng verknüpft mit Philosophie Begriff Logik wird im Alltag vielseitig verwendet Logik untersucht, wie man aus Aussagen andere Aussagen ableiten kann Beschränkung auf

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 2 28.04.2015 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Organisatorisches Termine Donnerstags: 30.04.2015 nicht

Mehr

Logik Vorlesung 4: Horn-Logik und Kompaktheit

Logik Vorlesung 4: Horn-Logik und Kompaktheit Logik Vorlesung 4: Horn-Logik und Kompaktheit Andreas Maletti 14. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen

Mehr

Grundbegriffe für dreiwertige Logik

Grundbegriffe für dreiwertige Logik Grundbegriffe für dreiwertige Logik Hans Kleine Büning Universität Paderborn 1.11.2011 1 Syntax und Semantik Die klassische Aussagenlogik mit den Wahrheitswerten falsch und wahr bezeichnen wir im weiteren

Mehr

1. Klausur TheGI 3 Aussagenlogik 15. Dezember 2007

1. Klausur TheGI 3 Aussagenlogik 15. Dezember 2007 1 B. Mahr, S. Bab, T. Wieczorek WS 07/08 1. Klausur TheGI 3 Aussagenlogik 15. Dezember 2007 Name, Vorname: Matr.-Nr.: Übung im WS Aufgabe: 1 2 3 4 5 6 7 8 Punkte: Summe: Klausurnote: Punkte: Insgesamt

Mehr

Syntax. 1 Jedes A AS AL ist eine (atomare) Formel. 2 Ist F eine Formel, so ist auch F eine Formel. 3 Sind F und G Formeln, so sind auch

Syntax. 1 Jedes A AS AL ist eine (atomare) Formel. 2 Ist F eine Formel, so ist auch F eine Formel. 3 Sind F und G Formeln, so sind auch Formale der Informatik 1 Kapitel 15 Folgerbarkeit, Äquivalenzen und Normalformen Frank Heitmann heitmann@informatik.uni-hamburg.de 8. Juni 2015 Syntax Definition (Syntax der Aussagenlogik) Mit AS AL sei

Mehr

2.6 Natürliches Schließen in AL

2.6 Natürliches Schließen in AL Aussagenlogik (AL).6 Natürliches Schließen in AL [ Gamut 8-40, Partee 5-3, McCawley 65-79 ] Bisher wurde bei der Überprüfung der Gültigkeit von Schlüssen oder Schlussschemata insofern ein semantisches

Mehr

Schlussregeln aus anderen Kalkülen

Schlussregeln aus anderen Kalkülen Was bisher geschah Klassische Aussagenlogik: Syntax Semantik semantische Äquivalenz und Folgern syntaktisches Ableiten (Resolution) Modellierung in Aussagenlogik: Wissensrepräsentation, Schaltungslogik,

Mehr

De Morgan sche Regeln

De Morgan sche Regeln De Morgan sche Regeln Durch Auswerten der Wahrheitswertetabelle stellen wir fest, dass allgemeingültig ist; ebenso (p q) p q (p q) p q. Diese beiden Tautologien werden als die De Morgan schen Regeln bezeichnet,

Mehr

Formale Systeme Hilbert-Kalku l Prof. Dr. Peter H. Schmitt

Formale Systeme Hilbert-Kalku l Prof. Dr. Peter H. Schmitt Formale Systeme Hilbert-Kalku l Prof. Dr. Peter H. Schmitt KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK KIT Universita t des Landes Baden-Wu rttemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 3 Tautologien In der letzten Vorlesung haben wir erklärt, wie man ausgehend von einer Wahrheitsbelegung λ der Aussagevariablen

Mehr

Formale Systeme. Aussagenlogik: Resolutionskalku l. Prof. Dr. Bernhard Beckert, WS 2018/2019

Formale Systeme. Aussagenlogik: Resolutionskalku l. Prof. Dr. Bernhard Beckert, WS 2018/2019 Formale Systeme Prof. Dr. Bernhard Beckert, WS 2018/2019 Aussagenlogik: Resolutionskalku l KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Mehr

Die Prädikatenlogik erster Stufe: Syntax und Semantik

Die Prädikatenlogik erster Stufe: Syntax und Semantik Die Prädikatenlogik erster Stufe: Syntax und Semantik 1 Mathematische Strukturen und deren Typen Definition 1.1 Eine Struktur A ist ein 4-Tupel A = (A; (R A i i I); (f A j j J); (c A k k K)) wobei I, J,

