Grundlagen der Theoretischen Informatik - Sommersemester Übungsblatt 1: Lösungsvorschläge

Größe: px
Ab Seite anzeigen:

Download "Grundlagen der Theoretischen Informatik - Sommersemester 2012. Übungsblatt 1: Lösungsvorschläge"

Transkript

1 Lehrstuhl für Softwaretechnik und Programmiersprachen Professor Dr. Michael Leuschel Grundlagen der Theoretischen Informatik - Sommersemester 2012 Übungsblatt 1: Lösungsvorschläge Disclaimer: Bei Folgendem handelt es sich explizit um Lösungsvorschläge, nicht um eine Musterlösung. Alle Aufgaben lassen sich oft genau so gut auf andere Weise und manchmal noch besser lösen. Der hier skizzierte Weg ist nur eine denkbare Alternative. Insbesondere wird keine Gewähr für Vollständigkeit, Korrektheit und dafür übernommen, dass vergleichbare Lösungen in Prüfungen akzeptiert werden. Aufgabe 1.1 ( = 10 P) (a) [ = 3 P] Modell einer Formel ist eine Interpretation, die die Formel wahr macht. In den folgenden Tabellen stehen T und F für TRUE und FALSE: (i) α(a) α(b) α( A) α( A B) α(( A B) A) F F T T F F T T T F T F F F F T T F T T (ii) (iii) Die Belegung α(a) = T, α(b) = T ist das einzige Modell für die Formel ( A B) A. α(a) α(b) α(c) α( B) α(a B) α((c A)) α((a B) (C A)) F F F T T F F F F T T T F F F T F F F F T F T T F F F T T F F T T F F T F T T T T T T T F F T F F T T T F T T T Es gibt vier Belegungen der atomaren Formeln A, B und C, die Modelle der Formel (A B) (C A) sind: siehe die in Grau markierten Zeilen in der Tabelle. 1

2 α(a) α(b) α( B) α(a B) α(b A) α((a B) (B A)) F F T F T T F T F T F T T F T T T T T T F F T T Alle möglichen Belegungen der atomaren Formeln A und B sind Modelle der Formel (A B) (B A). Also ist die Formel eine Tautologie. (b) [1 + 2 = 3 P] Der Algorithmus aus der Vorlesung zur Erzeugung einer KNF (1) Implikation und Äquivalenz mittels ihrer Definitionen eliminieren: (α β) (α β) (β α) (α β) ( α β) (2) Negation zu atomaren Aussagen verschieben: (α β) ( α β) (α β) ( α β) α α (3) Disjunktion zu den Literalen verschieben: α (β γ) (α β) γ α β γ (4) Das Distributivgesetz für den logischen Operator anwenden: α (β γ) (α β) (α γ) (α β) γ (α γ) (β γ) (5) Klammern eliminieren durch Anwenden des Assoziativgesetzes des -Operators: α (β γ) (α β) γ α β γ Die Musterlösungen der Teilaufgaben (i) und (ii): (i) (A B) (X A) (1) ( A B) (X A) (5) ( A B) X ( A) (ii) (A (B C)) ( B A) (1) ((A (B C)) ((B C) A)) ( B A) (1) ( A (B C)) ( (B C) A) ( B A) (2) ( A (B C)) (( B C) A) (B A) (3)+(4) (( A B) ( A C)) (A B C) (A B) (5) ( A B) ( A C) (A B C) (A B) (c) [4 P] Fakten: einbruchstelle, beil, leiche, verdächtiger Implikation: 2

3 mord einbruchstelle beil leiche verdächtiger Beweis des Mordes Gegeben: Die Fakten einbruchstelle, beil, leiche, verdächtiger und das Prädikat mord mit der Implikation mord einbruchstelle beil leiche verdächtiger. Behauptung: Es fand einen Mord statt. Wir wissen, dass die Implikation mord einbruchstelle beil leiche verdächtiger logisch äquivalent zumord einbruchstelle beil leiche verdächtiger ist. Demzufolge besteht unsere Theorie S aus den folgenden Elementen: S = {einbruchstelle, beil, leiche, verdaechtiger, mord einbruchstelle beil leiche verdaechtiger, Aus S möchten wir folgern, dass es einen Mord gab. In dem Fall ist das Prädikat mord die Formel L, die wir zeigen möchten (S L). An der Stelle kommt das Theorem aus der Vorlesung zum Einsatz: Theorem: S L iff S L is inconsistent Was wir also machen müssen, ist anzunehmen, dass es keinen Mord ( L) gab und hiermit zeigen, dass die Theorie S L nach etlichen Transformationen der wff s (logischen Formeln) ein Element besitzt, das das Atom false ist. Somit widerspricht sich die Theorie S L und aufgrund der Inkonsistenz zu der logischen Konsequenz S L folgern wir, dass die Formel L gilt, was auch heißt, dass ein Mord stattgefunden hat. Der Widerspruchsbeweis: Annahme: mord beil, leiche, mord einbruchstelle beil leiche verdaechtiger, (5) mord (2) (3) (6) 3

4 (5) (6) (1) (5) (2) (5) (3) (5) einbruchstelle beil leiche verdaechtiger, (5) beil leiche verdaechtiger, (5) leiche verdaechtiger, (5) verdaechtiger, (5) 4

