Einführung in die Theoretische Informatik. Inhalte der Lehrveranstaltung. Definition (Boolesche Algebra) Einführung in die Logik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Einführung in die Theoretische Informatik. Inhalte der Lehrveranstaltung. Definition (Boolesche Algebra) Einführung in die Logik"

Transkript

1 Zusammenfassung Einführung in die Theoretische Informatik Woche 5 Harald Zankl Institut für UIBK Wintersemester 2014/2015 Zusammenfassung der letzten LV Jede binäre Operation hat maximal ein neutrales Element. In einem Monoid ist das Inverse eines Elements eindeutig (wenn es existiert). (Boolesche Algebra) Eine Algebra B = B; +,,, 0, 1 heißt Boolesche Algebra wenn gilt: 1 B; +, 0 und B;, 1 sind kommutative Monoide 2 Die Operationen + und distribuieren übereinander. Es gilt also für alle a, b, c B: a (b + c) = (a b) + (a c) a + (b c) = (a + b) (a + c) 3 Für alle a B gilt a + a = 1 a a = 0 Das Element a heißt das Komplement oder die Negation von a HZ (IFI) ETI - Woche 5 68/213 Zusammenfassung Überblick Inhalte der Lehrveranstaltung Für jede Menge M ist die Mengenalgebra P(M);,,,, M eine Boolesche Algebra. Die binäre Algebra B; +,,, 0, 1 ist eine Boolesche Algebra. Einführung in die Logik Syntax & Semantik der Aussagenlogik, Formales Beweisen, Konjunktive und Disjunktive Normalformen Einführung in die Algebra Boolesche Algebra,, Logische Schaltkreise Die Algebra Frm ist eine Boolesche Algebra Einführung in die Theorie der Formalen Sprachen Grammatiken und Formale Sprachen, Reguläre Sprachen, Kontextfreie Sprachen Einführung in die Berechenbarkeitstheorie Algorithmisch unlösbare Probleme, Turing Maschinen, Registermaschinen Einführung in die Programmverifikation Prinzipien der Analyse von Programmen, Verifikation nach Hoare, Verschlüsselung und Sicherheit HZ (IFI) ETI - Woche 5 69/213 HZ (IFI) ETI - Woche 5 70/213

2 Sei B := {0, 1} und sei B n das n-fache kartesische Produkt von B: B n = {(a 1,..., a n ) a i B}; wir betrachten B n ; +,,, (0,..., 0), (1,..., 1) 1 (a 1,..., a n ) + (b 1,..., b n ) = (a 1 + b 1,..., a n + b n ) 2 (a 1,..., a n ) (b 1,..., b n ) = (a 1 b 1,..., a n b n ) 3 (a 1,..., a n ) = (a 1,..., a n ) wobei +: B B B, : B B B und : B B wie in der binären Algebra Für jedes n N ist die oben definierte Algebra ist eine Boolesche Algebra. Algebra der Booleschen Funktionen Sei Abb die Menge der Abbildungen von B n nach B m wir betrachten Abb; +,,, (0,..., 0), (1,..., 1) 1 (0,..., 0): (a 1,..., a n ) (0,..., 0) 2 (1,..., 1): (a 1,..., a n ) (1,..., 1) 3 (f + g)(a 1,..., a n ) = f (a 1,..., a n ) + g(a 1,..., a n ) 4 (f g)(a 1,..., a n ) = f (a 1,..., a n ) g(a 1,..., a n ) 5 f (a 1,..., a n ) = f (a 1,..., a n ) Diese Algebra nennt man Algebra der n-stelligen Booleschen Funktionen Die Algebra der n-stelligen Booleschen Funktionen ist eine Boolesche Algebra. HZ (IFI) ETI - Woche 5 71/213 HZ (IFI) ETI - Woche 5 72/213 Gesetze Boolescher Algebren (Dualitätsprinzip) 1 Sei B eine Boolesche Algebra 2 Für Boolesche Ausdrücke E und F gelte E F in B Dann gilt eine entsprechende Gleichheit E F in B bei der alle Vorkommnisse von + durch (und umgekehrt) ersetzt sowie 0 und 1 vertauscht werden. Im Folgenden sei B = B; +,,, 0, 1 eine Boolesche Algebra. Für alle a B gelten die Idempotenzgesetze: a a = a und die folgenden Gesetze für 0 und 1: a + a = a 0 a = a = 1 HZ (IFI) ETI - Woche 5 73/213 Für alle a, b B gelten die Absorptionsgesetze: a + ab = a a + ab = a + b a(a + b) = a a(a + b) = ab ➀ Für alle a, b B gilt die Eindeutigkeit des Komplements: Beweis. Gelte a + b = 1 und ab = 0 Wenn a + b = 1 und ab = 0, dann b = a b = b1 = b(a + a) = ba + ba = 0 + ba da ab = 0 = aa + ba = (a + b)a = 1a da a + b = 1 = a HZ (IFI) ETI - Woche 5 74/213