Mehr

1 Aussagenlogischer Kalkül

1 Aussagenlogischer Kalkül 1 Aussagenlogischer Kalkül Ein Kalkül in der Aussagenlogik soll die Wahrheit oder Algemeingültigkeit von Aussageformen allein auf syntaktischer Ebene zeigen. Die Wahrheit soll durch Umformung von Formeln

Mehr

Kapitel 1.5. Ein adäquater Kalkül der Aussagenlogik. Teil 1: Kalküle und Beweisbarkeit und die Korrektheit des Shoenfield-Kalküls

Kapitel 1.5. Ein adäquater Kalkül der Aussagenlogik. Teil 1: Kalküle und Beweisbarkeit und die Korrektheit des Shoenfield-Kalküls Kapitel 1.5 Ein adäquater Kalkül der Aussagenlogik Teil 1: Kalküle und Beweisbarkeit und die Korrektheit des Shoenfield-Kalküls Mathematische Logik (WS 2012/13) Kapitel 1.5: Kalküle 1/30 Syntaktischer

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 4. Aussagenlogik Syntax und Semantik der Aussagenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der Aussagenlogik:

Mehr

Logik. Studiengang. Informatik und. Technoinformatik SS 02. Prof. Dr. Madlener Universität Kaiserslautern. Vorlesung: Mi

Logik. Studiengang. Informatik und. Technoinformatik SS 02. Prof. Dr. Madlener Universität Kaiserslautern. Vorlesung: Mi Logik Studiengang Informatik und Technoinformatik SS 02 Vorlesung: Mi 11.45-13.15 52/207 Prof. Dr. Madlener Universität Kaiserslautern Informationen www-madlener.informatik.uni-kl.de/ag-madlener/teaching/ss2002/

Mehr

SS Juli Übungen zur Vorlesung Logik Blatt 11

SS Juli Übungen zur Vorlesung Logik Blatt 11 SS 2011 06. Juli 2011 Übungen zur Vorlesung Logik Blatt 11 Prof. Dr. Klaus Madlener Abgabe bis 13. Juli 2011 10:00 Uhr 1. Aufgabe: [Axiomatisierung, Übung] 1. Definieren Sie eine Formel A n der Prädikatenlogik

Mehr

Grundlagen der Logik

Grundlagen der Logik Grundlagen der Logik Denken Menschen logisch? Selektionsaufgabe nach Watson (1966): Gegeben sind vier Karten von denen jede auf der einen Seite mit einem Buchstaben, auf der anderen Seite mit einer Zahl

Mehr

Grundbegriffe der mathematischen Logik

Grundbegriffe der mathematischen Logik Grundbegriffe der mathematischen Logik Vorlesung WS 2005/2006 Jakob Kellner http://www.logic.univie.ac.at/ kellner Kurt Gödel Research Center for Mathematical Logic 5. Vorlesung, 2005-11-16 Jakob Kellner

Mehr

Logik und Beweisbarkeit

Logik und Beweisbarkeit Logik und Beweisbarkeit Folien zur Vorlesung im Sommersemester 2016 Teil 1 Martin Mundhenk Univ. Jena, Institut für Informatik 12. April 2016 Vorlesung Logik und Beweisbarkeit (Sommer 2016) 1. Aussagenlogik

Mehr

Logik. Prof. Dr. Madlener SS TU Kaiserslautern. Prof. Dr. Madlener: Logik 1

Logik. Prof. Dr. Madlener SS TU Kaiserslautern. Prof. Dr. Madlener: Logik 1 Logik Prof. Dr. Madlener TU Kaiserslautern SS 2011 Prof. Dr. Madlener: Logik 1 Logik Studiengang Informatik, Ang. Informatik und WiWi/Inf SS 11 Prof. Dr. Madlener TU - Kaiserslautern Vorlesung: Mi 11.45-13.15

Mehr

Tableaukalkül für Aussagenlogik

Tableaukalkül für Aussagenlogik Tableaukalkül für Aussagenlogik Tableau: Test einer Formel auf Widersprüchlichkeit Fallunterscheidung baumförmig organisiert Keine Normalisierung, d.h. alle Formeln sind erlaubt Struktur der Formel wird

Mehr

Motivation. Formale Grundlagen der Informatik 1 Kapitel 16. Resolution. Motivation. Beispiel

