Schlussregeln aus anderen Kalkülen

Größe: px
Ab Seite anzeigen:

Download "Schlussregeln aus anderen Kalkülen"

Transkript

1 Was bisher geschah Klassische Aussagenlogik: Syntax Semantik semantische Äquivalenz und Folgern syntaktisches Ableiten (Resolution) Modellierung in Aussagenlogik: Wissensrepräsentation, Schaltungslogik, 90

2 Schlussregeln aus anderen Kalkülen Resolutionsregel: ϕ ψ η ψ ϕ η weitere Schlussregeln als Spezialfälle der Resolutionsregel: Modus Ponens ϕ ϕ ψ ψ Modus Tollens ψ ϕ ψ ϕ Disjunktiver Syllogismus ψ ϕ ψ ϕ Hypothetischer Syllogismus ϕ ψ ψ η ϕ η 91

3 Hilbert-Kalkül H für die Aussagenlogik Der Hilbert-Kalkül H besteht aus einem Regelschema: Modus Ponens: und mehrere Axiomenschemata A A B B H1 A (B A) H2 (A (B C)) ((A B) (A C)) H3 ( A B) (( A B) A) Beispiel: H p p 92

4 Vollständigkeit und Korrektheit des Hilbert-Kalküls (ohne Beweise) Satz (Korrektheit) Für jede Formel ϕ AL(P) gilt: Aus H ϕ folgt = ϕ. (Jede im Hilbert-Kalkül beweisbare Formel ist allgemeingültig.) Satz (Vollständigkeit) Für jede Formel ϕ AL(P) gilt: Aus = ϕ folgt H ϕ. (Jede allgemeingültige Formel ist im Hilbert-Kalkül beweisbar.) Satz (Deduktionstheorem) Φ {ψ} H η gilt genau dann, wenn Φ H ψ η. 93

5 Modellierungsbeispiel: Winterbekleidung Wenn es kalt ist, trägt Paul immer eine Mütze, einen Schal oder Handschuhe. (m s h) Ohne Handschuhe oder Schal trägt er keine Mütze. ( (h s) m) Mütze und Handschuhe trägt er nie zusammen. ( (m h)) Handschuhe und Schal trägt er immer zugleich. (h s) Modellierung als Klauselmenge Φ = {m h s, m h s, m h, h s, s h} Wie kann er sich kleiden? Lösung: Modell (erfüllende Belegung) 94

6 Modellierungsbeispiel: Bahnfahrer (Übungsaufgabe 1.3) In einem Eisenbahnabteil sitzen die Herren Lehmann, Müller und Schmidt. Einer ist Sachse, einer Thüringer und einer Brandenburger. Wenn Herr Lehmann Brandenburger ist, dann ist Herr Müller Thüringer. Wenn Herr Lehmann Thüringer ist, ist Herr Müller Sachse. Wenn Herr Müller kein Brandenburger ist, ist Herr Schmidt Thüringer. Wenn Herr Schmidt Sachse ist, ist Herr Lehmann Thüringer. Was für ein Landsmann ist jeder? Modellierung der expliziten und impliziten (aus jedem Land genau einer) Bedingungen durch aussagenlogische Formeln (Tafel) Lösung: Modell (erfüllende Belegung) 95

7 Modellierungsbeispiel: n-damen Frage: Lassen sich n Damen so auf einem n n-schachbrett anordnen, dass keine Dame eine andere bedroht? Lösung: Anordnung, falls möglich Bedingungen: n Damen auf dem Feld keine Zeilenbedrohung keine Spaltenbedrohung keine diagonale Bedrohung 96

8 Repräsentation des 3-Damen-Problems 9 Felder Aussagenvariablen {1,..., 9} Bedingungen: n Damen auf dem Feld, (in jeder Zeile eine Dame) 1 2 3, 4 5 6, keine Zeilenbedrohung 1 2, 1 3, , 4 6, , 7 9, 8 9 keine Spaltenbedrohung 1 4, 1 7, , 2 8, , 3 9, 6 9 keine diagonale Bedrohung 1 5, 1 9, , , 3 7, , 6 8 Lösung: Modell (erfüllende Belegung) 97

9 SAT-Solver SAT-Solver: Werkzeug zum Lösen von CNF-SAT-Instanzen Erfüllbarkeitsproblem für CNF (CNF-SAT) schwierig (in ungünstigen Fällen) SAT-Solver benutzen heuristische Verfahren, finden für praktische Probleme oft schnell eine Lösung, meist Ausgabe einer erfüllenden Belegung (wenn eine existiert) aktive Forschung auf diesem Gebiet: jährlich Wettbewerbe (www.satcompetition.org/) 3-Damen-Problem hat keine Lösung (unerfüllbar) eine mögliche Lösung für das 4-Damen-Problem:

