Logik für Informatiker

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Logik für Informatiker"

Transkript

1 Logik für Informatiker 2. Aussagenlogik Teil Viorica Sofronie-Stokkermans Universität Koblenz-Landau 1

2 Bis jetzt Syntax der Aussagenlogik: Definition der Menge aller Formeln Semantik der Aussagenlogik: Wahrheit einer Formel in einem Modell Erfüllbarkeitstests: Wahrheitstafelmethode Logische Umformung (Äquivalenzumformung) Unser Ziel Kalkül(e) zur systematischen Überprüfung von Erfüllbarkeit (für Formeln und/oder Formelmengen) 2

3 Bis jetzt Normalformen Atom/Literal/Klausel Konjunktive Normalform (KNF): Konjunktion von Disjunktionen von Literalen, d.h., eine Konjunktion von Klauseln Disjunktive Normalform (DNF): Eine Disjunktion von Konjunktionen von Literalen. DNF (KNF) können aus einer Wahrheitstafel abgelesen werden KNF/DNF können durch Umformungen hergestellt werden 3

4 Bis jetzt KNF: Mengenschreibweise Klausel als Menge von Literalen Formel in KNF als Menge von Klauseln - Leere Klausel = leere Menge von Literalen = leere Disjunktion = - Leere Menge von Klauseln = leere Konjunktion = Vereinfachung der KNF: Subsumption Enthält eine KNF-Formel (= Klauselmenge) Klauseln K,K mit K K dann entsteht eine äquivalente Formel, wenn K weggelassen wird. K wird von K subsumiert. 4

5 Bis jetzt Das SAT-Problem (Erfüllbarkeitsproblem) Teilklassen des Erfüllbarkeitsproblems k-knf Formel: KNF-Formeln, deren Klauseln höchstens k Literale haben Theorem Erfüllbarkeit für Formeln in KNF: NP-vollständig (ohne Beweis) 5

6 Bis jetzt Das SAT-Problem (Erfüllbarkeitsproblem) Teilklassen des Erfüllbarkeitsproblems k-knf Formel: KNF-Formeln, deren Klauseln höchstens k Literale haben Theorem Erfüllbarkeit für Formeln in KNF: NP-vollständig (ohne Beweis) Erfüllbarkeit für Formeln in 3-KNF (3-SAT): NP-vollständig 6

7 3-SAT Theorem Erfüllbarkeit für Formeln in 3-KNF (3-SAT) ist NP-vollständig Beweis 3-SAT ist ein Spezialfall von SAT und deshalb wie SAT in NP. Um zu zeigen, dass 3-SAT ebenfalls NP-vollständig ist, müssen wir zeigen, dass jedes SAT Problem in polynomieller Zeit auf das 3-SAT Problem reduzierbar ist. 7

8 3-SAT Theorem Erfüllbarkeit für Formeln in 3-KNF (3-SAT) ist NP-vollständig Beweis (Teil 2) Wir zeigen, dass jedes SAT Problem in polynomieller Zeit auf das 3-SAT Problem reduzierbar ist. Gegeben sei eine Formel F in KNF. Wir transformieren F in eine Formel F in 3-KNF, so dass: F ist erfüllbar gdw. F ist erfüllbar. Eine k-klausel sei eine Klausel mit k Literalen. Aus einer 1- bzw 2-Klausel können wir leicht eine äquivalente 3-Klausel machen, indem wir ein Literal wiederholen. Was machen wir mit k-klauseln für k > 3? 8

9 3-SAT Theorem Erfüllbarkeit für Formeln in 3-KNF (3-SAT) ist NP-vollständig Beweis (Teil 3) Sei C beispielsweise eine 4-Klausel der Form C = L 1 L 2 L 3 L 4. In einer Klauseltransformation ersetzen wir C durch die Teilformel C 0 = (L 1 L 2 H) ( H L 3 L 4 ), wobei H eine zusätzlich eingeführte Hilfsvariable bezeichnet. F sei aus F entstanden durch Ersetzung von C durch C 0. zu zeigen: F erfüllbar gdw. F erfüllbar 9

10 3-SAT Theorem Erfüllbarkeit für Formeln in 3-KNF (3-SAT) ist NP-vollständig Beweis (Teil 4) C = L 1 L 2 L 3 L 4 ; C 0 = (L 1 L 2 H) ( H L 3 L 4 ), F sei aus F entstanden durch Ersetzung von C durch C 0. zu zeigen: F erfüllbar gdw. F erfüllbar Sei A eine erfüllende Belegung für F. A weist mindestens einem Literal aus C den Wert 1 zu. Wir unterscheiden zwei Fälle: 1) Falls L 1 oder L 2 den Wert 1 haben, so ist F für A(H) = 0 erfüllt. 2) Falls L 3 oder L 4 den Wert 1 haben, so ist F für A(H) = 1 erfüllt. Also ist F in beiden Fällen erfüllbar. 10

11 3-SAT Theorem Erfüllbarkeit für Formeln in 3-KNF (3-SAT) ist NP-vollständig Beweis (Teil 5) C = L 1 L 2 L 3 L 4 ; C 0 = (L 1 L 2 H) ( H L 3 L 4 ), F sei aus F entstanden durch Ersetzung von C durch C 0. zu zeigen: F erfüllbar gdw. F erfüllbar Sei A eine erfüllende Belegung für F. Wir unterscheiden zwei Fälle: 1) Falls A(H) = 0, so muss A(L 1 ) = 1 oder A(L 2 ) = 1. 2) Falls A(H) = 1, so muss A(L 3 ) = 1 oder A(L 4 ) = 1 In beiden Fällen erfüllt A somit auch C, i.e. auch F. 11