Motivation. Formale Grundlagen der Informatik 1 Kapitel 16. Resolution. Motivation. Beispiel rundlagen und Motivation Formale rundlagen der Informatik 1 Kapitel 16 Frank Heitmann heitmann@informatik.uni-hamburg.de 31. Mai 2016 Motivation Wir benötigen einen (Un-)Erfüllbarkeitstest für aussagenlogische

Mehr

Formale Systeme. Hilbertkalku l. Prof. Dr. Bernhard Beckert, WS 2018/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Formale Systeme. Hilbertkalku l. Prof. Dr. Bernhard Beckert, WS 2018/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft Formale Systeme Prof. Dr. Bernhard Beckert, WS 2018/2019 Hilbertkalku l KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft David Hilbert

Mehr

wenn es regnet ist die Straße nass:

wenn es regnet ist die Straße nass: Aussagenlogik 2 In der Aussagenlogik werden, wie der Name schon sagt, Aussagen über logische Operatoren verknüpft. Der Satz die Straße ist nass ist eine Aussage, genauso wie es regnet. Diese beiden Aussagen

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Beweise)

Diskrete Strukturen Kapitel 2: Grundlagen (Beweise) WS 2014/15 Diskrete Strukturen Kapitel 2: Grundlagen (Beweise) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_14

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 5 Das Lemma von Zorn Wir möchten im Folgenden zeigen, dass eine widerpruchsfreie Menge Γ L V von Aussagen nicht nur

Mehr

Erfüllbarkeit von Formelmengen

Erfüllbarkeit von Formelmengen Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.6 Aussagenlogik Kompaktheit 75 Erfüllbarkeit von Formelmengen bisher nur Erfüllbarkeit einzelner Formeln betrachtet erweitere Begriff auf Mengen

Mehr

Semantic Web Technologies I

Semantic Web Technologies I www.semantic-web-grundlagen.de Semantic Web Technologies I Lehrveranstaltung im WS10/11 Dr. Andreas Harth Dr. Sebastian Rudolph M.Sc. Anees ul Mehdi Was ist Logik? etymologische Herkunft: griechisch λογοσ

Mehr

Deduktion in der Aussagenlogik

Deduktion in der Aussagenlogik Deduktion in der Aussagenlogik (Erläuterungen zu Kapitel 6, Teil 2 des FGI-1 Skriptes) Frank Heitmann 1 Motivation Wenn man sich erstmal darauf eingelassen hat, dass man mit Formeln etwas sinnvolles machen

Mehr

Logik Vorlesung 3: Äquivalenz und Normalformen

Logik Vorlesung 3: Äquivalenz und Normalformen Logik Vorlesung 3: Äquivalenz und Normalformen Andreas Maletti 7. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen

Mehr

Modelltheorie (Einige Impulse)

Modelltheorie (Einige Impulse) Modelltheorie (Einige Impulse) Formale Systeme werden oft entworfen, um mathematische Strukturen zu beschreiben. In der Modelltheorie geht es um das Studium der Beziehungen zwischen formalen Systemen und

Mehr

b liegt zwischen a und c.

b liegt zwischen a und c. 2 DIE ANORDNUNGSAXIOME 5 (2.4) a, b, c R : (a < b 0 < c) ac < bc Monotoniegesetz der Multiplikation Bezeichnungen a > b : b < a (> wird gelesen: größer als ) a b : a < b oder a = b a b : a > b oder a =

Mehr

Klauselmengen. Definition Sei

Klauselmengen. Definition Sei Klauselmengen Definition 2.38 Sei α = (p 11... p 1k1 )... (p n1... p nkn ) eine in aussagenlogische Formel in KNF. Dann heißen die Mengen {p i1,..., p iki }, 1 i n, der jeweils disjunktiv verknüpften Literale

Mehr

Motivation und Geschichte. Geschichte der Logik Logik und Informatik

Motivation und Geschichte. Geschichte der Logik Logik und Informatik Motivation und Geschichte Geschichte der Logik Logik und Informatik Logik für Informatiker, M. Lange, IFI/LMU: Motivation und Geschichte Geschichte der Logik 12 Aufgaben der Logik Logik (aus Griechischem)

Mehr

Prädikatenlogiken. Mathematische Logik. Vorlesung 7. Alexander Bors. 6. & 27. April A. Bors Logik