3 Für alle a B gilt das Involutionsgesetz: a = a Beweis. Nach einer Booleschen Algebra ist 1 a + a = 1 und a a = 0 (a ist Komplement von a) 2 a + a = 1 und a a = 0 (a ist Komplement von a) Da + und kommutativ folgt aus 1, dass 3 a + a = 1 und a a = 0 (a ist Komplement von a) Nun folgt aus 2, 3 und ➀, dass a = a. Für alle a, b B gelten die Gesetze von de Morgan: a + b = a b a b = a + b HZ (IFI) ETI - Woche 5 75/213 Beweis (der Gesetze von de Morgan) Wir zeigen (a + b) + a b = 1: (a + b) + a b = (a + b + a)(a + b + b) = (a + a + b)(a + b + b) = (1 + b)(a + 1) = 1 1 = 1 Wir zeigen (a + b) a b = 0: (a + b) a b = a a b + b a b = a a b + a b b = 0 b + a 0 = = 0 Die Voraussetzungen von ➀ sind gezeigt Somit ist a b das Komplement von a + b HZ (IFI) ETI - Woche 5 76/213 Sei B = {0, 1} und sei B n das n-fache kartesische Produkt von B (Boolesche Funktion) 1 Sei F ein Boolescher Ausdruck in den Variablen x 1,..., x n und 2 F (s 1,..., s n ) die Instanz von F, die x i durch s i ersetzt 3 Wir definieren die Funktion f : B n B wie folgt: f (s 1,..., s n ) := F (s 1,..., s n ). Dann heißt f die Boolesche Funktion zum Ausdruck F (Boolesche Algebra Frm = Frm;,,, False, True ) Sei F = x 1 (x 2 x 1 ). Dann ist f : B 2 s B 1 s 2 f (s 1, s 2 ) g(s 1, s 2 ) die Boolesche Funktion zum Ausdruck F Sei G = x 1 x 2 x 2. Dann ist g : B 2 B die Boolesche Funktion zum Ausdruck G Sei f : B n B eine Boolesche Funktion 2 Sei F ein Boolescher Ausdruck, dessen Boolesche Funktion gleich f Dann nennen wir F den Booleschen Ausdruck von f Satz (Darstellungssatz von Stone) Jede Boolesche Algebra ist isomorph zu einer Mengenalgebra Satz 1 Seien F, G Boolesche Ausdrücke 2 Seien f, g ihre Booleschen Funktionen Dann gilt F G gdw. f = g in der Algebra der n-stelligen Booleschen Funktionen. HZ (IFI) ETI - Woche 5 77/213 HZ (IFI) ETI - Woche 5 78/213

4 (Konjunktive und Disjunktive Normalformen) 1 Ein Literal ist eine Boolesche Variable x oder ihre Negation x 2 Ein Summenterm ist ein Boolescher Ausdruck der Gestalt wobei l i Literale l l n 3 Ein Produktterm ist ein Boolescher Ausdruck der Gestalt wobei l i Literale l 1... l n 4 Boolescher Ausdruck F ist in konjunktiver Normalform (KNF), wenn F das Produkt von Summentermen 5 Boolescher Ausdruck F ist in disjunktiver Normalform (DNF), wenn F die Summe von Produkttermen Satz Jeder Boolesche Ausdruck hat eine konjunktive beziehungsweise eine disjunktive Normalform HZ (IFI) ETI - Woche 5 79/213 (Signatur) Eine Signatur F ist eine Menge von Funktionssymbolen (Symbolen für Operationen) Jedem f F ist eine Stelligkeit n zugeordnet Symbole mit Stelligkeit 0 werden Konstanten genannt Sei F eine Signatur und sei V eine (unendliche) Menge von Variablen (Terme) Die Menge T(F, V) aller Terme (über F) ist induktiv definiert: 1 Jedes Element von V ist ein Term 2 Wenn f F mit Stelligkeit n sowie t 1,..., t n Terme, dann ist auch f (t 1,..., t n ) ein Term (beachte Spezialfall: n = 0) HZ (IFI) ETI - Woche 5 80/213 Substitutionen (Substitution) Eine Substitution ist eine Abbildung σ : V T(F, V) Wir schreiben σ oft als Menge {x σ(x) x V, x σ(x)} Erweiterung einer Substitution σ auf Terme σ : T(F, V) T(F, V) mit { σ(t) wenn t V σ(t) := f (σ(t 1 ),..., σ(t n )) wenn t = f (t 1,..., t n ) Sei F = {+,,, 0, 1} eine Signatur und sei V = {x 1, x 2,... }; betrachte x 1 x 2 x 3 x 4 x 1 x 2 x 2 (x 3 + x 4 ) x 1 (x 3 + x 4 ) zurück σ = {x 1 x 2, x 2 x 3 + x 4 } Substitutionen (2) und Gleichungen Fakt Die Anwendung (der Erweiterung) einer Substitution σ auf einen Term ersetzt simultan alle Variablen x durch ihr Bild σ(x). Konvention Im Folgenden bezeichnen wir die Erweiterung σ einer Substitution σ, wiederum mit σ. (Gleichung) Eine Gleichung (über der Signatur F) ist ein Paar (s, t) von Termen (über F). Wir schreiben s t für Gleichungen. Verwechslungsgefahr mit Äquivalenz! σ(x 1 x 2 ) = x 2 (x 3 + x 4 ) σ(x 2 + x 3 ) = (x 3 + x 4 ) + x 3 HZ (IFI) ETI - Woche 5 81/213 HZ (IFI) ETI - Woche 5 82/213