12 3-SAT Theorem Erfüllbarkeit für Formeln in 3-KNF (3-SAT) ist NP-vollständig Beweis (Teil 6) Wir verallgemeinern die Klauseltransformation für k 4: Jede Klausel der Form wird durch eine Formel der Form ersetzt. L 1 L 2 L k 1 L k (L 1 L 2... L k 2 H) ( H L k 1 L k ) Die Erfüllbarkeitsäquivalenz folgt analog zum Fall k = 4. 12

13 Bis jetzt Das SAT-Problem (Erfüllbarkeitsproblem) Teilklassen des Erfüllbarkeitsproblems k-knf Formel: KNF-Formeln, deren Klauseln höchstens k Literale haben Theorem Erfüllbarkeit für Formeln in KNF: NP-vollständig (ohne Beweis) Erfüllbarkeit für Formeln in 3-KNF (3-SAT): NP-vollständig Erfüllbarkeit für Formeln in 2-KNF: polynomiell entscheidbar Erfüllbarkeit für Formeln in DNF: polynomiell entscheidbar (nächste Vorlesung) F = W n i=1 (V m j=1 L ij) Formel in DNF unerfüllbar gdw. für alle i, ( V m j=1 L ij) enthält zwei komplementäre Literale. 13

14 Horn-Formeln Defintion: Horn-Formel: Formel in KNF, in der jede Klausel höchstens ein positives Literal enthält 14

15 Horn-Formeln Defintion: Horn-Formel: Formel in KNF, in der jede Klausel höchstens ein positives Literal enthält Notation: als Implikation P 1 P n P P 1 P n P P 1 P n P A P n P P 15

16 Horn-Formeln Defintion: Horn-Formel: Formel in KNF, in der jede Klausel höchstens ein positives Literal enthält Notation: als Implikation P 1 P n P P 1 P n P P 1 P n P A P n P P P 1 P n : Rumpf P: Kopf 16

17 Horn-Formeln Defintion: Horn-Formel: Formel in KNF, in der jede Klausel höchstens ein positives Literal enthält Notation: als Implikation P 1 P n P P 1 P n P P 1 P n P A P n P P P 1 P n : Rumpf P: Kopf P: Fakt 17

18 Horn Formel: Beispiele Klausel Literalmengen Implikationen P { P} P Q R S {Q, R, S} R,S Q Q S { Q, S} Q,S R {R} R Q P { Q,P} Q P 18

19 Erfüllbarkeitsproblem für Horn-Formeln Theorem Die Erfüllbarkeit von Horn-Formeln ist in quadratischer Zeit entscheidbar. 19

20 Erfüllbarkeitsproblem für Horn-Formeln Theorem Die Erfüllbarkeit von Horn-Formeln ist in quadratischer Zeit entscheidbar. Lemma. Sei F Hornformel die keine Fakten enthält. Dann ist F erfüllbar. 20

21 Erfüllbarkeitsproblem für Horn-Formeln Theorem Die Erfüllbarkeit von Horn-Formeln ist in quadratischer Zeit entscheidbar. Lemma. Sei F Hornformel die keine Fakten enthält. Dann ist F erfüllbar. Beweis: Sei A : Π {0,1} mit A(P) = 0 für alle P Π. Dann A(F) = 1. 21

22 Erfüllbarkeitsproblem für Horn-Formeln Theorem Die Erfüllbarkeit von Horn-Formeln ist in quadratischer Zeit entscheidbar. Beweis: (Idee) Ziel: A : Π {0,1} mit A(F) = 1. Falls keine Fakten in F: F erfüllbar. Sonst: Für alle Fakten P in F: A(P) := 1; Wiederhole das Verfahren für F, entstanden aus F durch Ersetzung von P mit. 22

23 Erfüllbarkeitstest für Horn-Formeln Eingabe: C = D 1 D n eine Hornformel (die Klausel D i enthält höchstens ein positives Literal) 23

24 Erfüllbarkeitstest für Horn-Formeln Eingabe: F = D 1 D n eine Hornformel (die Klausel D i enthält höchstens ein positives Literal) Ein Atom in F zu markieren, bedeutet, es an allen Stellen seines Auftretens in F zu markieren 24

25 Erfüllbarkeitstest für Horn-Formeln 0: IF keine Fakten (Klausel A ) vorhanden THEN Ausgabe: erfüllbar ELSE markiere alle Fakten in F (Atome A mit A in F) 1: IF keine Klausel A 1 A n B in F, so dass alle Atome in A 1,..., A n markiert aber B nicht THEN Ausgabe: erfüllbar ELSE wähle die erste solche Klausel IF B leer THEN Ausgabe: unerfüllbar ELSE markiere überall B in F GOTO 1 25

26 Zusammenfassung: Normalformen Literale, Klauseln Konjunktive und Disjunktive Normalform Ablesen von DNF und KNF aus Wahrheitstafeln Umformen in KNF Mengenschreibweise Subsumption SAT-Problem (SAT, 3-SAT, 2-SAT, DNF-SAT) Horn-Formeln Erfüllbarkeitstest für Hornformeln 26

27 Der aussagenlogische Resolutionkalkül Wesentliche Eigenschaften Widerlegungskalkül: Testet auf Unerfüllbarkeit 27

28 Der aussagenlogische Resolutionkalkül Wesentliche Eigenschaften Widerlegungskalkül: Testet auf Unerfüllbarkeit Voraussetzung: Alle Formeln in konjunktiver Normalform 28