5 (4) (5) verdaechtiger verdaechtiger, (5) (5) false, (5) Aus (5) in den letzten Mengenklammern folgern wir, dass S L nicht stimmt und hiermit folgt nach Theorem die logische Konsequenz S L (in unserem Fall S mord) und somit zeigten wir, dass ein Mord stattgefunden hat. Aufgabe 1.2 ( = 10 P) (a) R R A < > B und S A S < R = {x y x y R x S. S < R ist die Menge aller Tupeln von R, deren Definitionsbereich dom(r) auf die Teilmenge S beschränkt ist (Domain restriction). (b) R R A < > B und S A S << R = {x y x y R x / S. S << R ist die Menge aller Tupeln von R, deren Definitionsbereich dom(r) auf die Teilmenge dom(r)\s beschränkt ist (Domain substraction). (c) R R A < > B und T B R > T = {x y x y R y T. R > T ist die Menge aller Tupeln von R, deren Wertebereich ran(r) auf die Teilmenge T beschränkt ist (Range restriction). (d) R R A < > B und T B R >> T = {x y x y R y / T. R >> T ist die Menge aller Tupeln von R, deren Wertebereich ran(r) auf die Teilmenge ran(r)\t beschränkt ist (Range substraction). (e) R R A < > B und S A R[S] = {y x y R x S = ran(s < R). R[S] ist die Menge aller Elemente im Wertebereich B, die den Elementen von der Teilmenge S A in R zugeordnet sind. (Relational image). 5

6 (f) R R A < > B R = {y x x y R R ist die Menge der umgekehrten Tupeln von R (Inverse). (g) R 1,R 2 R 1,R 2 A < > B R 1 <+ R 2 = R 2 (dom(r 2 ) << R 1 ) R 1 <+ R 2 ist die Vereinigung der Menge R 2 und der Menge aller Tupeln von R 1, deren Definitionsbereich A auf die Teilmenge dom(r 1 )\dom(r 2 ) beschränkt ist (Left overriding). (h) R 1,R 2 R 1,R 2 A < > B R 1 +> R 2 = R 1 (dom(r 1 ) << R 2 ) R 1 +> R 2 ist die Vereinigung der Menge R 1 und der Menge aller Tupeln von R 2, deren Definitionsbereich A auf die Teilmenge dom(r 2 ) \ dom(r 1 ) beschränkt ist (Right overriding). Aufgabe 1.3 ( = 10 P) Wichtig bei der Korrektur dieser Aufgabe ist auf die Eindeutigkeit der Elemente in den Mengen zu achten. Hier wird nur mit Mengen gearbeitet und in einer Menge jedes Element kommt ein Mal vor. Bei doppelten Angaben von Elementen in einer entsprechenden Menge müssen Punkte abgezogen werden. (a) [ = 2 P] (i) {ian < eats = {ian eggs,ian cheese,ian pizza (ii){jim<< eats = {ian eggs,ian cheese,ian pizza,ken pizza,lisa cheese, lisa pizza, lisa salad (iii) eats > {cheese,pizza = {ian cheese,ian pizza,ken pizza,lisa cheese, lisa pizza (iv) dom(eats > {eggs) = {ian, jim (b) [ = 4 P] (i) eats[{ian, lisa] = {eggs, cheese, pizza, salad (ii) eats = {eggs ian,eggs jim,cheese ian,cheese lisa,pizza ian,pizza ken,pizza lisa,salad jim,salad lisa,pizza ken,cheese lisa,pizza lisa,salad lisa (iii) eats [{cheese, eggs] = ian, jim, lisa (iv)eats ;cost = {ian cheap,ian expensive,jim cheap,ken expensive,lisa cheap, lisa expensive (v) eats ; (cost >> {expensive) = {ian cheap,jim cheap,list cheap (vi) eats [cost [{expensive]] = {ian, ken, lisa (vii) eats <+ {lisa steak = {ian eggs,ian cheese,ian pizza,jim eggs,jim salad,ken pizza,lisa steak (c) [2 + 2 = 4 P] Die Menge der Personen, die entweder eggs oder pizza essen: eats [{pizza, eggs] oder dom(eats > {eggs, pizza) 6