10 Algorithmische Entscheidbarkeit der Aussagenlogik Es existieren Verfahren, welche für jede Formel ϕ AL(P) entscheiden, ob ϕ erfüllbar ist, z.b. semantisch Modellmengen, WW-Tabelle syntaktisch f aus ϕ durch Resolution nicht ableitbar ϕ unerfüllbar ist, z.b. semantisch Modellmengen, WW-Tabelle syntaktisch Ableitung von f aus ϕ durch Resolution ϕ allgemeingültig ist, z.b. semantisch Modellmengen, WW-Tabelle syntaktisch Ableitung von f aus ϕ durch Resolution für jedes Paar von Formeln ϕ, ψ AL(P) entscheiden, ob ϕ und ψ semantisch äquivalent sind (d.h. ϕ ψ) semantisch Modellmengen, WW-Tabelle syntaktisch äquivalente Umformungen für jede Formelmenge Φ AL(P) und jede Formel ψ AL(P) entscheiden, ob ψ aus Φ folgt (d.h. Φ = ψ) semantisch Modellmengen, WW-Tabelle syntaktisch Ableitung von f aus Φ { ψ} durch Resolution 99

11 Grundbegriffe der Aussagenlogik Syntax Junktoren Aussagenvariablen Atom, Literal Formeln äquivalente Umformung Junktorbasen Normalformen (CNF, DNF) Minimierung syntaktisches Ableiten Resolution Semantik Wahrheitswertfunktionen Boolesche Algebra (Gesetze) Belegungen Modelle Wahrheitswerttabellen erfüllbar, unerfüllbar allgemeingültig semantische Äquivalenz (Wahrheitswerttabellen) semantisches Folgern 100

12 Klassische Aussagenlogik (Zusammenfassung) deklarative Beschreibung von Problemen: Erfüllbarkeitsprobleme, z.b. kombinatorische Suche: n-damen, Planen Allgemeingültigkeitsprobleme, z.b. Entwurf digitaler Schaltungen Unerfüllbarkeitsprobleme, z.b. Programmverifikation (Nachweis der Korrektkeit) Folgerungsprobleme, z.b. automatisches Beweisen Lösung der durch aussagenlogische Formeln beschriebene Probleme durch Standard-Verfahren (z.b. Wahrheitswerttabellen, Resolution, SAT-Solver) 101

13 Beschränkte Ausdrucksstärke der Aussagenlogik Aussagen immer zweiwertig (nur wahr oder falsch, keine Zwischenwerte), z.b.: Die Rose ist rot. Das Bier ist kalt. Der Student ist fleißig. (Erweiterung zu mehrwertigen Logiken, fuzzy logic) Aussagen immer absolut (keine Abhängigkeit vom Kontext, z.b. Ort, Zeitpunkt), z.b.: Es regnet. (Erweiterung zur Modal- und Temporallogiken) Aussagen über alle Elemente großer Mengen aufwendig (Erstellung, Platzbedarf), z.b. n-damen-problem keine Aussagen über Elemente einer unendlichen Mengen oder Mengen unbestimmter Mächtigkeit möglich, z.b. Jede durch 4 teilbare Zahl ist gerade. Es gibt eine gerade Primzahl. Es ist nicht alles Gold was glänzt. (Erweiterung zur Prädikatenlogik) 102

Was bisher geschah. Aufgaben: Diagnose, Entscheidungsunterstützung Aufbau Komponenten und Funktion

Was bisher geschah. Aufgaben: Diagnose, Entscheidungsunterstützung Aufbau Komponenten und Funktion Was bisher geschah Daten, Information, Wissen explizites und implizites Wissen Wissensrepräsentation und -verarbeitung: Wissensbasis Kontextwissen Problemdarstellung fallspezifisches Wissen repräsentiert

Mehr

Normalformen boolescher Funktionen

Normalformen boolescher Funktionen Normalformen boolescher Funktionen Jeder boolesche Ausdruck kann durch (äquivalente) Umformungen in gewisse Normalformen gebracht werden! Disjunktive Normalform (DNF) und Vollkonjunktion: Eine Vollkonjunktion

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik roseminar Maschinelles Beweisen SS 2000 Einführung in die mathematische Logik Ein Crashkurs über die Grundlagen wichtiger Logiken und Beweiskalküle Uwe Bubeck 13. Juli 2000 Logik-1 Einführung in die mathematische

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 27. Aussagenlogik: Logisches Schliessen und Resolution Malte Helmert Universität Basel 28. April 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26.

Mehr

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie und, oder, nicht, wenn... dann zwischen atomaren und komplexen Sätzen. I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten

Mehr

Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur

Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur Signatur Formeln Am Beispiel der Aussagenlogik erklären wir schrittweise wichtige Elemente eines logischen Systems. Zunächst benötigt ein logisches System ein Vokabular, d.h. eine Menge von Namen, die

Mehr

Semantic Web Technologies I!

Semantic Web Technologies I! www.semantic-web-grundlagen.de Semantic Web Technologies I! Lehrveranstaltung im WS11/12! Dr. Elena Simperl! DP Dr. Sebastian Rudolph! M.Sc. Anees ul Mehdi! www.semantic-web-grundlagen.de Logik Grundlagen!