29 Der aussagenlogische Resolutionkalkül Wesentliche Eigenschaften Widerlegungskalkül: Testet auf Unerfüllbarkeit Voraussetzung: Alle Formeln in konjunktiver Normalform Eine einzige Regel 29

30 Der aussagenlogische Resolutionkalkül Wesentliche Eigenschaften Widerlegungskalkül: Testet auf Unerfüllbarkeit Voraussetzung: Alle Formeln in konjunktiver Normalform Eine einzige Regel Operiert auf Klauseln (in Mengenschreibweise) 30

31 Resolutionskalkül Definition: Resolutionsregel (einzige Regel des Kalküls) wobei C 1 {P} { P} C 2 C 1 C 2 P eine aussagenlogische Variable C 1,C 2 Klauseln (können leer sein) Definition: C 1 C 2 heißt Resolvente von C 1 {P},C 2 { P} 31

32 Resolution: Beispiel Gegeben die Klauselmenge: M = {{P 1,P 2 }, {P 1, P 2 }, { P 1,P 2 }, { P 1, P 2 }} 32

33 Resolution: Beispiel Gegeben die Klauselmenge: M = {{P 1,P 2 }, {P 1, P 2 }, { P 1,P 2 }, { P 1, P 2 }} Resolution: {P 1,P 2 } {P 1, P 2 } 33

34 Resolution: Beispiel Gegeben die Klauselmenge: M = {{P 1,P 2 }, {P 1, P 2 }, { P 1,P 2 }, { P 1, P 2 }} Resolution: {P 1,P 2 } {P 1, P 2 } {P 1 } 34

35 Resolution: Beispiel Gegeben die Klauselmenge: M = {{P 1,P 2 }, {P 1, P 2 }, { P 1,P 2 }, { P 1, P 2 }} Resolution: {P 1,P 2 } {P 1, P 2 } {P 1 } { P 1,P 2 } { P 1, P 2 } 35

36 Resolution: Beispiel Gegeben die Klauselmenge: M = {{P 1,P 2 }, {P 1, P 2 }, { P 1,P 2 }, { P 1, P 2 }} Resolution: {P 1,P 2 } {P 1, P 2 } {P 1 } { P 1,P 2 } { P 1, P 2 } { P 1 } 36

37 Resolution: Beispiel Gegeben die Klauselmenge: M = {{P 1,P 2 }, {P 1, P 2 }, { P 1,P 2 }, { P 1, P 2 }} Resolution: {P 1,P 2 } {P 1, P 2 } {P 1 } { P 1,P 2 } { P 1, P 2 } { P 1 } {P 1 } { P 1 } 37

38 Resolution: Beispiel Gegeben die Klauselmenge: M = {{P 1,P 2 }, {P 1, P 2 }, { P 1,P 2 }, { P 1, P 2 }} Resolution: {P 1,P 2 } {P 1, P 2 } {P 1 } { P 1,P 2 } { P 1, P 2 } { P 1 } {P 1 } { P 1 } Insgesamt: M Res also: M unerfüllbar 38

39 Resolution: Weiteres Beispiel Zu zeigen: (P Q) ((Q R) (P R)) ist allgemeingültig 39

40 Resolution: Weiteres Beispiel Zu zeigen: (P Q) ((Q R) (P R)) ist allgemeingültig Dazu zeigen wir, dass unerfüllbar ist. [(P Q) ((Q R) (P R))] 40

41 Resolution: Weiteres Beispiel Zu zeigen: ist allgemeingültig (P Q) ((Q R) (P R)) Dazu zeigen wir, dass unerfüllbar ist. [(P Q) ((Q R) (P R))] Klauselnormalform: {{ P,Q}, { Q,R}, {P}, { R}} 41

42 Resolution: Weiteres Beispiel Klauselnormalform: M = {{ P,Q}, { Q,R}, {P}, { R}} Ableitung der leeren Klausel aus M: (1) { P, Q} gegeben (2) { Q, R} gegeben (3) {P} gegeben (4) { R} gegeben 42

43 Resolution: Weiteres Beispiel Klauselnormalform: M = {{ P,Q}, { Q,R}, {P}, { R}} Ableitung der leeren Klausel aus M: (1) { P, Q} gegeben (2) { Q, R} gegeben (3) {P} gegeben (4) { R} gegeben (5) {Q} aus (1) und (3) 43

44 Resolution: Weiteres Beispiel Klauselnormalform: M = {{ P,Q}, { Q,R}, {P}, { R}} Ableitung der leeren Klausel aus M: (1) { P, Q} gegeben (2) { Q, R} gegeben (3) {P} gegeben (4) { R} gegeben (5) {Q} aus (1) und (3) (6) {R} aus (2) und (5) 44

45 Resolution: Weiteres Beispiel Klauselnormalform: M = {{ P,Q}, { Q,R}, {P}, { R}} Ableitung der leeren Klausel aus M: (1) { P, Q} gegeben (2) { Q, R} gegeben (3) {P} gegeben (4) { R} gegeben (5) {Q} aus (1) und (3) (6) {R} aus (2) und (5) (7) aus (4) und (6) 45

46 Resolution: Bemerkungen Vorsicht bei Klauseln mit mehreren Resolutionsmöglichkeiten Zwei Klauseln können mehr als eine Resolvente haben z.b.: {A, B} und { A, B} {A,B,C} und { A, B,D} haben NICHT {C,D} als Resolvente 46

47 Resolution: Bemerkungen Vorsicht bei Klauseln mit mehreren Resolutionsmöglichkeiten Zwei Klauseln können mehr als eine Resolvente haben z.b.: {A, B} und { A, B} {A,B,C} und { A, B,D} haben NICHT {C,D} als Resolvente Heuristik: Immer möglichst kleine Klauseln ableiten 47