7 Die Menge der Personen, die cheese und pizza essen: (eats [{pizza]) (eats [{cheese]) oder dom(eats > {cheese) dom(eats > {pizza) Aufgabe 1.4 ( = 10 P) (a) [1 + 1 = 2 P] (i) [ : : 0.5 = 1 P] Sei X eine Menge und A, B X Teilmengen von X. z.z.: (X \A) (X \B) = X \(A B) Um die Gleichheit der Mengen zu zeigen, müssen wir die gegenseitigen Inklusionen und der Mengen (X\A) (X\B) und X\(A B) beweisen. Also der Beweis besteht aus den folgenden zwei Schritten: : Sei x (X \A) (X \B) x / A und x / B (mit anderen Worten x ist in keiner der Mengen A und B ethalten) x / A B x X \(A B). : Es gilt X \(A B) X \A und X \(A B) X \B, dann folgt: X \(A B) = X \(A B) X \(A B) (X \A) (X \B). Somit folgt, dass X \(A B) (X \A) (X \B). Da sich die Mengen (X \A) (X \B) und X \(A B) gegenseitig enthalten, folgt die Gleichheit. (ii) [ : : 0.5 = 1 P] Sei X eine Menge und A, B X Teilmengen von X. z.z.: (X \A) (X \B) = X \(A B) Wir zeigen, dass(x\a) (X\B) X\(A B) und(x\a) (X\B) X\(A B) gilt: : (X \A) (X \B) X \(A B) X \(A B) = X \(A B). {{ {{ X\(A B) X\(A B) : Sei x X \(A B) x / A B x X \A oder x X \B, aber nicht in beiden Mengen A und B gleichzeitig enthalten x (X \A) (X \B). Es folgt also die Behauptung X \(A B) (X \A) (X \B). (b) [ = 4 P] (i) [Wer die disjunktive Eigenschaft in seinem Beweis nicht erwähnt: P] Seien X und Y endliche Mengen. z.z.: X Y = X Y Die Menge X Y lässt sich wie folgt schreiben a X {(a,b) b Y. Außerdem gilt für alle a 1, a 2 X mit a 1 a 2, dass die Mengen {(a 1,b) b Y und {(a 2,b) b Y disjunkt zueinander sind. Daraus und aus dem gegebenen 7

8 Hinweis folgern wir: X Y = a X {(a,b) b Y Hinweis = {(a,b) b Y a X (c) [4 P] = a X Y = Y + Y + + Y = X Y {{ X mal (ii) [Induktionsanf.: 0.5 P, Induktionsschritt: 2 P] Sei X eine endliche Menge mit n Elementen. z.z.: P(X) = 2 n Die Eigenschaft zeigen wir mithilfe vollständiger Induktion. Induktionsanfang: Wenn X die leere Menge ist, dann ist die einzige Teilmenge von X die leere Menge selbst, was sich auch daraus schließen kann, dass die Anzahl der Elemente in P({) gleich Eins (bzw. 2 0 ) ist. Indunktionsannahme: Wir nehmen an, dass P(X) = 2 n gilt, wenn X eine endliche Menge mit n > 0 Elementen ist. Infuktionsschritt (n n+1): Sei X eine Menge mit n + 1 Elementen. Was wir jetzt zeigen müssen ist, dass P(X) = 2 n+1 gilt. Sei x ein beliebiges Element aus X, dann schreiben wir X als eine Vereinigung der Mengen X und {x (X = X {x), wobei X die Teilmenge von X ist ( X = n), die nur das Element x nicht beinhaltet. Da wir wissen, dass P(X) die Potenzmenge von X ist (die Menge aller Teilmengen von X), können wir diese als Vereinigung der folgenden zwei Mengen schreiben: P(X) = P(X {x) = P(X) {{x Y Y P(X ), (1) wobei P(X ) die Menge aller Teilmengen von X, die x nicht beinhalten, ist (P(X )) und {{x Y Y P(X ) die Menge aller Teilmengen von X, die das Element x enthalten. Es ist offensichtlich, dass Gelichung 1 stimmt. Des Weiteren können wir mithilfe der Induktionsannahme und der Gleichung 1 die Behauptung P(X) = 2 n+1 wie folgt beweisen: P(X) = P(X) {{x Y Y P(X ) = P(X) + {{x Y Y P(X ) Induktionsann. und X =n = 2 n +2 n = 2 2 n = 2 n+1. Hiermit zeigten wir, dass für jede endliche Menge X mit n Elementen die Gleichung P(X) = 2 n gilt. Primzahl p Elemente aus A(p) A(p) 2 {1 1 3 { 0 8

9 5 {2, { 0 11 { 0 13 {5, {4, { 0 23 { 0 29 {12, { 0 37 {6, {9, { 0 47 { 0 53 {23, { 0 61 {11,

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie und, oder, nicht, wenn... dann zwischen atomaren und komplexen Sätzen. I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten

Mehr

Mai 2006. Hauptseminar: Nichtrelationale Datenbanken Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln

Mai 2006. Hauptseminar: Nichtrelationale Datenbanken Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln Hauptseminar: Nichtrelationale Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln Mai 2006 Was ist eine Datenbank? Erweiterung relationaler um eine Deduktionskomponente Diese

Mehr

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56 5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 30.04.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letztes Mal Aussagenlogik Syntax: welche Formeln? Semantik:

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 7: Einführung Aussagenlogik schulz@eprover.org Logisches Schließen 2 gold +1000, 1 per step, Beispiel: Jage den Wumpus Performance measure death 1000 10

Mehr

Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt 4

Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt 4 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter H. Schmitt David Farago, Christoph Scheben, Mattias Ulbrich Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik Einheit 1 Mathematische Methodik 1. Problemlösen 2. Beweistechniken 3. Wichtige Grundbegriffe Methodik des Problemlösens Klärung der Voraussetzungen Welche Begriffe sind zum Verständnis

Mehr

Normalformen boolescher Funktionen

Normalformen boolescher Funktionen Normalformen boolescher Funktionen Jeder boolesche Ausdruck kann durch (äquivalente) Umformungen in gewisse Normalformen gebracht werden! Disjunktive Normalform (DNF) und Vollkonjunktion: Eine Vollkonjunktion