Prädikatenlogiken. Mathematische Logik. Vorlesung 7. Alexander Bors. 6. & 27. April A. Bors Logik Prädikatenlogiken Mathematische Logik Vorlesung 7 Alexander Bors 6. & 27. April 2017 1 Prädikatenlogiken Überblick 1 Formale Prädikatenlogiken erster Stufe (Quelle: Ziegler, pp. 3 24) (Abgeleitete) Axiome

Mehr

Diskrete Strukturen. Vorlesung 3: Naive Mengenlehre. 30. Oktober 2018

Diskrete Strukturen. Vorlesung 3: Naive Mengenlehre. 30. Oktober 2018 Diskrete Strukturen Vorlesung 3: Naive Mengenlehre 30. Oktober 2018 2 Organisation Prüfung: vorauss. am Freitag, den 22. Februar 2019 von 10 11 Uhr im AudiMax, HS 3, HS 9 Abmeldungen noch bis zum 12. Januar

Mehr

Aussagenlogik: Syntax von Aussagen

Aussagenlogik: Syntax von Aussagen Aussagenlogik: Syntax von Aussagen A ::= X (A A) (A A) ( A) (A A) (A A) 0 1 Prioritätsreihenfolge :,,,,. A B: Konjunktion (Verundung). A B: Disjunktion (Veroderung). A B: Implikation. A B: Äquivalenz.

Mehr

Logik Vorlesung 2: Semantik der Aussagenlogik

Logik Vorlesung 2: Semantik der Aussagenlogik Logik Vorlesung 2: Semantik der Aussagenlogik Andreas Maletti 24. Oktober 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen

Mehr

Logik Vorlesung 2: Semantik der Aussagenlogik

Logik Vorlesung 2: Semantik der Aussagenlogik Logik Vorlesung 2: Semantik der Aussagenlogik Andreas Maletti 24. Oktober 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen

Mehr

Resolutionsalgorithmus

Resolutionsalgorithmus 112 Resolutionskalkül Mit dem Begriff Kalkül bezeichnet man eine Menge von syntaktischen Umformungsregeln, mit denen man semantische Eigenschaften der Eingabeformel herleiten kann. Für den Resolutionskalkül:

Mehr

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert, WS 2017/2018

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert, WS 2017/2018 Formale Systeme Prof. Dr. Bernhard Beckert, WS 2017/2018 Aussagenlogik: Syntax und Semantik KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Mehr

f(1, 1) = 1, f(x, y) = 0 sonst üblicherweise Konjunktion, manchmal auch

f(1, 1) = 1, f(x, y) = 0 sonst üblicherweise Konjunktion, manchmal auch Belegungen, Wahrheitsfunktionen 1. Wie viele binäre Funktionen gibt es auf der Menge {0, 1} (d.h., Funktionen von {0, 1} 2 nach {0, 1})? Geben Sie alle diese Funktionen an, und finden Sie sinnvolle Namen

Mehr

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert, WS 2015/2016.

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert, WS 2015/2016. Formale Systeme Prof. Dr. Bernhard Beckert, WS 2015/2016 Aussagenlogik: Syntax und Semantik KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK KIT Universita t des Landes Baden-Wu rttemberg und nationales Forschungszentrum

Mehr

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25 Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/25 Einführendes Beispiel Falls Lisa Peter trifft, dann trifft Lisa auch Gregor.

Mehr

Logik I. Symbole, Terme, Formeln

Logik I. Symbole, Terme, Formeln Logik I Symbole, Terme, Formeln Wie jede geschriebene Sprache basiert die Prädikatenlogik erster Stufe auf einem Alphabet, welches aus den folgenden Symbolen besteht: (a) Variabeln wie zum Beispiel v 0,v

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 18: Logik Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/35 Überblick Formeln in Prädikatenlogik erster Stufe Theorien und

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 4 7.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

Motivation. Formale Grundlagen der Informatik 1 Kapitel 14 Aussagenlogik Syntax & Semantik. Motivation. Motivation

Motivation. Formale Grundlagen der Informatik 1 Kapitel 14 Aussagenlogik Syntax & Semantik. Motivation. Motivation Formale Grundlagen der Informatik 1 Kapitel 14 Aussagenlogik & Frank Heitmann heitmann@informatik.uni-hamburg.de Mit der Aussagenlogik lassen sich einfache Verknüpfungen zwischen (atomaren) Gebilden ausdrücken

Mehr

2. Grundlagen. A) Mengen

2. Grundlagen. A) Mengen Chr.Nelius: Zahlentheorie (SoSe 2019) 5 A) Mengen 2. Grundlagen Eine Menge ist durch Angabe ihrer Elemente bestimmt. Man kann eine Menge aufzählend oder beschreibend definieren. Im ersten Falle werden

Mehr

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 18.