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 4 07.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Gestern Normalformen Atome, Literale, Klauseln Konjunktive

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 5 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Normalformen Atome, Literale, Klauseln Konjunktive

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 5 8.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 06.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax (Formeln) Semantik Wertebelegungen/Valuationen/Modelle

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 6. Aussagenlogik Resolution Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Der aussagenlogische Resolutionkalkül Wesentliche

Mehr

Formale Systeme. Das Erfu llbarkeitsproblem. Prof. Dr. Bernhard Beckert, WS 2017/2018

Formale Systeme. Das Erfu llbarkeitsproblem. Prof. Dr. Bernhard Beckert, WS 2017/2018 Formale Systeme Prof. Dr. Bernhard Beckert, WS 2017/2018 Das Erfu llbarkeitsproblem KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 5. Aussagenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Normalformen Definition: Literal Atom (aussagenlogische

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 2 28.04.2015 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Organisatorisches Termine Donnerstags: 30.04.2015 nicht

Mehr

Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln

Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Frank Heitmann heitmann@informatik.uni-hamburg.de 9. Juni 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/36 Ersetzbarkeitstheorem

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 10 4.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Organisatorisches Hauptklausur: Montag, 23.07.2012, 16:00-18:00,

Mehr

Resolutionskalkül. wird t als eine Menge K t von Klauseln geschrieben, welche die einzelnen Maxterme repräsentieren:

Resolutionskalkül. wird t als eine Menge K t von Klauseln geschrieben, welche die einzelnen Maxterme repräsentieren: Resolutionskalkül Ein Kalkül ist eine Kollektion von syntaktischen Umformungsregeln, die unter gegebenen Voraussetzungen aus bereits vorhandenen Formeln neue Formeln erzeugen. Der Resolutionskalkül besteht

Mehr

Erfüllbarkeitstests. Im folgenden: Ein sehr effizienter Erfüllbarkeitstest für eine spezielle Klasse von Formeln in KNF, sogenannte Hornformeln (vgl.

Erfüllbarkeitstests. Im folgenden: Ein sehr effizienter Erfüllbarkeitstest für eine spezielle Klasse von Formeln in KNF, sogenannte Hornformeln (vgl. Erfüllbarkeitstests Im folgenden: Ein sehr effizienter Erfüllbarkeitstest für eine spezielle Klasse von Formeln in KNF, sogenannte Hornformeln (vgl. Grundlagen und diskrete Strukturen ) Ein für Formeln

Mehr

Syntax. 1 Jedes A AS AL ist eine (atomare) Formel. 2 Ist F eine Formel, so ist auch F eine Formel. 3 Sind F und G Formeln, so sind auch

Syntax. 1 Jedes A AS AL ist eine (atomare) Formel. 2 Ist F eine Formel, so ist auch F eine Formel. 3 Sind F und G Formeln, so sind auch Formale der Informatik 1 Kapitel 15 Folgerbarkeit, Äquivalenzen und Normalformen Frank Heitmann heitmann@informatik.uni-hamburg.de 8. Juni 2015 Syntax Definition (Syntax der Aussagenlogik) Mit AS AL sei

Mehr

Kochrezept für NP-Vollständigkeitsbeweise

Kochrezept für NP-Vollständigkeitsbeweise Kochrezept für NP-Vollständigkeitsbeweise Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 11. Januar 2010 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 4. Aussagenlogik Syntax und Semantik der Aussagenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der Aussagenlogik:

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker Wintersemester 2007/08 Thomas Schwentick Teil A: Aussagenlogik 3. Erfüllbarkeit Version von: 23. Januar 2008(16:11) Inhalt 3.1 Grundbegriffe 3.2 Aussagenlogische Resolution 3.3 Endlichkeitssatz

Mehr

Beispiel Aussagenlogik nach Schöning: Logik...

Beispiel Aussagenlogik nach Schöning: Logik... Beispiel Aussagenlogik nach Schöning: Logik... Worin besteht das Geheimnis Ihres langen Lebens? wurde ein 100-jähriger gefragt. Ich halte mich streng an die Diätregeln: Wenn ich kein Bier zu einer Mahlzeit

Mehr

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2.

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2. Theorie der Informatik 24. Februar 2014 2. Aussagenlogik II Theorie der Informatik 2. Aussagenlogik II 2.1 Äquivalenzen Malte Helmert Gabriele Röger 2.2 Vereinfachte Schreibweise Universität Basel 24.

Mehr

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/37

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/37 Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/37 Modellierungsaufgabe Es gibt drei Tauben und zwei Löcher. Jede Taube soll in

Mehr

Aufgabe. Gelten die folgenden Äquivalenzen?. 2/??

Aufgabe. Gelten die folgenden Äquivalenzen?. 2/?? Äquivalenz Zwei Formeln F und G heißen (semantisch) äquivalent, falls für alle Belegungen A, die sowohl für F als auch für G passend sind, gilt A(F ) = A(G). Hierfür schreiben wir F G.. 1/?? Aufgabe Gelten

Mehr

Logik für Informatiker Logic for Computer Scientists

Logik für Informatiker Logic for Computer Scientists Logik für Informatiker Logic for Computer Scientists Till Mossakowski Wintersemester 2014/15 Till Mossakowski Logik 1/ 18 Vollständigkeit der Aussagenlogik Till Mossakowski Logik 2/ 18 Objekt- und Metatheorie