Mehr

5. Aussagenlogik und Schaltalgebra

5. Aussagenlogik und Schaltalgebra 5. Aussagenlogik und Schaltalgebra Aussageformen und Aussagenlogik Boolesche Terme und Boolesche Funktionen Boolesche Algebra Schaltalgebra Schaltnetze und Schaltwerke R. Der 1 Aussagen Information oft

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de Diskrete Strukturen und Logik WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik & Mengenlehre

Mehr

Erfüllbarkeit und Allgemeingültigkeit

Erfüllbarkeit und Allgemeingültigkeit Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.3 Aussagenlogik Erfüllbarkeit 44 Erfüllbarkeit und Allgemeingültigkeit Def.: eine Formel ϕ heißt erfüllbar, wennesein I gibt, so dass I = ϕ

Mehr

Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014

Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014 egelsammlung mb2014 THM Friedberg von 6 16.08.2014 15:04 Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014 Sammlung von Rechenregeln, extrahiert aus dem Lehrbuch: Erhard Cramer, Johanna Neslehová: Vorkurs

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2015/16 Prof. Dr. M. Hinze Dr. P. Kiani Analysis I für Studierende der Ingenieurwissenschaften Lösungshinweise zu Blatt 2 Aufgabe 1: (12 Punkte) a) Beweisen

Mehr

Verwendet man zur Darstellung nur binäre Elemente ( bis lat.: zweimal) so spricht man von binärer Digitaltechnik.

Verwendet man zur Darstellung nur binäre Elemente ( bis lat.: zweimal) so spricht man von binärer Digitaltechnik. Kursleiter : W. Zimmer 1/24 Digitale Darstellung von Größen Eine Meßgröße ist digital, wenn sie in ihrem Wertebereich nur eine endliche Anzahl von Werten annehmen kann, also "abzählbar" ist. Digital kommt

Mehr

Binäre Suchbäume (binary search trees, kurz: bst)

Binäre Suchbäume (binary search trees, kurz: bst) Binäre Suchbäume (binary search trees, kurz: bst) Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binärbaum T mit n := M Knoten Jeder Knoten v von T ist mit einer Zahl m v M markiert.

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

der einzelnen Aussagen den Wahrheitswert der zusammengesetzten Aussage falsch falsch falsch falsch wahr falsch wahr falsch falsch wahr wahr wahr

der einzelnen Aussagen den Wahrheitswert der zusammengesetzten Aussage falsch falsch falsch falsch wahr falsch wahr falsch falsch wahr wahr wahr Kapitel 2 Grundbegriffe der Logik 2.1 Aussagen und deren Verknüpfungen Eine Aussage wie 4711 ist durch 3 teilbar oder 2 ist eine Primzahl, die nur wahr oder falsch sein kann, heißt logische Aussage. Ein

Mehr

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 6 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Satz 1 Seien F, G Boolesche Ausdrücke

Mehr

Informatik A ( Frank Hoffmann)

Informatik A ( Frank Hoffmann) Teillösungen zum 1. Aufgabenblatt zur Vorlesung Informatik A ( Frank Hoffmann) 1. Improvisieren Stellen Sie die Zahl 6 dar durch einen Ausdruck, der genau dreimal die Ziffer i enthält und ansonsten neben

Mehr

Logik und Mengenlehre. ... wenn man doch nur vernünftig mit Datenbanken umgehen können will?

Logik und Mengenlehre. ... wenn man doch nur vernünftig mit Datenbanken umgehen können will? Mengenlehre und Logik: iederholung Repetitorium: Grundlagen von Mengenlehre und Logik 2002 Prof. Dr. Rainer Manthey Informationssysteme 1 arum??? arum um alles in der elt muss man sich mit herumschlagen,......

Mehr

Klausur Formale Systeme Fakultät für Informatik WS 2009/2010

Klausur Formale Systeme Fakultät für Informatik WS 2009/2010 Klausur Formale Systeme Fakultät für Informatik WS 2009/2010 Prof. Dr. Bernhard Beckert 18. Februar 2010 Name: Mustermann Vorname: Peter Matrikel-Nr.: 0000000 Klausur-ID: 0000 A1 (15) A2 (10) A3 (10) A4

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 6: Induktives Vorgehen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische

Mehr

Induktive Beweise und rekursive Definitionen

Induktive Beweise und rekursive Definitionen Induktive Beweise und rekursive Definitionen Vorlesung Logik in der Informatik, HU Berlin 1. Übungsstunde Beweis durch vollständige Induktion über N Aufgabe 1 Zeige, dass für alle n N gilt: n 2 i = 2 n+1

Mehr

Prolog basiert auf Prädikatenlogik

Prolog basiert auf Prädikatenlogik Software-Technologie Software-Systeme sind sehr komplex. Im Idealfall erfolgt die Programmierung problemorientiert, während die notwendige Übertragung in ausführbare Programme automatisch erfolgt. Prolog-Philosophie:

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

Formale Methoden II. Gerhard Jäger. SS 2008 Universität Bielefeld. Teil 8, 11. Juni 2008. Formale Methoden II p.1/30

Formale Methoden II. Gerhard Jäger. SS 2008 Universität Bielefeld. Teil 8, 11. Juni 2008. Formale Methoden II p.1/30 Formale Methoden II SS 2008 Universität Bielefeld Teil 8, 11. Juni 2008 Gerhard Jäger Formale Methoden II p.1/30 Beispiele Anmerkung: wenn der Wahrheitswert einer Formel in einem Modell nicht von der Belegungsfunktion