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 30.04.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letztes Mal Aussagenlogik Syntax: welche Formeln? Semantik:

Mehr

Semantik von Formeln und Sequenzen

Semantik von Formeln und Sequenzen Semantik von Formeln und Sequenzen 33 Grundidee der Verwendung von Logik im Software Entwurf Syntax: Menge von Formeln = Axiome Ax K ist beweisbar Formel ϕ beschreiben Korrektkeit Vollständigkeit beschreibt

Mehr

Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen

Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen aussagenlogischer Regeln: Wissensbasis (Kontextwissen): Formelmenge,

Mehr

Logik: aussagenlogische Formeln und Wahrheitstafeln

Logik: aussagenlogische Formeln und Wahrheitstafeln FH Gießen-Friedberg, Sommersemester 2010 Lösungen zu Übungsblatt 1 Diskrete Mathematik (Informatik) 7./9. April 2010 Prof. Dr. Hans-Rudolf Metz Logik: aussagenlogische Formeln und Wahrheitstafeln Aufgabe

Mehr

Wissensrepräsentation und -verarbeitung in Logiken. bereinigt Pränex Skolem ( -Eliminierung) Klausel (Menge von Klauseln, Notation ohne Quantoren)

Wissensrepräsentation und -verarbeitung in Logiken. bereinigt Pränex Skolem ( -Eliminierung) Klausel (Menge von Klauseln, Notation ohne Quantoren) Was bisher geschah Wissensrepräsentation und -verarbeitung in Logiken klassische Aussagenlogik klassische Prädikatenlogik: Wiederholung Syntax, Semantik Normalformen: bereinigt Pränex Skolem ( -Eliminierung)

Mehr

der einzelnen Aussagen den Wahrheitswert der zusammengesetzten Aussage falsch falsch falsch falsch wahr falsch wahr falsch falsch wahr wahr wahr

der einzelnen Aussagen den Wahrheitswert der zusammengesetzten Aussage falsch falsch falsch falsch wahr falsch wahr falsch falsch wahr wahr wahr Kapitel 2 Grundbegriffe der Logik 2.1 Aussagen und deren Verknüpfungen Eine Aussage wie 4711 ist durch 3 teilbar oder 2 ist eine Primzahl, die nur wahr oder falsch sein kann, heißt logische Aussage. Ein

Mehr

Binäre Suchbäume (binary search trees, kurz: bst)

Binäre Suchbäume (binary search trees, kurz: bst) Binäre Suchbäume (binary search trees, kurz: bst) Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binärbaum T mit n := M Knoten Jeder Knoten v von T ist mit einer Zahl m v M markiert.

Mehr

Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung Winter-Semester 2003/04. Wissensrepräsentation: Resolution (im PK1)

Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung Winter-Semester 2003/04. Wissensrepräsentation: Resolution (im PK1) Einführung in die KI Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung Wissensrepräsentation: Resolution (im PK1) 2. Resolution Vorbild für Formalismus : exakt, präzise, (theoretisch) beherrscht Aufbau: Zeichen

Mehr

Kapitel 1.3. Normalformen aussagenlogischer Formeln. Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1

Kapitel 1.3. Normalformen aussagenlogischer Formeln. Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1 Kapitel 1.3 Normalformen aussagenlogischer Formeln Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1 Boolesche Formeln, Literale und Klauseln Eine Boolesche Formel ist eine aussagenlogische

Mehr

5. Vorlesung: Normalformen

5. Vorlesung: Normalformen 5. Vorlesung: Normalformen Wiederholung Vollständige Systeme Minterme Maxterme Disjunktive Normalform (DNF) Konjunktive Normalform (KNF) 1 XOR (Antivalenz) X X X X X X ( X X ) ( X X ) 1 2 1 2 1 2 1 2 1

Mehr

5. Aussagenlogik und Schaltalgebra

5. Aussagenlogik und Schaltalgebra 5. Aussagenlogik und Schaltalgebra Aussageformen und Aussagenlogik Boolesche Terme und Boolesche Funktionen Boolesche Algebra Schaltalgebra Schaltnetze und Schaltwerke R. Der 1 Aussagen Information oft

Mehr

Logik Grundlagen. Organisatorisches: Inhalt. Semantic Web Grundlagen

Logik Grundlagen. Organisatorisches: Inhalt. Semantic Web Grundlagen Birte Glimm nstitut für Künstliche ntelligenz 31. Okt 2011 Semantic Web Grundlagen Logik Grundlagen 3/36 Birte Glimm Semantic Web Grundlagen 31. Okt 2011 4/36 Birte Glimm Semantic Web Grundlagen 31. Okt

Mehr

Prolog basiert auf Prädikatenlogik

Prolog basiert auf Prädikatenlogik Software-Technologie Software-Systeme sind sehr komplex. Im Idealfall erfolgt die Programmierung problemorientiert, während die notwendige Übertragung in ausführbare Programme automatisch erfolgt. Prolog-Philosophie:

Mehr

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1 Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 7 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 1 Wir betrachten die folgende Signatur

Mehr

A.1 Schaltfunktionen und Schaltnetze

A.1 Schaltfunktionen und Schaltnetze Schaltfunktionen und Schaltnetze A. Schaltfunktionen und Schaltnetze 22 Prof. Dr. Rainer Manthey Informatik II Bedeutung des Binärsystems für den Rechneraufbau Seit Beginn der Entwicklung von Computerhardware

Mehr

Bisher. Wiederholung NFA Modellierung durch NFA Kripke-Struktur

Bisher. Wiederholung NFA Modellierung durch NFA Kripke-Struktur Bisher Wiederholung NFA Modellierung durch NFA Kripke-Struktur Model-Checking Modell beschrieben durch Kripke-Struktur A Spezifikation ϕ in einer Temporallogik Verifikation: Nachweis, dass die Struktur

Mehr

Klausur Formale Systeme Fakultät für Informatik WS 2009/2010. Prof. Dr. Bernhard Beckert. 18. Februar 2010