Mehr

Algorithmischer Aufbau der Aussagenlogik

Algorithmischer Aufbau der Aussagenlogik Algorithmischer Aufbau der Aussagenlogik In diesem Abschnitt betrachten wir Verfahren die bei gegebener endlichen Menge Σ und A-Form A entscheiden ob Σ = A gilt. Die bisher betrachteten Verfahren prüfen

Mehr

Syntax der Aussagenlogik. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Formel als Syntaxbaum. Teilformel A 3 A 1 A 4

Syntax der Aussagenlogik. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Formel als Syntaxbaum. Teilformel A 3 A 1 A 4 Syntax der Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume Eine atomare Formel hat die Form A i (wobei i = 1, 2, 3,...). Definition (Formel)

Mehr

Ersetzbarkeitstheorem

Ersetzbarkeitstheorem Ersetzbarkeitstheorem Die Abgeschlossenheit läßt sich auch folgendermaßen formulieren: Ersetzbarkeitstheorem Seien F und G Formeln mit F G. SeienH und H Formeln, so daß H aus H hervorgeht, indem ein Vorkommen

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 11. Prädikatenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Negationsnormalform Definition: Negationsnormalform

Mehr

Logik Vorlesung 3: Äquivalenz und Normalformen

Logik Vorlesung 3: Äquivalenz und Normalformen Logik Vorlesung 3: Äquivalenz und Normalformen Andreas Maletti 7. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 28. Aussagenlogik: DPLL-Algorithmus Malte Helmert Universität Basel 2. Mai 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26. Grundlagen 27. Logisches

Mehr

TU5 Aussagenlogik II

TU5 Aussagenlogik II TU5 Aussagenlogik II Daniela Andrade daniela.andrade@tum.de 21.11.2016 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;)

Mehr

Ralf Möller, TUHH. Beim vorigen Mal: Heute: Prädikatenlogik: Algorithmus für Erfüllbarkeitsproblem. Lernziele: Beweisverfahren für Prädikatenlogik

Ralf Möller, TUHH. Beim vorigen Mal: Heute: Prädikatenlogik: Algorithmus für Erfüllbarkeitsproblem. Lernziele: Beweisverfahren für Prädikatenlogik Ralf Möller, TUHH Beim vorigen Mal: Heute: Prädikatenlogik: Algorithmus für Erfüllbarkeitsproblem Lernziele: Beweisverfahren für Prädikatenlogik Danksagung Bildmaterial: S. Russell, P. Norvig, Artificial

Mehr

Computational Logic Algorithmische Logik Boolesche Algebra und Resolution

Computational Logic Algorithmische Logik Boolesche Algebra und Resolution Computational Logic Algorithmische Logik Boolesche Algebra und Resolution Ralf Moeller Hamburg Univ. of Technology Boole'sche Algebra Äquivalenzen als "Transformationsgesetze" Ersetzbarkeitstheorem Zentrale

Mehr

TU9 Aussagenlogik. Daniela Andrade

TU9 Aussagenlogik. Daniela Andrade TU9 Aussagenlogik Daniela Andrade daniela.andrade@tum.de 18.12.2017 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;) 2 /

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 3. Prädikatenlogik Teil 6 25.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letzte Vorlesungen Prädikatenlogik: Syntax Semantik

Mehr

Resolutionsalgorithmus

Resolutionsalgorithmus 112 Resolutionskalkül Mit dem Begriff Kalkül bezeichnet man eine Menge von syntaktischen Umformungsregeln, mit denen man semantische Eigenschaften der Eingabeformel herleiten kann. Für den Resolutionskalkül:

Mehr

Aufgabe 13 (Markierungsalgorithmus). Gegeben ist die Formel F = (A D C) (E A) ( ( B D) E) A B (B D)

Aufgabe 13 (Markierungsalgorithmus). Gegeben ist die Formel F = (A D C) (E A) ( ( B D) E) A B (B D) INTA - Lösungshinweise zum Übungsblatt 4, Version 1.0α. Wenn sie Fehler finden oder Ihnen etwas auch nach dem Gespräch mit ihren Kommilitonen noch unklar ist, dann schicken sie mir bitte eine Email! Aufgabe

Mehr

Grundlagen der Logik

Grundlagen der Logik Grundlagen der Logik Denken Menschen logisch? Selektionsaufgabe nach Watson (1966): Gegeben sind vier Karten von denen jede auf der einen Seite mit einem Buchstaben, auf der anderen Seite mit einer Zahl

Mehr

1 Aussagenlogischer Kalkül

1 Aussagenlogischer Kalkül 1 Aussagenlogischer Kalkül Ein Kalkül in der Aussagenlogik soll die Wahrheit oder Algemeingültigkeit von Aussageformen allein auf syntaktischer Ebene zeigen. Die Wahrheit soll durch Umformung von Formeln

Mehr

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25 Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/25 Einführendes Beispiel Falls Lisa Peter trifft, dann trifft Lisa auch Gregor.