Mehr

3.Inferenzsysteme 3.4 Logische Programme und Antwortmengensemantik

3.Inferenzsysteme 3.4 Logische Programme und Antwortmengensemantik Darstellung, Verarbeitung und Erwerb von Wissen 3.Inferenzsysteme 3.4 Logische Programme und Antwortmengensemantik DVEW WS 2004/05 c Gabriele Kern-Isberner 1 Stratifizierte Programme (Whlg.) Sei P ein

Mehr

5. Übungsblatt (Musterlösung)

5. Übungsblatt (Musterlösung) Universität Konstanz Mathematische Grundlagen der Informatik Fachbereich Informatik & Informationswissenschaft WS 2015/2016 Prof. Dr. Sven Kosub / Dominik Bui, Franz Hahn, Fabian Sperrle 5. Übungsblatt

Mehr

Klausur für Studiengänge INF und IST

Klausur für Studiengänge INF und IST Familienname: Matrikelnummer: Studiengang: (bitte ankreuzen) INF IST MED Vorname: Email-Adresse: Immatrikulationsjahr: Klausur für Studiengänge INF und IST sowie Leistungsschein für Studiengang Medieninformatik

Mehr

Satz. Für jede Herbrand-Struktur A für F und alle t D(F ) gilt offensichtlich

Satz. Für jede Herbrand-Struktur A für F und alle t D(F ) gilt offensichtlich Herbrand-Strukturen und Herbrand-Modelle Sei F eine Aussage in Skolemform. Dann heißt jede zu F passende Struktur A =(U A, I A )eineherbrand-struktur für F, falls folgendes gilt: 1 U A = D(F ), 2 für jedes

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 11: Abstrakte Reduktionssysteme schulz@eprover.org Reduktionssysteme Definition: Reduktionssystem Ein Reduktionssystem ist ein Tupel (A, ) Dabei gilt: A

Mehr

Fixpunktsemantik logischer Programme Pascal Hitzler Juli 1997 Kurzuberblick im Rahmen der Vorlesung Einfuhrung in Prolog von T. Cornell im Sommersemester 1997 an der Universitat Tubingen. Beweise sind

Mehr

Also kann nur A ist roter Südler und B ist grüner Nordler gelten.

Also kann nur A ist roter Südler und B ist grüner Nordler gelten. Aufgabe 1.1: (4 Punkte) Der Planet Og wird von zwei verschiedenen Rassen bewohnt - dem grünen und dem roten Volk. Desweiteren sind die Leute, die auf der nördlichen Halbkugel geboren wurden von denen auf

Mehr

Logik und diskrete Strukturen

Logik und diskrete Strukturen Skript zur Vorlesung Logik und diskrete Strukturen Prof. Dr. Heiko Röglin Institut für Informatik Wintersemester 2015/16 9. Oktober 2015 Vorwort Dieses Skript ist als Begleitmaterial für die Vorlesung

Mehr

Logische Folgerung. Definition 2.11

Logische Folgerung. Definition 2.11 Logische Folgerung Definition 2.11 Sei 2A eine aussagenlogische Formel und F eine endliche Menge aussagenlogischer Formeln aus A. heißt logische Folgerung von F genau dann, wenn I ( ) =1für jedes Modell

Mehr

Mathematische Grundlagen der Informatik

Mathematische Grundlagen der Informatik Skriptum zur Vorlesung Mathematische Grundlagen der Informatik gehalten in WS 2015/16 von Sven Kosub 4. Februar 2016 Version v4.20 Inhaltsverzeichnis Prolog 1 1 Logik 5 1.1 Aussagen.....................................

Mehr

Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer:

Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binäre Suchbäume (binary search trees, kurz: bst) Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binärbaum T mit n := M Knoten Jeder Knoten v von T ist mit einer Zahl m v M markiert.

Mehr

Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur

Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur Signatur Formeln Am Beispiel der Aussagenlogik erklären wir schrittweise wichtige Elemente eines logischen Systems. Zunächst benötigt ein logisches System ein Vokabular, d.h. eine Menge von Namen, die

Mehr

Was bisher geschah. Aufgaben: Diagnose, Entscheidungsunterstützung Aufbau Komponenten und Funktion

Was bisher geschah. Aufgaben: Diagnose, Entscheidungsunterstützung Aufbau Komponenten und Funktion Was bisher geschah Daten, Information, Wissen explizites und implizites Wissen Wissensrepräsentation und -verarbeitung: Wissensbasis Kontextwissen Problemdarstellung fallspezifisches Wissen repräsentiert

Mehr

2. Vorlesung. Slide 40

2. Vorlesung. Slide 40 2. Vorlesung Slide 40 Knobelaufgabe Was tut dieses Programm? Informell Formal Wie stellt man dies sicher? knobel(a,b) { Wenn a = 0 dann return b sonst { solange b 0 wenn a > b dann { a := a - b sonst b

Mehr

Grundlagen der Informationverarbeitung

Grundlagen der Informationverarbeitung Grundlagen der Informationverarbeitung Information wird im Computer binär repräsentiert. Die binär dargestellten Daten sollen im Computer verarbeitet werden, d.h. es müssen Rechnerschaltungen existieren,