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 18. Formale Logik PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg Wintersemester 16/17 Sitzung vom 18. Januar 2017 Kalküle (1) Kalküle (m) sind Regelsysteme, mit denen sich allgemeingültige

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Beweise und Beweisstrategien andreas.kucher@uni-graz.at Institute for Mathematics and Scientific Computing Karl-Franzens-Universität Graz Graz, September 5, 2015 Hinweis zu den Folien Diese Folien sind

Mehr

Kapitel 1.6. Ein adäquater Kalkül der Aussagenlogik. Teil 2: Vollständigkeit des Shoenfield-Kalküls

Kapitel 1.6. Ein adäquater Kalkül der Aussagenlogik. Teil 2: Vollständigkeit des Shoenfield-Kalküls Kapitel 1.6 Ein adäquater Kalkül der Aussagenlogik Teil 2: Vollständigkeit des Shoenfield-Kalküls Mathematische Logik (WS 2011/12) Kapitel 1.6: Vollständigkeit von S 1/56 Übersicht 1.6.1 Vollständigkeit

Mehr

Kapitel 1.6. Ein adäquater Kalkül der Aussagenlogik. Teil 2: Vollständigkeit des Shoenfield-Kalküls

Kapitel 1.6. Ein adäquater Kalkül der Aussagenlogik. Teil 2: Vollständigkeit des Shoenfield-Kalküls Kapitel 1.6 Ein adäquater Kalkül der Aussagenlogik Teil 2: Vollständigkeit des Shoenfield-Kalküls Mathematische Logik (WS 2012/13) Kapitel 1.6: Vollständigkeit von S 1/60 Übersicht 1.6.1 Vollständigkeit

Mehr

Zur Vorbereitung auf die Vorlesung Grundlagen der theoretischen Informatik Mo 4., Mi 6. und Fr. 8. Oktober in H/C 3310 um Uhr.

Zur Vorbereitung auf die Vorlesung Grundlagen der theoretischen Informatik Mo 4., Mi 6. und Fr. 8. Oktober in H/C 3310 um Uhr. M a t h e m a t i s c h e s P r o p ä d e u t i k u m Zur Vorbereitung auf die Vorlesung Grundlagen der theoretischen Informatik Mo 4., Mi 6. und Fr. 8. Oktober in H/C 3310 um14 00-16 00 Uhr. Erfahrungsgemäß

Mehr

Aussagenlogik:Zusammenfassung. Mathematische Logik (WS 2016/17) Aussagenlogik (Zusammenfassung) 1 / 45

Aussagenlogik:Zusammenfassung. Mathematische Logik (WS 2016/17) Aussagenlogik (Zusammenfassung) 1 / 45 Aussagenlogik:Zusammenfassung Mathematische Logik (WS 2016/17) Aussagenlogik (Zusammenfassung) 1 / 45 Fragestellung In der Aussagenlogik analysiert man die Wahrheitswerte zusammengesetzter Aussagen basierend

Mehr

8 Der Kompaktheitssatz und der Satz von Löwenheim und Skolem

8 Der Kompaktheitssatz und der Satz von Löwenheim und Skolem 8 Der Kompaktheitssatz und der Satz von Löwenheim und Skolem 8.1 Der Kompaktheitssatz Kompaktheitssatz Endlichkeitssatz Der Kompaktheitssatz ist auch unter dem Namen Endlichkeitssatz bekannt. Unter Verwendung

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2015 29.04.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Motivation 2. Terminologie 3. Endliche Automaten und reguläre

Mehr

Theorie der Informatik. Theorie der Informatik. 6.1 Einführung. 6.2 Alphabete und formale Sprachen. 6.3 Grammatiken. 6.4 Chomsky-Hierarchie

Theorie der Informatik. Theorie der Informatik. 6.1 Einführung. 6.2 Alphabete und formale Sprachen. 6.3 Grammatiken. 6.4 Chomsky-Hierarchie Theorie der Informatik 17. März 2014 6. Formale Sprachen und Grammatiken Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 6.1 Einführung

Mehr

Einführung in die Semantik, 5. Sitzung Aussagenlogik

Einführung in die Semantik, 5. Sitzung Aussagenlogik Einführung in die, 5. Sitzung Aussagenlogik Göttingen 9. November 2006 Aussagenlogik Warum die formalen Sprachen der Logik? formale Sprachen haben wie jede Sprache ein Vokabular, eine und eine. Die Relation