Mehr

Formale Systeme. Prof. Dr. Bernhard Beckert, WS 2016/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Formale Systeme. Prof. Dr. Bernhard Beckert, WS 2016/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft Formale Systeme Prof. Dr. Bernhard Beckert, WS 2016/2017 Aussagenlogik: Tableaukalku l KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 7. Aussagenlogik Analytische Tableaus Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Der aussagenlogische Tableaukalkül

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 1 25.04.2017 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Grundlegende Beweisstrategien Induktion über

Mehr

Einiges zu Resolutionen anhand der Aufgaben 6 und 7

Einiges zu Resolutionen anhand der Aufgaben 6 und 7 Einiges zu Resolutionen anhand der Aufgaben 6 und 7 Es gibt eine Fülle von verschiedenen Resolutionen. Die bis jetzt behandelten möchte ich hier noch ein Mal kurz erläutern. Ferner möchte ich noch auf

Mehr

Allgemeingültige Aussagen

Allgemeingültige Aussagen Allgemeingültige Aussagen Definition 19 Eine (aussagenlogische) Formel p heißt allgemeingültig (oder auch eine Tautologie), falls p unter jeder Belegung wahr ist. Eine (aussagenlogische) Formel p heißt

Mehr

Übung 4: Aussagenlogik II

Übung 4: Aussagenlogik II Übung 4: Aussagenlogik II Diskrete Strukturen im Wintersemester 2013/2014 Markus Kaiser 8. Januar 2014 1/10 Äquivalenzregeln Identität F true F Dominanz F true true Idempotenz F F F Doppelte Negation F

Mehr

Fakultät für Informatik Universität Magdeburg Jürgen Dassow. Vorbemerkungen

Fakultät für Informatik Universität Magdeburg Jürgen Dassow. Vorbemerkungen Vorbemerkungen if (x > y) z = x; else z = y; Wenn es blaue Tiger regnet, dann fressen alle Kirschbäume schwarze Tomaten. q(1) = 1, q(i) = q(i 1) + 2i 1 für i 2 Welchen Wert hat q(6)? 24 ist durch 2 teilbar.

Mehr

5.1 Inferenz. Theorie der Informatik. Theorie der Informatik. 5.1 Inferenz. 5.2 Resolutionskalkül. 5.3 Zusammenfassung. Inferenz: Motivation

5.1 Inferenz. Theorie der Informatik. Theorie der Informatik. 5.1 Inferenz. 5.2 Resolutionskalkül. 5.3 Zusammenfassung. Inferenz: Motivation Theorie der Informatik 9. März 2015 5. Aussagenlogik III Theorie der Informatik 5. Aussagenlogik III 5.1 Inferenz Malte Helmert Gabriele Röger 5.2 Resolutionskalkül Universität Basel 9. März 2015 5.3 Zusammenfassung

Mehr

Logik Teil 1: Aussagenlogik. Vorlesung im Wintersemester 2010

Logik Teil 1: Aussagenlogik. Vorlesung im Wintersemester 2010 Logik Teil 1: Aussagenlogik Vorlesung im Wintersemester 21 Aussagenlogik Aussagenlogik behandelt die logische Verknüpfung von Aussagen mittels Junktoren wie und, oder, nicht, gdw. Jeder Aussage ist ein

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 12. Prädikatenlogik Resolution Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Zur Erinnerung Definition: Aussagenlogische

Mehr

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie und, oder, nicht, wenn... dann zwischen atomaren und komplexen Sätzen. I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 8 31.05.2016 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Normalformen: CNF/DNF Subsumption SAT-Problem

Mehr

Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen

Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume & Dr. Sander Bruggink Barbara König Logik 1 (Motivation) Wir benötigen Algorithmen für Erfüllbarkeitstests,

Mehr

Schlussregeln aus anderen Kalkülen

Schlussregeln aus anderen Kalkülen Was bisher geschah Klassische Aussagenlogik: Syntax Semantik semantische Äquivalenz und Folgern syntaktisches Ableiten (Resolution) Modellierung in Aussagenlogik: Wissensrepräsentation, Schaltungslogik,

Mehr

Kapitel L:II. II. Aussagenlogik

Kapitel L:II. II. Aussagenlogik Kapitel L:II II. Aussagenlogik Syntax der Aussagenlogik Semantik der Aussagenlogik Eigenschaften des Folgerungsbegriffs Äquivalenz Formeltransformation Normalformen Bedeutung der Folgerung Erfüllbarkeitsalgorithmen

Mehr

Weitere NP-vollständige Probleme

Weitere NP-vollständige Probleme Weitere NP-vollständige Probleme Wir betrachten nun folgende Reduktionskette und weisen dadurch nach, daß alle diese Probleme NP-hart sind (sie sind auch in NP und damit NP-vollständig). SAT p 3-SAT p

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 27. Aussagenlogik: Logisches Schliessen und Resolution Malte Helmert Universität Basel 28. April 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26.

Mehr

Erfüllbarkeit und Allgemeingültigkeit

Erfüllbarkeit und Allgemeingültigkeit Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.3 Aussagenlogik Erfüllbarkeit 44 Erfüllbarkeit und Allgemeingültigkeit Def.: eine Formel ϕ heißt erfüllbar, wennesein I gibt, so dass I = ϕ

Mehr

Resolution (Motivation) Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Resolution (Idee) Resolution (Idee)

Resolution (Motivation) Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Resolution (Idee) Resolution (Idee) (Motivation) Vorlesung Logik Sommersemester 0 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume Wir benötigen Algorithmen für Erfüllbarkeitstests, die zumindest in vielen Fällen gutartiges

Mehr

Deduktion in der Aussagenlogik

Deduktion in der Aussagenlogik Deduktion in der Aussagenlogik Menge von Ausdrücken der Aussagenlogik beschreibt einen bestimmten Sachverhalt, eine "Theorie" des Anwendungsbereiches. Was folgt logisch aus dieser Theorie? Deduktion: aus

Mehr

Hauptklausur zur Vorlesung Logik für Informatiker im Sommersemester 2012 Lösung

Hauptklausur zur Vorlesung Logik für Informatiker im Sommersemester 2012 Lösung Universität Koblenz-Landau FB 4 Informatik Prof. Dr. Viorica Sofronie-Stokkermans 23.07.2012 Dipl.-Inform. Markus Bender Hauptklausur zur Vorlesung Logik für Informatiker im Sommersemester 2012 Lösung