Klausur Formale Systeme Fakultät für Informatik WS 2009/2010. Prof. Dr. Bernhard Beckert. 18. Februar 2010 Klausur Formale Systeme Fakultät für Informatik Name: Mustermann Vorname: Peter Matrikel-Nr.: 0000000 Klausur-ID: 0000 WS 2009/2010 Prof. Dr. Bernhard Beckert 18. Februar 2010 A1 (15) A2 (10) A3 (10) A4

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 29/ Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws9

Mehr

Logik für Informatiker

Logik für Informatiker Skript zur Vorlesung Logik für Informatiker SS 2008 Martin Hofmann Lehr- und Forschungseinheit Theoretische Informatik Institut für Informatik Ludwig-Maximilians-Universität München Inhaltsverzeichnis

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 7: Einführung Aussagenlogik schulz@eprover.org Logisches Schließen 2 gold +1000, 1 per step, Beispiel: Jage den Wumpus Performance measure death 1000 10

Mehr

Erfüllbarkeit und Allgemeingültigkeit

Erfüllbarkeit und Allgemeingültigkeit Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.3 Aussagenlogik Erfüllbarkeit 44 Erfüllbarkeit und Allgemeingültigkeit Def.: eine Formel ϕ heißt erfüllbar, wennesein I gibt, so dass I = ϕ

Mehr

4. Exkurs: Einführung in die Logik

4. Exkurs: Einführung in die Logik 4. Exkurs: Einführung in die Logik 4. Einführung in die Logik 4.. Die Operatoren der Aussagenlogik 4..2 Formeln der Aussagenlogik 4..3 Arithmetische Vergleichsoperatoren 4..4 Anwendungen der Logik in der

Mehr

Logische Folgerung. Definition 2.11

Logische Folgerung. Definition 2.11 Logische Folgerung Definition 2.11 Sei 2A eine aussagenlogische Formel und F eine endliche Menge aussagenlogischer Formeln aus A. heißt logische Folgerung von F genau dann, wenn I ( ) =1für jedes Modell

Mehr

Überblick über die Aussagenlogik, Teil 2. Nicole Stender

Überblick über die Aussagenlogik, Teil 2. Nicole Stender Überblick über die Aussagenlogik, Teil 2 Nicole Stender Goethe Universität Frankfurt am Main Seminar: Aktuelle Themen aus der Wissensverarbeitung Dozent: Prof. Dr. Manfred Schmidt-Schauß Abgabedatum: 17.05.2012

Mehr

Program = Logic + Control

Program = Logic + Control Program = Logic + Control Prozedurale/imperative Sprachen: Abläufe formulieren Computer führt aus von-neumann-maschine Idee von deklarativen/logischen/funktionalen Programmiersprachen: Zusammenhänge formulieren

Mehr

Fragen für die Klausuren

Fragen für die Klausuren Fragen für die Klausuren Vom Quellcode zum ausführbaren Programm Was ist ein Quellcode? Ist der Quellcode von einem Programm auf unterschiedlichen Rechner gleich? Nennen Sie drei Programmiersprachen. Was

Mehr

2. Vorlesung. Slide 40

2. Vorlesung. Slide 40 2. Vorlesung Slide 40 Knobelaufgabe Was tut dieses Programm? Informell Formal Wie stellt man dies sicher? knobel(a,b) { Wenn a = 0 dann return b sonst { solange b 0 wenn a > b dann { a := a - b sonst b

Mehr

Wissensbasierte Systeme/ Expertensysteme. Teil 2

Wissensbasierte Systeme/ Expertensysteme. Teil 2 Wissensbasierte Systeme/ Expertensysteme Teil 2 BiTS, Sommersemester 2004 Dr. Stefan Kooths KOOTHS BiTS: Wissensbasierte Systeme/Expertensysteme Teil 2 1 Gliederung 1. Einführung und Einordnung 2. Entscheidungsunterstützung(ssysteme)

Mehr

Konjunktive und disjunktive Normalformen

Konjunktive und disjunktive Normalformen Konjunktive und disjunktive Normalformen Nachdem gesprochen wurde, wie man Boolesche Terme unter einer Belegung der Variablen interpretiert und dass somit jeder Boolesche Term eine Boolesche Funktion repräsentiert,

Mehr

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise:

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise: Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 192 Beispiel Bsp.: Betrachte Schlussweise in: 1 Wenn es regnet, dann wird die Straße nass. R N

Mehr

Kapitel DB:V (Fortsetzung)

Kapitel DB:V (Fortsetzung) Kapitel DB:V (Fortsetzung) V. Grundlagen relationaler Anfragesprachen Anfragen und Änderungen Relationale Algebra Anfragekalküle Relationaler Tupelkalkül Relationaler Domänenkalkül DB:V-67 Relational Algebra

Mehr

die gelbe Jacke die rote Jacke die blaue Jacke die schwarze Jacke die violette Hose die rote Hose die grüne Hose die schwarze Hose

die gelbe Jacke die rote Jacke die blaue Jacke die schwarze Jacke die violette Hose die rote Hose die grüne Hose die schwarze Hose die blaue Jacke die rote Jacke die gelbe Jacke die schwarze Jacke die gelbe Jacke die rote Jacke die blaue Jacke die schwarze Jacke die schwarze Jacke die rote Jacke die blaue Jacke die gelbe Jacke die