Mehr

Primzahlzertifikat von Pratt

Primzahlzertifikat von Pratt Primzahlzertifikat von Pratt Daniela Steidl TU München 17. 04. 2008 Primzahltests in der Informatik "Dass das Problem, die Primzahlen von den Zusammengesetzten zu unterscheiden und letztere in ihre Primfaktoren

Mehr

A.1 Schaltfunktionen und Schaltnetze

A.1 Schaltfunktionen und Schaltnetze Schaltfunktionen und Schaltnetze A. Schaltfunktionen und Schaltnetze 22 Prof. Dr. Rainer Manthey Informatik II Bedeutung des Binärsystems für den Rechneraufbau Seit Beginn der Entwicklung von Computerhardware

Mehr

Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik. Seminar Entscheidungsverfahren für logische Theorien. Endliche Modelle.

Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik. Seminar Entscheidungsverfahren für logische Theorien. Endliche Modelle. Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik Seminar Entscheidungsverfahren für logische Theorien Tobias Hebel Koblenz, am 18.02.2005 Inhaltsverzeichnis 1 Einleitung... 3 2 Grundlagen...

Mehr

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2 1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba

Mehr

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise:

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise: Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 192 Beispiel Bsp.: Betrachte Schlussweise in: 1 Wenn es regnet, dann wird die Straße nass. R N

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Luise Unger In LATEX gesetzt von Luise Unger Mathematische Grundlagen Kurseinheit 1: Grundlagen 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 77 7 7 777 7 77 7777777 77777 7 77 7 7 7 7 7 7 77777777777

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 15: Reguläre Ausdrücke und rechtslineare Grammatiken Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/25 Was kann man mit endlichen

Mehr

Konjunktive und disjunktive Normalformen

Konjunktive und disjunktive Normalformen Konjunktive und disjunktive Normalformen Nachdem gesprochen wurde, wie man Boolesche Terme unter einer Belegung der Variablen interpretiert und dass somit jeder Boolesche Term eine Boolesche Funktion repräsentiert,

Mehr

Rekursionsanfang, Rekursionsschritt oder äquivalente Antworten. (z.b.: Abbruchbedingung (= Basisfall), eigentliche Rekursion (= Selbstaufruf))

Rekursionsanfang, Rekursionsschritt oder äquivalente Antworten. (z.b.: Abbruchbedingung (= Basisfall), eigentliche Rekursion (= Selbstaufruf)) Formale Methoden der Informatik WS / Lehrstuhl für Datenbanken und Künstliche Intelligenz Prof.Dr.Dr.F.J.Radermacher H. Ünver T. Rehfeld J. Dollinger 8. Aufgabenblatt Besprechung in den Tutorien vom..

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik - das Quiz zur Vorlesung Teil I - Grundzüge der Logik In der Logik geht es um... (A) die Formen korrekten Folgerns (B) die Unterscheidung von wahr und falsch (C) das Finden von

Mehr

Beschreibungslogiken. Daniel Schradick 1schradi@informatik.uni-hamburg.de

Beschreibungslogiken. Daniel Schradick 1schradi@informatik.uni-hamburg.de Beschreibungslogiken Daniel Schradick 1schradi@informatik.uni-hamburg.de Was sind Beschreibungslogiken? Definition: Formalisms that represent knowledge of some problem domain (the world ) by first defining

Mehr

Wissensbasierte Systeme

Wissensbasierte Systeme WBS4 Slide 1 Wissensbasierte Systeme Vorlesung 4 vom 03.11.2004 Sebastian Iwanowski FH Wedel WBS4 Slide 2 Wissensbasierte Systeme 1. Motivation 2. Prinzipien und Anwendungen 3. Logische Grundlagen 4. Suchstrategien

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 29/ Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws9

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Klausur Formale Systeme Fakultät für Informatik WS 2009/2010. Prof. Dr. Bernhard Beckert. 18. Februar 2010

Klausur Formale Systeme Fakultät für Informatik WS 2009/2010. Prof. Dr. Bernhard Beckert. 18. Februar 2010 Klausur Formale Systeme Fakultät für Informatik Name: Mustermann Vorname: Peter Matrikel-Nr.: 0000000 Klausur-ID: 0000 WS 2009/2010 Prof. Dr. Bernhard Beckert 18. Februar 2010 A1 (15) A2 (10) A3 (10) A4

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 27. Aussagenlogik: Logisches Schliessen und Resolution Malte Helmert Universität Basel 28. April 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26.

Mehr

10. Übung Künstliche Intelligenz

10. Übung Künstliche Intelligenz Prof. Dr. Gerd Stumme, Dominik Benz Fachgebiet Wissensverarbeitung 28.01.2009 10. Übung Künstliche Intelligenz Wintersemester 2008/2009 Beschreibungslogiken 1. Belegen oder iderlegen Sie folgende Behauptungen

Mehr

Übersicht. Datenstrukturen und Algorithmen Vorlesung 5: Rekursionsgleichungen (K4) Übersicht. Binäre Suche. Joost-Pieter Katoen. 20.