Mehr

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Wenn das Kind schreit, hat es Hunger Das Kind schreit Also, hat das Kind Hunger Christina Kohl Alexander Maringele

Mehr

Logik Teil 1: Aussagenlogik

Logik Teil 1: Aussagenlogik Aussagenlogik Aussagenlogik behandelt die logische Verknüpfung von Aussagen mittels Junktoren wie und, oder, nicht, gdw. Logik Teil : Aussagenlogik Jeder Aussage ist ein Wahrheitswert (wahr/falsch) zugeordnet

Mehr

Kapitel L:II. II. Aussagenlogik

Kapitel L:II. II. Aussagenlogik Kapitel L:II II. Aussagenlogik Syntax der Aussagenlogik Semantik der Aussagenlogik Eigenschaften des Folgerungsbegriffs Äquivalenz Formeltransformation Normalformen Bedeutung der Folgerung Erfüllbarkeitsalgorithmen

Mehr

Resolution für die Aussagenlogik

Resolution für die Aussagenlogik Resolution für die Aussagenlogik Der Resolutionskakül ist ein Beweiskalkül, der auf Klauselmengen, d.h. Formeln in KNF arbeitet und nur eine Schlußregel besitzt. Der Resolution liegt die folgende Vorstellung

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015 Teil 3: Logik 1 Aussagenlogik Einleitung Eigenschaften Äquivalenz Folgerung Normalformen 2 Prädikatenlogik Wenn eine Karte

Mehr

Aussagenlogische Kalküle

Aussagenlogische Kalküle Aussagenlogische Kalküle Ziel: mit Hilfe von schematischen Regeln sollen alle aus einer Formel logisch folgerbaren Formeln durch (prinzipiell syntaktische) Umformungen abgeleitet werden können. Derartige

Mehr

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Christina Kohl Alexander Maringele Georg Moser Michael Schaper Manuel Schneckenreither Institut für Informatik

Mehr

4. Logik und ihre Bedeutung für WBS

4. Logik und ihre Bedeutung für WBS 4. Logik und ihre Bedeutung für WBS WBS verwenden formale Sprache L um Wissen zu repräsentieren Grundidee: Problemlösen = Folgern aus in L dargestelltem Wissen Folgern = implizites Wissen explizit machen

Mehr

Logic in a Nutshell. Christian Liguda

Logic in a Nutshell. Christian Liguda Logic in a Nutshell Christian Liguda Quelle: Kastens, Uwe und Büning, Hans K., Modellierung: Grundlagen und formale Methoden, 2009, Carl Hanser Verlag Übersicht Logik - Allgemein Aussagenlogik Modellierung

Mehr

Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen

Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen Einführung in die Logik - 4 Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen Widerlegungsverfahren zum Aufwärmen: Bestimmung von Tautologien mittels Quick Falsification

Mehr

Logik Grundvorlesung WS 17/18 Ergänzende Folien Teil 1

Logik Grundvorlesung WS 17/18 Ergänzende Folien Teil 1 Logik Grundvorlesung WS 17/18 Ergänzende Folien Teil 1 Gerhard Brewka Institut für Informatik Universität Leipzig brewka@informatik.uni-leipzig.de G. Brewka (Leipzig) WS 17/18 1 / 46 Über diese Vorlesung

Mehr

3. Grundlegende Begriffe von Logiken - Aussagenlogik

3. Grundlegende Begriffe von Logiken - Aussagenlogik 3. Grundlegende Begriffe von Logiken - Aussagenlogik Wichtige Konzepte und Begriffe in Logiken: Syntax (Signatur, Term, Formel,... ): Festlegung, welche syntaktischen Gebilde als Formeln (Aussagen, Sätze,

Mehr

wenn es regnet ist die Straße nass.

wenn es regnet ist die Straße nass. Aussagenlogik 2 In der Aussagenlogik werden, wie der Name schon sagt, Aussagen über logische Operatoren verknüpft. Der Satz diestraßeistnass ist eine Aussage, genauso wie es regnet. Diese beiden Aussagen

Mehr

Hilbert-Kalkül (Einführung)

Hilbert-Kalkül (Einführung) Hilbert-Kalkül (Einführung) Es gibt viele verschiedene Kalküle, mit denen sich durch syntaktische Umformungen zeigen läßt, ob eine Formel gültig bzw. unerfüllbar ist. Zwei Gruppen von Kalkülen: Kalküle

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 13. Prädikatenlogik Der Satz von Herbrand Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Semantische Bäume Eine klassische

Mehr

Aussagenlogik. Formale Methoden der Informatik WiSe 2010/2011 teil 7, folie 1 (von 50)

Aussagenlogik. Formale Methoden der Informatik WiSe 2010/2011 teil 7, folie 1 (von 50) Aussagenlogik Formale Methoden der Informatik WiSe 2/2 teil 7, folie (von 5) Teil VII: Aussagenlogik. Einführung 2. Boolesche Funktionen 3. Boolesche Schaltungen Franz-Josef Radermacher & Uwe Schöning,

Mehr

Modellierungsmethoden der Informatik Kapitel 2: Logikkalküle

Modellierungsmethoden der Informatik Kapitel 2: Logikkalküle smethoden der Informatik Kapitel 2: Logikkalküle Prädikatenlogik 1. Stufe Norbert Fuhr Gudrun Fischer 29.11.2005 Organisatorisches Organisatorisches Klausur Termin: 20.2.2006, 13-15 Uhr, Audimax Anmeldung

Mehr

Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie

Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie Was ist Logik? Geschichte der Logik eng verknüpft mit Philosophie Begriff Logik wird im Alltag vielseitig verwendet Logik untersucht, wie man aus Aussagen andere Aussagen ableiten kann Beschränkung auf