5 Gleichungslogik Sei E eine Menge von Gleichungen (Gleichungslogik) [r] E t t [t] [s] [a] E t s s t E [i] [k] E t u E s u E σ(s) σ(t) σ eine Substitution E s 1 t 1... E s n t n E f (s 1,..., s n ) f (t 1,..., t n ) Wir schreiben, wenn s t syntaktisch aus E folgt, dh. es einen Beweis in der Gleichungslogik gibt. e zur Universellen Algebra e zur Universellen Algebra e 1 Wir betrachten die Signatur F = {+, s, 0}. Stelligkeit von 0 ist 0, Stelligkeit von s ist 1, Stelligkeit von + ist 2 (wir schreiben + oft infix) 2 Wir betrachten die Menge von Variablen V = {x, y,...} 3 Die folgenden Ausdrücke sind Terme in T(F, V) x +(x, y) +(s(x), y) 0 + s(y) s(s(0) + s(0)) s(s(s(0))) 4 Dann ist s(s(0) + s(0)) s(s(s(0))) eine Gleichung. 5 Wir betrachten die Substitution σ : V T(F, V) { x + y z = x σ(z) = z sonst Wir schreiben σ als {x x + y}. HZ (IFI) ETI - Woche 5 83/213 HZ (IFI) ETI - Woche 5 84/213 e zur Universellen Algebra [a] [k] s t E [s] E t s E s 1 t 1... E s n t n E f (s 1,..., s n ) f (t 1,..., t n ) Wir betrachten die Menge der Gleichungen E [t] [i] 0 + x x s(x) + y s(x + y) Dann gilt E s(s(0) + s(0)) s(s(s(0))), da s(x) + y s(x + y) E E s(x) + y s(x + y) [a] E s(0) + s(0) s(0 + s(0)) [i], σ 1 E t u E s u E σ(s) σ(t) 0 + x x E E 0 + x x [a] E 0 + s(0) s(0) [i], σ 2 E s(0 + s(0)) s(s(0)) [k] [t] E s(0) + s(0) s(s(0)) E s(s(0) + s(0)) s(s(s(0))) [k] Hier verwenden wir σ 1 = {x 0, y s(0)} und σ 2 = {x s(0)}. HZ (IFI) ETI - Woche 5 85/213

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 6 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Satz 1 Seien F, G Boolesche Ausdrücke

Mehr

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1 Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 7 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 1 Wir betrachten die folgende Signatur

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Woche 10 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung Zusammenfassung der letzten LV Satz Sei G = (V, Σ, R, S) eine kontextfreie

Mehr

Teil 1: Digitale Logik

Teil 1: Digitale Logik Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Analoge und digitale Hardware bei

Mehr

A.1 Schaltfunktionen und Schaltnetze

A.1 Schaltfunktionen und Schaltnetze Schaltfunktionen und Schaltnetze A. Schaltfunktionen und Schaltnetze 22 Prof. Dr. Rainer Manthey Informatik II Bedeutung des Binärsystems für den Rechneraufbau Seit Beginn der Entwicklung von Computerhardware

Mehr

Erfüllbarkeit und Allgemeingültigkeit

Erfüllbarkeit und Allgemeingültigkeit Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.3 Aussagenlogik Erfüllbarkeit 44 Erfüllbarkeit und Allgemeingültigkeit Def.: eine Formel ϕ heißt erfüllbar, wennesein I gibt, so dass I = ϕ

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 12: Termersetzungssysteme schulz@eprover.org Reduktionssysteme Definition: Reduktionssystem Ein Reduktionssystem ist ein Tupel (A, ) Dabei gilt: A ist eine

Mehr

Grundlagen der Informationverarbeitung

Grundlagen der Informationverarbeitung Grundlagen der Informationverarbeitung Information wird im Computer binär repräsentiert. Die binär dargestellten Daten sollen im Computer verarbeitet werden, d.h. es müssen Rechnerschaltungen existieren,

Mehr

5. Aussagenlogik und Schaltalgebra

5. Aussagenlogik und Schaltalgebra 5. Aussagenlogik und Schaltalgebra Aussageformen und Aussagenlogik Boolesche Terme und Boolesche Funktionen Boolesche Algebra Schaltalgebra Schaltnetze und Schaltwerke R. Der 1 Aussagen Information oft

Mehr

Informatik I WS 07/08 Tutorium 24

Informatik I WS 07/08 Tutorium 24 Info I Tutorium 24 Informatik I WS 07/08 Tutorium 24 3.2.07 astian Molkenthin E-Mail: infotut@sunshine2k.de Web: http://infotut.sunshine2k.de Organisatorisches / Review is zum 2.2 müssen alle Praxisaufgaben

Mehr

Überblick über dieses Kapitel Grundlagen der Programmierung Kapitel 12: Information und Repräsentation

Überblick über dieses Kapitel Grundlagen der Programmierung Kapitel 12: Information und Repräsentation Überblick über dieses Kapitel Grundlagen der Programmierung Dr. Christian Herzog Technische Universität München Wintersemester 2007/2008 Kapitel 12: Information und Repräsentation! Repräsentation, Information,!

Mehr

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie und, oder, nicht, wenn... dann zwischen atomaren und komplexen Sätzen. I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 Einführung Beispiel: Aussagenlogische Formeln Aus dem Logikteil: Definition (Syntax

Mehr

Inhalt. SWP Logische Programme. Motivation. Formalisierung. Wissensbasis. Bsp (Bibel)Verwandtschaften. Motivation Sprache LP

Inhalt. SWP Logische Programme. Motivation. Formalisierung. Wissensbasis. Bsp (Bibel)Verwandtschaften. Motivation Sprache LP Inhalt SWP Logische Programme Franz Wotawa Institut für Softwaretechnologie wotawa@ist.tugraz.at Motivation Sprache LP Resolution Unifikation Datenbanken und logische Programme Semantik 2 Motivation Bsp

Mehr

183.580, WS2012 Übungsgruppen: Mo., 22.10.