Übersicht. Datenstrukturen und Algorithmen Vorlesung 5: Rekursionsgleichungen (K4) Übersicht. Binäre Suche. Joost-Pieter Katoen. 20. Übersicht Datenstrukturen und Algorithmen Vorlesung 5: (K4) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://www-i2.informatik.rwth-aachen.de/i2/dsal12/ 20.

Mehr

9. Übung Formale Grundlagen der Informatik

9. Übung Formale Grundlagen der Informatik Institut für Informatik Sommersemester 2001 Universität Zürich 9. Übung Formale Grundlagen der Informatik Norbert E. Fuchs (fuchs@ifi.unizh.ch) Reinhard Riedl (riedl@ifi.unizh.ch) Nadine Korolnik (korolnik@ifi.unizh.ch)

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

Kapitel DB:III. III. Konzeptueller Datenbankentwurf

Kapitel DB:III. III. Konzeptueller Datenbankentwurf Kapitel DB:III III. Konzeptueller Datenbankentwurf Einführung in das Entity-Relationship-Modell ER-Konzepte und ihre Semantik Charakterisierung von Beziehungstypen Existenzabhängige Entity-Typen Abstraktionskonzepte

Mehr

Semantic Web Technologies I!

Semantic Web Technologies I! www.semantic-web-grundlagen.de Semantic Web Technologies I! Lehrveranstaltung im WS11/12! Dr. Elena Simperl! DP Dr. Sebastian Rudolph! M.Sc. Anees ul Mehdi! www.semantic-web-grundlagen.de Logik Grundlagen!

Mehr

I. II. I. II. III. IV. I. II. III. I. II. III. IV. I. II. III. IV. V. I. II. III. IV. V. VI. I. II. I. II. III. I. II. I. II. I. II. I. II. III. I. II. III. IV. V. VI. VII. VIII.

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

Datenbanksysteme SS 2007

Datenbanksysteme SS 2007 Datenbanksysteme SS 2007 Frank Köster (Oliver Vornberger) Institut für Informatik Universität Osnabrück Kapitel 6b: Das relationale Modell Das Relationale Modell (vgl. Lerneinheit 6a) Wertebereiche (Domänen):

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 Einführung Beispiel: Aussagenlogische Formeln Aus dem Logikteil: Definition (Syntax

Mehr

Handreichung. zur Mathematikvorlesung für. Wirtschaftswissenschaftler)

Handreichung. zur Mathematikvorlesung für. Wirtschaftswissenschaftler) 1 Handreichung zur Mathematikvorlesung für Wirtschaftswissenschaftler) Dr.Dr. Christina Schneider 2 Hinweis Das vorliegende Manuskript versteht sich als kurze und kompakte Handreichung zu meiner Vorlesung

Mehr

Karlsruher Institut für Technologie Institut für Algebra und Geometrie

Karlsruher Institut für Technologie Institut für Algebra und Geometrie Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. Stefan Kühnlein Dipl.-Math. Jochen Schröder Einführung in Algebra und Zahlentheorie Übungsblatt 2 Aufgabe 1 (4 Punkte) Seien

Mehr

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können.

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können. 6. Bäume Lernziele 6. Bäume Lernziele: Definition und Eigenschaften binärer Bäume kennen, Traversierungsalgorithmen für binäre Bäume implementieren können, die Bedeutung von Suchbäumen für die effiziente

Mehr

Rechenregeln für Summen

Rechenregeln für Summen Rechenregeln für Summen Im Umgang mit Summen sind gewisse Regeln zu beachten. 1 Summe gleicher Summanden Betrachten wir folgende Summe: x Hier enthält x keinen Summationsindex, d.h. es wird x einfach n-mal

Mehr

Programmiersprachen und Übersetzer

Programmiersprachen und Übersetzer Programmiersprachen und Übersetzer Sommersemester 2010 19. April 2010 Theoretische Grundlagen Problem Wie kann man eine unendliche Menge von (syntaktisch) korrekten Programmen definieren? Lösung Wie auch

Mehr

Übung 6 - Planen, Schliessen unter Unsicherheit, Logik. Aufgabe 1 - Block-Welt-Planung Gegeben sei das nachfolgende Planungsproblem aus der Blockwelt:

Übung 6 - Planen, Schliessen unter Unsicherheit, Logik. Aufgabe 1 - Block-Welt-Planung Gegeben sei das nachfolgende Planungsproblem aus der Blockwelt: Theoretischer Teil - Planen, Schliessen unter Unsicherheit, Logik Aufgabe 1 - Block-Welt-Planung Gegeben sei das nachfolgende Planungsproblem aus der Blockwelt: B A Anfangszustand A B Zielzustand 1. Stellen

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Analysis I: Übungsblatt 1 Lösungen

Analysis I: Übungsblatt 1 Lösungen Analysis I: Übungsblatt 1 Lösungen Verständnisfragen 1. Was ist Mathematik? Mathematik ist eine Wissenschaft, die selbstgeschaffene, abstrakte Strukturen auf ihre Eigenschaften und Muster hin untersucht.