Mehr

Induktive Definitionen

Induktive Definitionen Induktive Definitionen Induktive Definition: Konstruktive Methode zur Definition einer Menge M von Objekten aus Basisobjekten mittels (Erzeugungs-) Regeln Slide 1 Rekursion über den Aufbau: Konstruktive

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 3. Aussagenlogik Einführung: Logisches Schließen im Allgemeinen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Beispiel:

Mehr

Grundlagen der Theoretischen Informatik - Sommersemester 2012. Übungsblatt 1: Lösungsvorschläge

Grundlagen der Theoretischen Informatik - Sommersemester 2012. Übungsblatt 1: Lösungsvorschläge Lehrstuhl für Softwaretechnik und Programmiersprachen Professor Dr. Michael Leuschel Grundlagen der Theoretischen Informatik - Sommersemester 2012 Übungsblatt 1: Lösungsvorschläge Disclaimer: Bei Folgendem

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik - das Quiz zur Vorlesung Teil I - Grundzüge der Logik In der Logik geht es um... (A) die Formen korrekten Folgerns (B) die Unterscheidung von wahr und falsch (C) das Finden von

Mehr

Klausur Formale Systeme Fakultät für Informatik WS 2009/2010

Klausur Formale Systeme Fakultät für Informatik WS 2009/2010 Klausur Formale Systeme Fakultät für Informatik WS 2009/2010 Prof. Dr. Bernhard Beckert 18. Februar 2010 Name: Mustermann Vorname: Peter Matrikel-Nr.: 0000000 Klausur-ID: 0000 A1 (15) A2 (10) A3 (10) A4

Mehr

Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer:

Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binäre Suchbäume (binary search trees, kurz: bst) Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binärbaum T mit n := M Knoten Jeder Knoten v von T ist mit einer Zahl m v M markiert.

Mehr

1 Aussagenlogische Formeln

1 Aussagenlogische Formeln 1 Aussagenlogische Formeln Aufgabe 1.1 Transformieren Sie die Formel in disjunktive Normalform (DNF). ((:A! :B) ^ D)! ((A _ C) $ (:B ^ D)) Lösung 1.1 Schrittweise Transformation: Schritt 1: ((:A! :B) ^

Mehr

PROLOG. Tutorium zur Vorlesung Datenbanken und Wissensrepräsentation (Prof. Dr. G. Büchel)

PROLOG. Tutorium zur Vorlesung Datenbanken und Wissensrepräsentation (Prof. Dr. G. Büchel) PROLOG Tutorium zur Vorlesung Datenbanken und Wissensrepräsentation (Prof. Dr. G. Büchel) Stand: April 2010 Verfasser: Dipl.-Ing. (FH) Andreas W. Lockermann Vorwort Der Name PROLOG leitet sich aus den

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 11: Abstrakte Reduktionssysteme schulz@eprover.org Reduktionssysteme Definition: Reduktionssystem Ein Reduktionssystem ist ein Tupel (A, ) Dabei gilt: A

Mehr

Formale Systeme, WS 2012/2013 Praxisaufgabe 1: SAT-Solver Spotlight

Formale Systeme, WS 2012/2013 Praxisaufgabe 1: SAT-Solver Spotlight Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter H. Schmitt David Farago, Christoph Scheben, Mattias Ulbrich Formale Systeme, WS 2012/2013 Praxisaufgabe 1: SAT-Solver

Mehr

Teil 1: Digitale Logik

Teil 1: Digitale Logik Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Analoge und digitale Hardware bei

Mehr

Leseprobe. Uwe Lämmel, Jürgen Cleve. Künstliche Intelligenz ISBN: 978-3-446-42758-7. Weitere Informationen oder Bestellungen unter

Leseprobe. Uwe Lämmel, Jürgen Cleve. Künstliche Intelligenz ISBN: 978-3-446-42758-7. Weitere Informationen oder Bestellungen unter Leseprobe Uwe Lämmel, Jürgen Cleve Künstliche Intelligenz ISBN: 978-3-446-42758-7 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-42758-7 sowie im Buchhandel. Carl Hanser Verlag,

Mehr

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 6 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Satz 1 Seien F, G Boolesche Ausdrücke

Mehr

Motivation. Formale Grundlagen der Informatik 1 Kapitel 19. Syntax & Semantik. Motivation - Beispiel. Motivation - Beispiel

Motivation. Formale Grundlagen der Informatik 1 Kapitel 19. Syntax & Semantik. Motivation - Beispiel. Motivation - Beispiel Motivation Formale Grundlagen der Informatik 1 Kapitel 19 & Die ist eine Erweiterung der Aussagenlogik. Sie hat eine größere Ausdrucksstärke und erlaub eine feinere Differenzierung. Ferner sind Beziehungen/Relationen

Mehr

Komplexitätstheorie Einführung und Überblick (Wiederholung)

Komplexitätstheorie Einführung und Überblick (Wiederholung) Literatur C. Papadimitriou UC Berkeley Zum Komplexitätsbegriff Strukturelle Komplexität Average Case Analyse Effiziente Algorithmen Logische Komplexität Beschreibungssprachen: SQL Kolmogorov Komplexität