183.580, WS2012 Übungsgruppen: Mo., 22.10. VU Grundlagen digitaler Systeme Übung 2: Numerik, Boolesche Algebra 183.580, WS2012 Übungsgruppen: Mo., 22.10. Aufgabe 1: Binäre Gleitpunkt-Arithmetik Addition & Subtraktion Gegeben sind die Zahlen: A

Mehr

der einzelnen Aussagen den Wahrheitswert der zusammengesetzten Aussage falsch falsch falsch falsch wahr falsch wahr falsch falsch wahr wahr wahr

der einzelnen Aussagen den Wahrheitswert der zusammengesetzten Aussage falsch falsch falsch falsch wahr falsch wahr falsch falsch wahr wahr wahr Kapitel 2 Grundbegriffe der Logik 2.1 Aussagen und deren Verknüpfungen Eine Aussage wie 4711 ist durch 3 teilbar oder 2 ist eine Primzahl, die nur wahr oder falsch sein kann, heißt logische Aussage. Ein

Mehr

Terme stehen für Namen von Objekten des Diskursbereichs (Subjekte, Objekte des natürlichsprachlichen Satzes)

Terme stehen für Namen von Objekten des Diskursbereichs (Subjekte, Objekte des natürlichsprachlichen Satzes) Prädikatenlogik Man kann den natürlichsprachlichen Satz Die Sonne scheint. in der Prädikatenlogik beispielsweise als logisches Atom scheint(sonne) darstellen. In der Sprache der Prädikatenlogik werden

Mehr

Kapitel 3: Boolesche Algebra

Kapitel 3: Boolesche Algebra Inhalt: 3.1 Grundlegende Operationen und Gesetze 3.2 Boolesche Funktionen u. u. ihre Normalformen 3.3 Vereinfachen von booleschen Ausdrücken 3.4 Logische Schaltungen 3.1 Grundlegende Operationen und Gesetze

Mehr

2. Universelle Algebra

2. Universelle Algebra 2. Universelle Algebra Die Theorie der universellen Algebra verallgemeinert die Theorien der klassischen Algebren. Obwohl ursprünglich nur eine Sorte betrachtet wurde, werden wir hier gleich den mehrsortigen

Mehr

Binäre Suchbäume (binary search trees, kurz: bst)

Binäre Suchbäume (binary search trees, kurz: bst) Binäre Suchbäume (binary search trees, kurz: bst) Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binärbaum T mit n := M Knoten Jeder Knoten v von T ist mit einer Zahl m v M markiert.

Mehr

Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik. Seminar Entscheidungsverfahren für logische Theorien. Endliche Modelle.

Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik. Seminar Entscheidungsverfahren für logische Theorien. Endliche Modelle. Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik Seminar Entscheidungsverfahren für logische Theorien Tobias Hebel Koblenz, am 18.02.2005 Inhaltsverzeichnis 1 Einleitung... 3 2 Grundlagen...

Mehr

5 Logische Programmierung

5 Logische Programmierung 5 Logische Programmierung Logik wird als Programmiersprache benutzt Der logische Ansatz zu Programmierung ist (sowie der funktionale) deklarativ; Programme können mit Hilfe zweier abstrakten, maschinen-unabhängigen

Mehr

Kombinatorische Logik. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck

Kombinatorische Logik. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Kombinatorische Logik Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Überblick Analog- und Digitaltechnik Boolesche Algebra Schaltfunktionen Gatter Normalformen

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 9: Prädikatenlogik schulz@eprover.org Rückblick 2 Rückblick: Vor- und Nachteile von Aussagenlogik Aussagenlogik ist deklarativ: Syntaxelemente entsprechen

Mehr

Formelsammlung. Wahrscheinlichkeit und Information

Formelsammlung. Wahrscheinlichkeit und Information Formelsammlung Wahrscheinlichkeit und Information Ein Ereignis x trete mit der Wahrscheinlichkeit p(x) auf, dann ist das Auftreten dieses Ereignisses verbunden mit der Information I( x): mit log 2 (z)

Mehr

Wortproblem für kontextfreie Grammatiken

Wortproblem für kontextfreie Grammatiken Wortproblem für kontextfreie Grammatiken G kontextfreie Grammatik. w Σ w L(G)? Wortproblem ist primitiv rekursiv entscheidbar. (schlechte obere Schranke!) Kellerautomat der L(G) akzeptiert Ist dieser effizient?

Mehr

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise:

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise: Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 192 Beispiel Bsp.: Betrachte Schlussweise in: 1 Wenn es regnet, dann wird die Straße nass. R N

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum

Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Protokoll-Nr.: 11 Digitalschaltungen Protokollant: Jens Bernheiden Gruppe: 2 Aufgabe durchgeführt: 25.06.1997 Protokoll

Mehr

Wissensrepräsentation und -verarbeitung in Logiken. bereinigt Pränex Skolem ( -Eliminierung) Klausel (Menge von Klauseln, Notation ohne Quantoren)

Wissensrepräsentation und -verarbeitung in Logiken. bereinigt Pränex Skolem ( -Eliminierung) Klausel (Menge von Klauseln, Notation ohne Quantoren) Was bisher geschah Wissensrepräsentation und -verarbeitung in Logiken klassische Aussagenlogik klassische Prädikatenlogik: Wiederholung Syntax, Semantik Normalformen: bereinigt Pränex Skolem ( -Eliminierung)

Mehr

Grundlagen der Digitaltechnik

Grundlagen der Digitaltechnik Grundlagen der Digitaltechnik Eine systematische Einführung von Prof. Dipl.-Ing. Erich Leonhardt 3., bearbeitete Auflage Mit 326 Bildern, 128 Tabellen, zahlreichen Beispielen und Übungsaufgaben mit Lösungen

Mehr

Formale Methoden in der Informatik Wiederholung klassische Logik Konkrete Datentypen (algebraische Strukturen) Abstrakte Datentypen

Formale Methoden in der Informatik Wiederholung klassische Logik Konkrete Datentypen (algebraische Strukturen) Abstrakte Datentypen Was bisher geschah Formale Methoden in der Informatik Wiederholung klassische Logik Konkrete Datentypen (algebraische Strukturen) Abstrakte Datentypen Syntax: Signatur Semantik: Axiome (FOL-Formeln, meist

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 27. Aussagenlogik: Logisches Schliessen und Resolution Malte Helmert Universität Basel 28. April 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26.