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 9: Prädikatenlogik schulz@eprover.org Rückblick 2 Rückblick: Vor- und Nachteile von Aussagenlogik Aussagenlogik ist deklarativ: Syntaxelemente entsprechen

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 3. Endliche Automaten (V) 21.05.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Determinierte endliche Automaten (DEAs) Indeterminierte

Mehr

Einführung in die Fuzzy Logic

Einführung in die Fuzzy Logic Einführung in die Fuzzy Logic Entwickelt von L. Zadeh in den 60er Jahren Benutzt unscharfe (fuzzy) Begriffe und linguistische Variablen Im Gegensatz zur Booleschen Logik {0,} wird das ganze Intervall [0,]

Mehr

Mathematik I. Modulbezeichnung Mathematik I Modulverantwortliche(r) Hofmann. EDV-Bezeichnung - Modulumfang (ECTS) 5 Semester 1 Lernziele & Kompetenzen

Mathematik I. Modulbezeichnung Mathematik I Modulverantwortliche(r) Hofmann. EDV-Bezeichnung - Modulumfang (ECTS) 5 Semester 1 Lernziele & Kompetenzen Mathematik I Modulbezeichnung Mathematik I Modulverantwortliche(r) Hofmann Modulniveau Bachelor - Modulumfang (ECTS) 5 Semester 1 Lernziele & Kompetenzen Die Vorlesung behandelt die wichtigsten Grundlagen

Mehr

Pratts Primzahlzertifikate

Pratts Primzahlzertifikate Pratts Primzahlzertifikate Markus Englert 16.04.2009 Technische Universität München Fakultät für Informatik Proseminar: Perlen der Informatik 2 SoSe 2009 Leiter: Prof. Dr. Nipkow 1 Primzahltest Ein Primzahltest

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 3. Aussagenlogik Einführung: Logisches Schließen im Allgemeinen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Beispiel:

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Mathematik wirklich verstehen

Mathematik wirklich verstehen Mathematik wirklich verstehen Eine Einführung in ihre Grundbegriffe und Denkweisen Von Arnold Kirsch 3. verbesserte Auflage Aulis Verlag Deubner & Co KG Köln Inhaltsverzeichnis Vorwort 11 Teil A Zahlen

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 3: Alphabete (und Relationen, Funktionen, Aussagenlogik) Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Oktober 2008 1/18 Überblick Alphabete ASCII Unicode

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Prädikate zum Testen und Manipulieren der Struktur der Terme; Mehr meta-logische Prädikate z.b. zum Testen des Zustands der Ableitung;

Prädikate zum Testen und Manipulieren der Struktur der Terme; Mehr meta-logische Prädikate z.b. zum Testen des Zustands der Ableitung; Mehr Prolog Prolog bietet mehr an, z.b.: Prädikate zum Testen und Manipulieren der Struktur der Terme; Mehr meta-logische Prädikate z.b. zum Testen des Zustands der Ableitung; Mehr extra-logische Prädikate,

Mehr

1 Die reellen Zahlen. 1. Ziele des Mathematikstudiums: Die Studierenden sollen lernen,

1 Die reellen Zahlen. 1. Ziele des Mathematikstudiums: Die Studierenden sollen lernen, 1 Die reellen Zahlen 1. Ziele des Mathematikstudiums: Die Studierenden sollen lernen, präzise und logisch zu denken, komplexe Strukturen schnell und gründlich zu erfassen, Dinge kritisch zu hinterfragen

Mehr

Von optimaler Partnerwahl, minimalen Schnitten und maximalen Flüssen. Schülerwoche der Bonner Mathematik 2013

Von optimaler Partnerwahl, minimalen Schnitten und maximalen Flüssen. Schülerwoche der Bonner Mathematik 2013 Von optimaler Partnerwahl, minimalen Schnitten und maximalen Flüssen Schülerwoche der Bonner Mathematik 203 3. September 203 Dr. Lisa Beck Hausdorff Center for Mathematics Universität Bonn Einleitung Ziel

Mehr

Programmieren ++ Begleitende Übungen zu Veranstaltungen + Umsetzen des Algorithmus in ein lauffähiges Programm

Programmieren ++ Begleitende Übungen zu Veranstaltungen + Umsetzen des Algorithmus in ein lauffähiges Programm Studienanforderungen Studiengang Maschinenbau Programmieren Begleitende Übungen zu Veranstaltungen Umsetzen des Algorithmus in ein lauffähiges Programm Studiengang Bauingenieurwesen Programmieren Begleitende

Mehr

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 ) Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,

Mehr

Logische Programmierung

Logische Programmierung Logische Programmierung B-82 Deklaratives Programmieren in Prädikatenlogik: Problem beschreiben statt Algorithmus implementieren (idealisiert). Grundlagen: Relationen bzw. Prädikate (statt Funktionen);

Mehr

Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten:

Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten: Aussagen Aussagen Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten: verbale Aussage formale Aussage Wahrheitswert 1) 201 ist teilbar durch 3 3 201 wahre Aussage (w.a.) 2)

Mehr

Wissensbasierte Systeme/ Expertensysteme. Teil 2

Wissensbasierte Systeme/ Expertensysteme. Teil 2 Wissensbasierte Systeme/ Expertensysteme Teil 2 BiTS, Sommersemester 2004 Dr. Stefan Kooths KOOTHS BiTS: Wissensbasierte Systeme/Expertensysteme Teil 2 1 Gliederung 1. Einführung und Einordnung 2. Entscheidungsunterstützung(ssysteme)

Mehr

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr.

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Kurzweil Florian Franzmann André Diehl Kompiliert am 10. April 2006 um 18:33

Mehr