Mehr

Wissenschaftliches Arbeiten

Wissenschaftliches Arbeiten Teil 7: Argumentieren und Begründen 1 Grundregel: Spezifisch argumentieren Wissenschaftliches Arbeiten Nie mehr zeigen, als nötig oder gefragt ist. Sonst wird das Argument angreifbar und umständlich. Schwammige

Mehr

Formale Methoden. Alexander Knapp, Gerhard Schellhorn. Universität Augsburg

Formale Methoden. Alexander Knapp, Gerhard Schellhorn. Universität Augsburg Formale Methoden Alexander Knapp, Gerhard Schellhorn Universität Augsburg Formale Methoden: Ziele (1) Grundlagen für die Softwareerstellung Mathematik von Spezifikations- und Programmiersprachen Vermeidung

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Woche 10 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung Zusammenfassung der letzten LV Satz Sei G = (V, Σ, R, S) eine kontextfreie

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 9: Prädikatenlogik schulz@eprover.org Rückblick 2 Rückblick: Vor- und Nachteile von Aussagenlogik Aussagenlogik ist deklarativ: Syntaxelemente entsprechen

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

Wissensbasierte Systeme

Wissensbasierte Systeme WBS4 Slide 1 Wissensbasierte Systeme Vorlesung 4 vom 03.11.2004 Sebastian Iwanowski FH Wedel WBS4 Slide 2 Wissensbasierte Systeme 1. Motivation 2. Prinzipien und Anwendungen 3. Logische Grundlagen 4. Suchstrategien

Mehr

Also kann nur A ist roter Südler und B ist grüner Nordler gelten.

Also kann nur A ist roter Südler und B ist grüner Nordler gelten. Aufgabe 1.1: (4 Punkte) Der Planet Og wird von zwei verschiedenen Rassen bewohnt - dem grünen und dem roten Volk. Desweiteren sind die Leute, die auf der nördlichen Halbkugel geboren wurden von denen auf

Mehr

Objekte in einer gewissen Beziehung zueinander stehen, eine Eigenschaft für alle Objekte gilt, es ein Objekt mit einer bestimmten Eigenschaft gibt.

Objekte in einer gewissen Beziehung zueinander stehen, eine Eigenschaft für alle Objekte gilt, es ein Objekt mit einer bestimmten Eigenschaft gibt. 3. Prädikatenlogik Gegenüber der Aussagenlogik wird die Sprache der Prädikatenlogik (Predicate Logic) so erweitert, daß gewisse Formen von Aussagen, die in der Aussagenlogik nicht möglich sind, ausgedrückt

Mehr

Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen

Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume Barbara König Logik 1 Motivation: Wir beschäftigen uns nun im folgenden mit der, die gegenüber

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

Einführung in die Fuzzy Logic

Einführung in die Fuzzy Logic Einführung in die Fuzzy Logic Entwickelt von L. Zadeh in den 60er Jahren Benutzt unscharfe (fuzzy) Begriffe und linguistische Variablen Im Gegensatz zur Booleschen Logik {0,} wird das ganze Intervall [0,]

Mehr

Bachelor Grundlagen der Logik und Logikprogrammierung 12. Februar 2009 3

Bachelor Grundlagen der Logik und Logikprogrammierung 12. Februar 2009 3 Bachelor Grundlagen der Logik und Logikprogrammierung 12. Februar 2009 3 Aufgabe 1 (20 Punkte) Dialogische Logik a) Was isteine formal wahrebehauptung? Welche Aussageschematasindallgemeingültig? b) Überprüfen

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de Diskrete Strukturen und Logik WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik & Mengenlehre

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 Einführung Beispiel: Aussagenlogische Formeln Aus dem Logikteil: Definition (Syntax

Mehr

Skriptum zur Vorlesung Mathematische Logik

Skriptum zur Vorlesung Mathematische Logik Skriptum zur Vorlesung Mathematische Logik Klaus Gloede Mathematisches Institut der Universität Heidelberg Wintersemester 2006/07 INHALTSVERZEICHNIS i Inhaltsverzeichnis I Collegium Logicum 1 1 Die Aussagenlogik

Mehr

Die Klassen P und NP. Dr. Eva Richter. 29. Juni 2012

Die Klassen P und NP. Dr. Eva Richter. 29. Juni 2012 Die Klassen P und NP Dr. Eva Richter 29. Juni 2012 1 / 35 Die Klasse P P = DTIME(Pol) Klasse der Probleme, die sich von DTM in polynomieller Zeit lösen lassen nach Dogma die praktikablen Probleme beim

Mehr

Technische Universität Ilmenau

Technische Universität Ilmenau Technische Universität Ilmenau Hier finden Sie uns: Informatikgebäude, 2. Etage, Sekretariat Zi. 215 Lehre und Forschung im Fachgebiet Integrierte Hard- und Softwaresysteme Prof. Dr.-Ing. habil. Andreas

Mehr

Module Angewandte Informatik 2. Semester

Module Angewandte Informatik 2. Semester Module Angewandte Informatik 2. Semester Automaten und formale n AF Helga Carls Bettina Buth, Helga Carls, Erhard Fähnders, Franz Korf, Reinhard Völler 1 SWS Übung mit ca. 16 Studierenden Übung = 16h Kreditpunkte

Mehr

Modallogik (aussagenlogisch)

Modallogik (aussagenlogisch) Kapitel 2 Modallogik (aussagenlogisch) In diesem Abschnitt wird eine Erweiterung der Aussagenlogik um sogenannte Modalitäten behandelt. Damit erlangt man eine größere Aussagekraft der Sprache, allerdings