Mehr

Boole'sche Algebra. Inhaltsübersicht. Binäre Funktionen, Boole'sche Algebren, Schaltalgebra. Verknüpfungen der mathematischen Logik

Boole'sche Algebra. Inhaltsübersicht. Binäre Funktionen, Boole'sche Algebren, Schaltalgebra. Verknüpfungen der mathematischen Logik Boole'sche Algebr Binäre Funktionen, Boole'sche Algebren, Schltlgebr Inhltsübersicht Verknüpfungen der mthemtischen Logik Boole sche Algebren Grundelemente der Schltlgebr Regeln der Schltlgebr Normlformen

Mehr

Verwendet man zur Darstellung nur binäre Elemente ( bis lat.: zweimal) so spricht man von binärer Digitaltechnik.

Verwendet man zur Darstellung nur binäre Elemente ( bis lat.: zweimal) so spricht man von binärer Digitaltechnik. Kursleiter : W. Zimmer 1/24 Digitale Darstellung von Größen Eine Meßgröße ist digital, wenn sie in ihrem Wertebereich nur eine endliche Anzahl von Werten annehmen kann, also "abzählbar" ist. Digital kommt

Mehr

Teil II. Schaltfunktionen

Teil II. Schaltfunktionen Teil II Schaltfunktionen 1 Teil II.1 Zahlendarstellung 2 b-adische Systeme Sei b IN mit b > 1 und E b = {0, 1,..., b 1} (Alphabet). Dann ist jede Fixpunktzahl z (mit n Vorkomma und k Nachkommastellen)

Mehr

Signalverarbeitung 1

Signalverarbeitung 1 TiEl-F000 Sommersemester 2008 Signalverarbeitung 1 (Vorlesungsnummer 260215) 2003-10-10-0000 TiEl-F035 Digitaltechnik 2.1 Logikpegel in der Digitaltechnik In binären Schaltungen repräsentieren zwei definierte

Mehr

Was bisher geschah. Aufgaben: Diagnose, Entscheidungsunterstützung Aufbau Komponenten und Funktion

Was bisher geschah. Aufgaben: Diagnose, Entscheidungsunterstützung Aufbau Komponenten und Funktion Was bisher geschah Daten, Information, Wissen explizites und implizites Wissen Wissensrepräsentation und -verarbeitung: Wissensbasis Kontextwissen Problemdarstellung fallspezifisches Wissen repräsentiert

Mehr

Einführung in Informatik 1

Einführung in Informatik 1 Einführung in Informatik Prof. Dr.-Ing. Andreas Penningsfeld Zahlensysteme Allgemein: Zahl b := zn * bn +... + z * b + z ( ) * b (-) +... + z (-m) * b (-m) ; zi: Koeffizienten b: Basis Dezimalsystem Dualsystem

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 7: Einführung Aussagenlogik schulz@eprover.org Logisches Schließen 2 gold +1000, 1 per step, Beispiel: Jage den Wumpus Performance measure death 1000 10

Mehr

3. Steuerungstechnik Teil I

3. Steuerungstechnik Teil I 3. Steuerungstechnik Teil I 3.. Boolsche Algebra und Schaltalgebra Die Berechnung logischer Verknüpfungen in binären Steuerungssystemen hat als Grundlage die Boolsche Algebra bzw. die auf Schaltsystemen

Mehr

Semantik von Formeln und Sequenzen

Semantik von Formeln und Sequenzen Semantik von Formeln und Sequenzen 33 Grundidee der Verwendung von Logik im Software Entwurf Syntax: Menge von Formeln = Axiome Ax K ist beweisbar Formel ϕ beschreiben Korrektkeit Vollständigkeit beschreibt

Mehr

Grundlagen der Theoretischen Informatik - Sommersemester 2012. Übungsblatt 1: Lösungsvorschläge

Grundlagen der Theoretischen Informatik - Sommersemester 2012. Übungsblatt 1: Lösungsvorschläge Lehrstuhl für Softwaretechnik und Programmiersprachen Professor Dr. Michael Leuschel Grundlagen der Theoretischen Informatik - Sommersemester 2012 Übungsblatt 1: Lösungsvorschläge Disclaimer: Bei Folgendem

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Grundlagen der Informatik Teil III Boolesche Algebra, Signalarten, Elektronische Bauteile Seite 1 Boolesche Algebra George Boole => englischer Mathematiker Mitte 19. Jahrhundert Formale Sicht digitaler

Mehr

Grammatiken. Einführung

Grammatiken. Einführung Einführung Beispiel: Die arithmetischen Ausdrücke über der Variablen a und den Operationen + und können wie folgt definiert werden: a, a + a und a a sind arithmetische Ausdrücke Wenn A und B arithmetische

Mehr

Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer:

Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binäre Suchbäume (binary search trees, kurz: bst) Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binärbaum T mit n := M Knoten Jeder Knoten v von T ist mit einer Zahl m v M markiert.