Mehr

Normalformen boolescher Funktionen

Normalformen boolescher Funktionen Normalformen boolescher Funktionen Jeder boolesche Ausdruck kann durch (äquivalente) Umformungen in gewisse Normalformen gebracht werden! Disjunktive Normalform (DNF) und Vollkonjunktion: Eine Vollkonjunktion

Mehr

Teil 7. Grundlagen Logik

Teil 7. Grundlagen Logik Teil 7 Grundlagen Logik Was ist Logik? etymologische Herkunft: griechisch bedeutet Wort, Rede, Lehre (s.a. Faust I ) Logik als Argumentation: Alle Menschen sind sterblich. Sokrates ist ein Mensch. Also

Mehr

Motivation und Geschichte. Geschichte der Logik Logik und Informatik

Motivation und Geschichte. Geschichte der Logik Logik und Informatik Motivation und Geschichte Geschichte der Logik Logik und Informatik Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 2.1 Motivation und Geschichte Geschichte der Logik 13 Aufgaben der Logik

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Logik Vorlesung 5: Grundlagen Resolution

Logik Vorlesung 5: Grundlagen Resolution Logik Vorlesung 5: Grundlagen Resolution Andreas Maletti 21. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere

Mehr

Aussagenlogischer Kalkül, Vollständigkeitssatz

Aussagenlogischer Kalkül, Vollständigkeitssatz Aussagenlogischer Kalkül, Vollständigkeitssatz Salome Vogelsang 22. Februar 2012 Eine Motivation für den Regelkalkül des Gentzen-Typus ist formuliert von Gentzen selbst: "Mein erster Gesichtspunkt war

Mehr

Prädikatenlogiken. Mathematische Logik. Vorlesung 8. Alexander Bors. 27. April., 4. & 11. Mai A. Bors Logik

Prädikatenlogiken. Mathematische Logik. Vorlesung 8. Alexander Bors. 27. April., 4. & 11. Mai A. Bors Logik Mathematische Logik Vorlesung 8 Alexander Bors 27. April., 4. & 11. Mai 2017 1 Überblick 1 Formale Prädikatenlogiken erster Stufe (Quelle: Ziegler, pp. 3 24) Der Gödelsche und Folgerungen 2 Erinnerung

Mehr

Kapitel 1.1. Aussagenlogik: Syntax. Mathematische Logik (WS 2011/12) Kapitel 1.1: Aussagenlogik: Syntax 1/ 1

Kapitel 1.1. Aussagenlogik: Syntax. Mathematische Logik (WS 2011/12) Kapitel 1.1: Aussagenlogik: Syntax 1/ 1 Kapitel 1.1 Aussagenlogik: Syntax Mathematische Logik (WS 2011/12) Kapitel 1.1: Aussagenlogik: Syntax 1/ 1 Übersicht 1.1.1 Die Sprache der Aussagenlogik 1.1.2 Explizite vs. implizite Definitionen 1.1.3

Mehr

Semantic Web Technologies I

Semantic Web Technologies I www.semantic-web-grundlagen.de Semantic Web Technologies I Lehrveranstaltung im WS08/09 PD Dr. Pascal Hitzler M.Sc. Markus Krötzsch Dr. Sebastian Rudolph Logik Grundlagen Einleitung und Ausblick XML und

Mehr

Eine Aussage ist ein Satz der Umgangssprache, der wahr oder falsch sein kann. Man geht von dem Folgenden aus:

Eine Aussage ist ein Satz der Umgangssprache, der wahr oder falsch sein kann. Man geht von dem Folgenden aus: Karlhorst Meyer Formallogik Die Umgangssprache ist für mathematische Bedürfnisse nicht exakt genug. Zwei Beispiele: In Folge können u. U. Beweise, die in Umgangssprache geschrieben werden, nicht vollständig,

Mehr

Kapitel L:III. III. Prädikatenlogik

Kapitel L:III. III. Prädikatenlogik Kapitel L:III III. Prädikatenlogik Syntax der Prädikatenlogik Semantik der Prädikatenlogik Wichtige Äquivalenzen Einfache Normalformen Substitution Skolem-Normalformen Standard-Erfüllbarkeit Prädikatenlogische

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 06.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax (Formeln) Semantik Wertebelegungen/Valuationen/Modelle

Mehr