Mehr

Logik und Missbrauch der Logik in der Alltagssprache

Logik und Missbrauch der Logik in der Alltagssprache Logik und Missbrauch der Logik in der Alltagssprache Wie gewinnt man in Diskussionen? Carmen Kölbl Universität Koblenz Fachbereich Informatik Seminar: Logik auf Abwegen: Irrglaube, Lüge, Täuschung Seminarleiter:

Mehr

LEHRVERANSTALTUNGSBESCHREIBUNG

LEHRVERANSTALTUNGSBESCHREIBUNG LEHRVERANSTALTUNGSBESCHREIBUNG 1. Angaben zum Programm 1.1 Hochschuleinrichtung Babes-Bolyai Universität, Cluj-Napoca 1.2 Fakultät Mathematik und Informatik 1.3 Department Informatik 1.4 Fachgebiet Informatik

Mehr

Haskell zur Constraint-Programmierung HaL8

Haskell zur Constraint-Programmierung HaL8 Haskell zur Constraint-Programmierung HaL8 Alexander Bau 2. Mai 2013 Wir benutzen eine Teilmenge von Haskell zur Spezifikation von Constraint- Systemen über Haskell-Datentypen. Ein Constraint-Compiler

Mehr

Grundlagen der Technischen Informatik

Grundlagen der Technischen Informatik Grundlagen der Technischen Informatik von Dirk W. Hoffmann 1. Auflage Hanser München 2007 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 40691 9 Zu Leseprobe schnell und portofrei erhältlich

Mehr

Fixpunktsemantik logischer Programme Pascal Hitzler Juli 1997 Kurzuberblick im Rahmen der Vorlesung Einfuhrung in Prolog von T. Cornell im Sommersemester 1997 an der Universitat Tubingen. Beweise sind

Mehr

Projektkurs Mathematik

Projektkurs Mathematik Projektkurs Mathematik zur besseren Vorbereitung auf die Mathematikanforderungen in MINT - Studiengängen Projektziele, Teilziele und Kompetenzen Allgemeine Ziele: Vermittlung von (mathematischem) Wissen

Mehr

Rechnerstrukturen und Programmierparadigmen

Rechnerstrukturen und Programmierparadigmen Informatik A: Rechnerstrukturen und Programmierparadigmen Prof. Dr. Norbert Fuhr SS 2003 Universität Duisburg-Essen, Abteilung Duisburg Fakultät 5 Autor des Skriptes: Prof. Dr. Wolfram Luther. Zuletzt

Mehr

Dipl.-Wirt.-Inf. Matthias Zapp

Dipl.-Wirt.-Inf. Matthias Zapp Semantische Wiki-Systeme in der vvandlungsfähigen Produktion Von der Fakultät Konstruktion-, Produktions- und Fahrzeugtechnik der Universität Stuttgart zur Erlangung der Würde eines Doktor-Ingenieurs (Dr.-Ing.)

Mehr

Ein Vergleich dreier aussagenlogischer Semantiken

Ein Vergleich dreier aussagenlogischer Semantiken Ein Vergleich dreier aussagenlogischer Semantiken Alexander Zimmermann Abstract In this article we compare three different semantic theories for a propositional language, namely a valuation-semantic, a

Mehr

Beschreibungslogiken. Daniel Schradick 1schradi@informatik.uni-hamburg.de

Beschreibungslogiken. Daniel Schradick 1schradi@informatik.uni-hamburg.de Beschreibungslogiken Daniel Schradick 1schradi@informatik.uni-hamburg.de Was sind Beschreibungslogiken? Definition: Formalisms that represent knowledge of some problem domain (the world ) by first defining

Mehr

Kapitel 11: Wiederholung und Zusammenfassung

Kapitel 11: Wiederholung und Zusammenfassung Wiederholung und Zusammenfassung 1: Begriff und Grundprobleme der Informatik Begriff Informatik Computer als universelle Rechenmaschine Grenzen der Berechenbarkeit Digitalisierung Problem der Komplexität

Mehr

Aufgabe 1 Minimieren Sie mit den Gesetzen der Booleschen Algebra 1.1 f a ab ab 1 = + + Aufgabe 2. Aufgabe 3

Aufgabe 1 Minimieren Sie mit den Gesetzen der Booleschen Algebra 1.1 f a ab ab 1 = + + Aufgabe 2. Aufgabe 3 Logischer Entwurf Digitaler Systeme Seite: 1 Übungsblatt zur Wiederholung und Auffrischung Aufgabe 1 Minimieren Sie mit den Gesetzen der Booleschen Algebra 1.1 f a ab ab 1 = + + 1.2 f ( ) ( ) ( ) 2 = c

Mehr

Rhetorik und Argumentationstheorie. [frederik.gierlinger@univie.ac.at]

Rhetorik und Argumentationstheorie. [frederik.gierlinger@univie.ac.at] Rhetorik und Argumentationstheorie 1 [frederik.gierlinger@univie.ac.at] Ablauf der Veranstaltung Termine 1-6 Erarbeitung diverser Grundbegriffe Termine 7-12 Besprechung von philosophischen Aufsätzen Termin

Mehr

Semantic-Web-Sprachen XML, RDF (und RDFS), OWL

Semantic-Web-Sprachen XML, RDF (und RDFS), OWL Semantic-Web-Sprachen XML, RDF (und RDFS), OWL PTI 991 Wissensmanagementsystemen Dozent: Prof. Sybilla Schwarz 1 Agenda Problem Semantisches Web Semantische Sprache XML RDF RDFS OWL Zusammenfassung 2 Problem

Mehr

Verwendet man zur Darstellung nur binäre Elemente ( bis lat.: zweimal) so spricht man von binärer Digitaltechnik.