Mehr

Eine Logikschaltung zur Addition zweier Zahlen

Eine Logikschaltung zur Addition zweier Zahlen Eine Logikschaltung zur Addition zweier Zahlen Grundlegender Ansatz für die Umsetzung arithmetischer Operationen als elektronische Schaltung ist die Darstellung von Zahlen im Binärsystem. Eine Logikschaltung

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Zusammenfalten des Post schen Verbandes mittels Operationen aus binären booleschen Funktionen

Zusammenfalten des Post schen Verbandes mittels Operationen aus binären booleschen Funktionen Institut für Informatik der Bayerischen Julius Maximilians Universität Würzburg Zusammenfalten des Post schen Verbandes mittels Operationen aus binären booleschen Funktionen Studienarbeit von Christian

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 12.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

DV1_Kapitel_4.doc Seite 4-1 von 28 Rüdiger Siol 12.09.2009 16:29

DV1_Kapitel_4.doc Seite 4-1 von 28 Rüdiger Siol 12.09.2009 16:29 Inhaltsverzeichnis 4 Boolesche lgebra... 4-2 4. lgebra der Logik, algebraische Logik... 4-2 4.. Schaltalgebra und logische Schaltungen... 4-3 4... Zustand eines digitalen Systems... 4-5 4...2 Schaltfunktion...

Mehr

Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur

Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur Signatur Formeln Am Beispiel der Aussagenlogik erklären wir schrittweise wichtige Elemente eines logischen Systems. Zunächst benötigt ein logisches System ein Vokabular, d.h. eine Menge von Namen, die

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Entscheidungstabellen zur Testdatenermittlung

Entscheidungstabellen zur Testdatenermittlung Entscheidungstabellen zur Testdatenermittlung ÜBERBLICK... 2 ERSTELLUNG VON ENTSCHEIUNGSTABELLEN... 2. AUFBAU VON ENTSCHEIUNGSTABELLEN... 2.2 BEISPIEL KFZ-VERSICHERUNG... 2 2.3 VARIANTEN... 2 3 VALIIERUNG

Mehr

Grundlagen Theoretischer Informatik I SoSe 2011 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de

Grundlagen Theoretischer Informatik I SoSe 2011 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de Grundlagen Theoretischer Informatik I SoSe 2011 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Grundlagen Theoretischer Informatik I Gesamtübersicht Organisatorisches; Einführung Logik

Mehr

Kapitel 11: Wiederholung und Zusammenfassung

Kapitel 11: Wiederholung und Zusammenfassung Wiederholung und Zusammenfassung 1: Begriff und Grundprobleme der Informatik Begriff Informatik Computer als universelle Rechenmaschine Grenzen der Berechenbarkeit Digitalisierung Problem der Komplexität

Mehr

Grundlagen der Technischen Informatik

Grundlagen der Technischen Informatik Grundlagen der Technischen Informatik von Dirk W. Hoffmann 1. Auflage Hanser München 2007 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 40691 9 Zu Leseprobe schnell und portofrei erhältlich

Mehr

Endlicher Automat (EA)

Endlicher Automat (EA) Endlicher Automat (EA) siehe auch Formale Grundlagen 3 1 Motivation: Automaten für die Modellierung, Spezifikation und Verifikation verwenden! Definition Ein Endlicher Automat A = (S,I,Σ,T,F) besteht aus

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

SWP Logische Programme

SWP Logische Programme SWP Logische Programme Alexander Felfernig, Stephan Gspandl Institut für Softwaretechnologie {alexander.felfernig,sgspandl}@ist.tugraz.at Institute for Software Technology Inhalt Motivation Logische Programme

Mehr

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe Kapitel 4 Euklidische Ringe und die Jordansche Normalform 4.1 Euklidische Ringe Die Ringe der ganzen Zahlen, Z, sowie Polynomringe über Körpern, K[X], wobei K ein Körper ist, haben die folgenden Gemeinsamheiten:

Mehr

Bachelor Grundlagen der Logik und Logikprogrammierung 12. Februar 2009 3

Bachelor Grundlagen der Logik und Logikprogrammierung 12. Februar 2009 3 Bachelor Grundlagen der Logik und Logikprogrammierung 12. Februar 2009 3 Aufgabe 1 (20 Punkte) Dialogische Logik a) Was isteine formal wahrebehauptung? Welche Aussageschematasindallgemeingültig? b) Überprüfen

Mehr

Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung Winter-Semester 2003/04. Wissensrepräsentation: Resolution (im PK1)

Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung Winter-Semester 2003/04. Wissensrepräsentation: Resolution (im PK1) Einführung in die KI Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung Wissensrepräsentation: Resolution (im PK1) 2. Resolution Vorbild für Formalismus : exakt, präzise, (theoretisch) beherrscht Aufbau: Zeichen

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Formale Sprachen. Der Unterschied zwischen Grammatiken und Sprachen. Rudolf Freund, Marian Kogler

Formale Sprachen. Der Unterschied zwischen Grammatiken und Sprachen. Rudolf Freund, Marian Kogler Formale Sprachen Der Unterschied zwischen Grammatiken und Sprachen Rudolf Freund, Marian Kogler Es gibt reguläre Sprachen, die nicht von einer nichtregulären kontextfreien Grammatik erzeugt werden können.