Verwendet man zur Darstellung nur binäre Elemente ( bis lat.: zweimal) so spricht man von binärer Digitaltechnik. Kursleiter : W. Zimmer 1/24 Digitale Darstellung von Größen Eine Meßgröße ist digital, wenn sie in ihrem Wertebereich nur eine endliche Anzahl von Werten annehmen kann, also "abzählbar" ist. Digital kommt

Mehr

Didaktische Grundlagen Arithmetik Vertiefung Übungen 4

Didaktische Grundlagen Arithmetik Vertiefung Übungen 4 Westfälische Wilhelms-Universität Münster Institut für Didaktik der Mathematik und Informatik Dr. Astrid Brinkmann Didaktische Grundlagen Arithmetik Vertiefung Übungen 4 Von allen, die bis jetzt nach Wahrheit

Mehr

Formelsammlung. Wahrscheinlichkeit und Information

Formelsammlung. Wahrscheinlichkeit und Information Formelsammlung Wahrscheinlichkeit und Information Ein Ereignis x trete mit der Wahrscheinlichkeit p(x) auf, dann ist das Auftreten dieses Ereignisses verbunden mit der Information I( x): mit log 2 (z)

Mehr

Relationen A = Z A = R. R = {(a, b) a, b Z, a b} R = {(a, b) a, b R, a 3 = b 3 } R =, R = {(a, b) a, b N 0, a b ist ungerade }, A = N 0 A = N

Relationen A = Z A = R. R = {(a, b) a, b Z, a b} R = {(a, b) a, b R, a 3 = b 3 } R =, R = {(a, b) a, b N 0, a b ist ungerade }, A = N 0 A = N Relationen Aufgabe 1. Überlegen Sie, wie man folgende Relationen R grafisch darstellen könnte und entscheiden Sie, ob die Relationen reflexiv auf A, symmetrisch bzw. transitiv sind. Geben Sie eine kurze

Mehr

Zusammenhänge präzisieren im Modell

Zusammenhänge präzisieren im Modell Zusammenhänge präzisieren im Modell Dr. Roland Poellinger Munich Center for Mathematical Philosophy Begriffsfeld Logik 1 Mathematik und Logik Die Mathematik basiert auf logisch gültigen Folgerungsschritten

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

9. Übung Formale Grundlagen der Informatik

9. Übung Formale Grundlagen der Informatik Institut für Informatik Sommersemester 2001 Universität Zürich 9. Übung Formale Grundlagen der Informatik Norbert E. Fuchs (fuchs@ifi.unizh.ch) Reinhard Riedl (riedl@ifi.unizh.ch) Nadine Korolnik (korolnik@ifi.unizh.ch)

Mehr

Qualitätsorientierter System Entwurf

Qualitätsorientierter System Entwurf Prof. Dr. Görschwin Fey, fey@informatik.uni-bremen.de, MZH 3070 Jan Malburg M. Sc., malburg@informatik.uni-bremen.de, MZH 3050 Programmieraufgaben Qualitätsorientierter System Entwurf Die Zulassung zum

Mehr

6. Vorlesung: Minimalformen

6. Vorlesung: Minimalformen 6. Vorlesung: Minimalformen Wiederholung Minterme Maxterme Disjunktive Normalform (DN) Konjunktive Normalform (KN) Minimalformen KV-Diagramme 24..26 fällt aus wegen Dozentenfachexkursion 2 Normalformen

Mehr

Induktive Beweise und rekursive Definitionen

Induktive Beweise und rekursive Definitionen Induktive Beweise und rekursive Definitionen Vorlesung Logik in der Informatik, HU Berlin 1. Übungsstunde Beweis durch vollständige Induktion über N Aufgabe 1 Zeige, dass für alle n N gilt: n 2 i = 2 n+1

Mehr

Wissensmanagement WS 2010/2011

Wissensmanagement WS 2010/2011 Wissensmanagement Sibylle Schwarz Westsächsische Hochschule Zwickau Dr. Friedrichs-Ring 2a, RII 263 http://wwwstud.fh-zwickau.de/~sibsc/ sibylle.schwarz@fh-zwickau.de WS 2010/2011 Motivation Wie wird Wissen

Mehr

6.1 Syntax und Semantik von Constraint-Logikprogrammen

6.1 Syntax und Semantik von Constraint-Logikprogrammen Kapitel 6 Logikprogrammierung mit Constraints Nachdem wir nun sowohl die reine Logikprogrammierung als auch ihre Implementierung in der Sprache Prolog betrachtet haben, wollen wir uns zum Schluss mit einer

Mehr

Nichtmonotones Schließen

Nichtmonotones Schließen Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen klassischer Aussagenlogik: Entscheidungstabellen, -bäume, -diagramme Wissensrepräsentation und -verarbeitung durch

Mehr