Mehr

Entwicklung eines korrekten Übersetzers

Entwicklung eines korrekten Übersetzers Entwicklung eines korrekten Übersetzers für eine funktionale Programmiersprache im Theorembeweiser Coq Thomas Strathmann 14.01.2011 Gliederung 1 Einleitung

Mehr

1 Aussagenlogische Formeln

1 Aussagenlogische Formeln 1 Aussagenlogische Formeln Aufgabe 1.1 Transformieren Sie die Formel in disjunktive Normalform (DNF). ((:A! :B) ^ D)! ((A _ C) $ (:B ^ D)) Lösung 1.1 Schrittweise Transformation: Schritt 1: ((:A! :B) ^

Mehr

Kapitel 4. Aussagenlogik. 4.1 Boolesche Algebren

Kapitel 4. Aussagenlogik. 4.1 Boolesche Algebren Kapitel 4 Aussagenlogik Aussagenlogik war das erste logische System, das als mathematische Logik formuliert werden konnte (George Boole, Laws of Thought, 1854). Aussagenlogik ist die einfachste Logik und

Mehr

Einleitung Projektion Selektion Join Mengenop. Vollst.keit. Einleitung Projektion. Selektion Join. Vollst.keit. Einleitung Projektion Selektion Join

Einleitung Projektion Selektion Join Mengenop. Vollst.keit. Einleitung Projektion. Selektion Join. Vollst.keit. Einleitung Projektion Selektion Join Parsen der Anfrage (SQL) Transformation in eine Standardform (Relationenalgebra) Logische Optimierung Transformation in alternative Zugriffspläne, Physische Optimierung Ausführung des gewählten Zugriffsplans

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Lösungen zu Kapitel 7

Lösungen zu Kapitel 7 Lösungen zu Kapitel 7 Lösung zu Aufgabe 1: Nach Definition 7.1 ist eine Verknüpfung auf der Menge H durch eine Abbildung : H H H definiert. Gilt H = {a 1,..., a m }, so wird eine Verknüpfung auch vollständig

Mehr

Program = Logic + Control

Program = Logic + Control Program = Logic + Control Prozedurale/imperative Sprachen: Abläufe formulieren Computer führt aus von-neumann-maschine Idee von deklarativen/logischen/funktionalen Programmiersprachen: Zusammenhänge formulieren

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 29/ Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws9

Mehr

Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik

Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik Institut für Computerphysik Universität Stuttgart Wintersemester 2012/13 Wie rechnet ein Computer? Ein Mikroprozessor ist ein Netz von Transistoren,

Mehr

SWP Prüfungsvorbereitung

SWP Prüfungsvorbereitung 20. Juni 2011 1 Grammatiken 2 LL(1) 3 EXP 4 Datentypen 5 LP Grammatiken Angabe Erstellen Sie First- und Follow-Mengen aller Non-Terminale der folgenden Grammatik. S a S S B y B A C A A b b A x A ɛ C c

Mehr

Klausur für Studiengänge INF und IST

Klausur für Studiengänge INF und IST Familienname: Matrikelnummer: Studiengang: (bitte ankreuzen) INF IST MED Vorname: Email-Adresse: Immatrikulationsjahr: Klausur für Studiengänge INF und IST sowie Leistungsschein für Studiengang Medieninformatik

Mehr

Semantic Web Technologies I!

Semantic Web Technologies I! www.semantic-web-grundlagen.de Semantic Web Technologies I! Lehrveranstaltung im WS11/12! Dr. Elena Simperl! DP Dr. Sebastian Rudolph! M.Sc. Anees ul Mehdi! www.semantic-web-grundlagen.de Logik Grundlagen!

Mehr

Schaltalgebra - logische Schaltungen

Schaltalgebra - logische Schaltungen Schaltalgebra - logische Schaltungen Bakkalaureatsarbeit im Rahmen des Mathematischen Seminars unter Leitung von Wolfgang Schmid eingereicht von Verena Horak Salzburg, Sommersemester 2003 Inhaltsverzeichnis

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Komplexitätstheorie Einführung und Überblick (Wiederholung)

Komplexitätstheorie Einführung und Überblick (Wiederholung) Literatur C. Papadimitriou UC Berkeley Zum Komplexitätsbegriff Strukturelle Komplexität Average Case Analyse Effiziente Algorithmen Logische Komplexität Beschreibungssprachen: SQL Kolmogorov Komplexität

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Übungsaufgaben für "Grundlagen der Informationsverarbeitung" (mit Lösungen)

Übungsaufgaben für Grundlagen der Informationsverarbeitung (mit Lösungen) Übungsaufgaben für "Grundlagen der Informationsverarbeitung" (mit Lösungen). Erläutern Sie die Begriffe Bit, Byte und Wort bezogen auf einen 6 Bit Digitalrechner. Bit: Ein Bit ist die kleinste, atomare,

Mehr

Kompositionen von Baumreihen-Transformationen

Kompositionen von Baumreihen-Transformationen Kompositionen von Baumreihen-Transformationen Andreas Maletti 1 Lehrstuhl: Grundlagen der Programmierung Institut für Theoretische Informatik Technische Universität Dresden 4. November 2005 1 Finanziell

Mehr

Tiramisu Deklarativ Aus Eigelb, Mascarpone und in Likör und Kaffee getränkten Biskuits hergestellte cremige Süßspeise

Tiramisu Deklarativ Aus Eigelb, Mascarpone und in Likör und Kaffee getränkten Biskuits hergestellte cremige Süßspeise Kapitel 3 Logik-Programmierung 3.1 Einführung Was statt Wie am Beispiel von Tiramisu Folie 145 Tiramisu Deklarativ Aus Eigelb, Mascarpone und in Likör und Kaffee getränkten Biskuits hergestellte cremige

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 30.04.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letztes Mal Aussagenlogik Syntax: welche Formeln? Semantik:

Mehr

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität Prof. Dr. H. Brenner Osnabrück SS 2012 Algebraische Kurven Vorlesung 26 Die Schnittmultiplizität Es seien zwei ebene algebraische Kurven C,D A 2 K gegeben, die keine Komponente gemeinsam haben. Dann besteht

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 8: kontextfreie Grammatiken Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2009/2010 1/37 Überblick Kontextfreie Grammatiken

Mehr

TECHNISCHE UNIVERSITÄT DRESDEN. Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik Institut für Algebra

TECHNISCHE UNIVERSITÄT DRESDEN. Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik Institut für Algebra TECHNISCHE UNIVERSITÄT DRESDEN Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik Institut für Algebra Halbgruppen binärer Relationen auf einer 3-elementigen Menge Arbeit im Rahmen des

Mehr

Bitte schreiben Sie sich in die Mailingliste der Vorlesung ein! Den Link finden Sie auf der Vorlesungshomepage.

Bitte schreiben Sie sich in die Mailingliste der Vorlesung ein! Den Link finden Sie auf der Vorlesungshomepage. Mailingliste Bitte schreiben Sie sich in die Mailingliste der Vorlesung ein! Den Link finden Sie auf der Vorlesungshomepage. ZUR ERINNERUNG Regulärer Stundenplan Freitag, 14-16 Uhr: Vorlesung, ExWi A6

Mehr

4 Kongruenz und Modulorechnung

4 Kongruenz und Modulorechnung 4 Kongruenz und Modulorechnung 39 4 Kongruenz und Modulorechnung In unserer Zeitrechnung haben wir uns daran gewöhnt, nur mit endlich vielen Zahlen zu rechnen. Es ist gerade 3 Uhr und in 50 Stunden muss

Mehr

Mathematische Grundlagen der Informatik

Mathematische Grundlagen der Informatik Skriptum zur Vorlesung Mathematische Grundlagen der Informatik gehalten in WS 2015/16 von Sven Kosub 4. Februar 2016 Version v4.20 Inhaltsverzeichnis Prolog 1 1 Logik 5 1.1 Aussagen.....................................

Mehr

TheGI 1: Grundlagen und algebraische Strukturen Prof. Dr.-Ing. Uwe Nestmann - 09. Februar 2010. 2. Schriftliche Leistungskontrolle (EK)

TheGI 1: Grundlagen und algebraische Strukturen Prof. Dr.-Ing. Uwe Nestmann - 09. Februar 2010. 2. Schriftliche Leistungskontrolle (EK) TheGI 1: Grundlagen und algebraische Strukturen Prof. Dr.-Ing. Uwe Nestmann - 09. Februar 2010 2. Schriftliche Leistungskontrolle (EK) Punktzahl In dieser schriftlichen Leistungskontrolle sind 100 Punkte

Mehr

Satz. Für jede Herbrand-Struktur A für F und alle t D(F ) gilt offensichtlich

Satz. Für jede Herbrand-Struktur A für F und alle t D(F ) gilt offensichtlich Herbrand-Strukturen und Herbrand-Modelle Sei F eine Aussage in Skolemform. Dann heißt jede zu F passende Struktur A =(U A, I A )eineherbrand-struktur für F, falls folgendes gilt: 1 U A = D(F ), 2 für jedes

Mehr

- Strukturentwurf elementarer Rechenwerke - Grund-Flipflop (RS-Flipflop) - Register, Schieberegister, Zähler

- Strukturentwurf elementarer Rechenwerke - Grund-Flipflop (RS-Flipflop) - Register, Schieberegister, Zähler 3.Übung: Inhalte: - binäre Logik, boolsche Gleichungen - logische Grundschaltungen - trukturentwurf elementarer echenwerke - Grund-Flipflop (-Flipflop) - egister, chieberegister, Zähler Übung Informatik

Mehr

Formale Sprachen und Grammatiken

Formale Sprachen und Grammatiken Formale Sprachen und Grammatiken Jede Sprache besitzt die Aspekte Semantik (Bedeutung) und Syntax (formaler Aufbau). Die zulässige und korrekte Form der Wörter und Sätze einer Sprache wird durch die Syntax

Mehr

6.1 Syntax und Semantik von Constraint-Logikprogrammen

6.1 Syntax und Semantik von Constraint-Logikprogrammen Kapitel 6 Logikprogrammierung mit Constraints Nachdem wir nun sowohl die reine Logikprogrammierung als auch ihre Implementierung in der Sprache Prolog betrachtet haben, wollen wir uns zum Schluss mit einer

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 15: Reguläre Ausdrücke und rechtslineare Grammatiken Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/25 Was kann man mit endlichen

Mehr

Beweis der Darstellbarkeit irgend eines ganzen invarianten Gebildes einer binären Form als ganze Function einer geschlossenen Anzahl solcher Gebilde.

Beweis der Darstellbarkeit irgend eines ganzen invarianten Gebildes einer binären Form als ganze Function einer geschlossenen Anzahl solcher Gebilde. 73 Beweis der Darstellbarkeit irgend eines ganzen invarianten Gebildes einer binären Form als ganze Function einer geschlossenen Anzahl solcher Gebilde. von F. Mertens. 1. Ich habe in dem hundertsten Bande

Mehr