Mehr

Modellierungsmethoden der Informatik Kapitel 2: Logikkalküle

Modellierungsmethoden der Informatik Kapitel 2: Logikkalküle smethoden der Informatik Kapitel 2: Logikkalküle Prädikatenlogik 1. Stufe Norbert Fuhr Gudrun Fischer 29.11.2005 Organisatorisches Organisatorisches Klausur Termin: 20.2.2006, 13-15 Uhr, Audimax Anmeldung

Mehr

Algorithmen für Hornlogik

Algorithmen für Hornlogik Prof. Dr. Heribert Vollmer Institut für Theoretische Informatik Lebniz Universität Hannover Jing Liu Algorithmen für Hornlogik Studienarbeit 2010 1 Einleitung Die Aussagenlogik ist der Bereich der Logik,

Mehr

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14 Logik Logik Vorkurs Informatik Theoretischer Teil WS 2013/14 30. September 2013 Logik > Logik > logische Aussagen Logik Logik > Logik > logische Aussagen Motivation Logik spielt in der Informatik eine

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Reduktion. Komplexitätsklassen.

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Reduktion. Komplexitätsklassen. Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Vorsemesterkurs Informatik Mario Holldack WS2015/16 30. September 2015 Vorsemesterkurs Informatik 1 Einleitung 2 Aussagenlogik 3 Mengen Vorsemesterkurs Informatik > Einleitung

Mehr

Zusammenfassung des Stoffes zur Vorlesung Formale Systeme

Zusammenfassung des Stoffes zur Vorlesung Formale Systeme Zusammenfassung des Stoffes zur Vorlesung Formale Systeme Max Kramer 13. Februar 2009 Diese Zusammenfassung entstand als persönliche Vorbereitung auf die Klausur zur Vorlesung Formale Systeme von Prof.

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 4. Kellerautomaten und kontextfreie Sprachen (I) 3.06.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Organisatorisches 1. Teilklausur: Mittwoch,

Mehr

Tableaukalkül für Aussagenlogik

Tableaukalkül für Aussagenlogik Tableaukalkül für Aussagenlogik Tableau: Test einer Formel auf Widersprüchlichkeit Fallunterscheidung baumförmig organisiert Keine Normalisierung, d.h. alle Formeln sind erlaubt Struktur der Formel wird

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 30.04.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letztes Mal Aussagenlogik Syntax: welche Formeln? Semantik:

Mehr

Kapitel 1.3. Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln

Kapitel 1.3. Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln Kapitel 1.3 Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln Mathematische Logik (WS 2011/12) Kapitel 1.3: Normalformen 1/ 29 Übersicht

Mehr

Resolution und Regeln

Resolution und Regeln Resolution und Regeln Hans Kleine Büning University of Paderborn Institute for Computer Science Group Paderborn, 18. Juli 2013 Resolution und Regeln Hans Kleine Büning 1/9 Resolution Theorem Resolution:

Mehr

Normalformen boolescher Funktionen

Normalformen boolescher Funktionen Normalformen boolescher Funktionen Jeder boolesche Ausdruck kann durch (äquivalente) Umformungen in gewisse Normalformen gebracht werden! Disjunktive Normalform (DNF) und Vollkonjunktion: Eine Vollkonjunktion

Mehr

Vorlesung Logiksysteme

Vorlesung Logiksysteme Vorlesung Logiksysteme Teil 1 - Aussagenlogik Martin Mundhenk Univ. Jena, Institut für Informatik 15. Mai 2014 Formalien zur Vorlesung/Übung Termine: dienstags 16:15 17:45 Uhr freitags 10:15 11:45 Uhr

Mehr

1.1 Motivation. Theorie der Informatik. Theorie der Informatik. 1.1 Motivation. 1.2 Syntax. 1.3 Semantik. 1.4 Formeleigenschaften. 1.

1.1 Motivation. Theorie der Informatik. Theorie der Informatik. 1.1 Motivation. 1.2 Syntax. 1.3 Semantik. 1.4 Formeleigenschaften. 1. Theorie der Informatik 19. Februar 2014 1. Aussagenlogik I Theorie der Informatik 1. Aussagenlogik I Malte Helmert Gabriele Röger Universität Basel 19. Februar 2014 1.1 Motivation 1.2 Syntax 1.3 Semantik

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik FH Wedel Pro. Dr. Sebastian Ianoski GTI21 Folie 1 Grundlagen der Theoretischen Inormatik Sebastian Ianoski FH Wedel Kap. 2: Logik, Teil 2.1: Aussagenlogik FH Wedel Pro. Dr. Sebastian Ianoski GTI21 Folie

Mehr

Aussagenlogik. Syntax und Semantik Boolesche Algebra Erfüllbarkeit SAT-Solver Kompaktheit Beweiskalküle

Aussagenlogik. Syntax und Semantik Boolesche Algebra Erfüllbarkeit SAT-Solver Kompaktheit Beweiskalküle Aussagenlogik Syntax und Semantik Boolesche Algebra Erfüllbarkeit SAT-Solver Kompaktheit Beweiskalküle Logik für Informatiker, M. Lange, IFI/LMU: Aussagenlogik Syntax und Semantik 26 Einführendes Beispiel

Mehr

Künstliche Intelligenz Logische Agenten & Resolution

Künstliche Intelligenz Logische Agenten & Resolution Künstliche Intelligenz Logische Agenten & Resolution Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Inferenz-Algorithmus Wie könnte ein

Mehr

Formale Systeme, WS 2015/2016. Lösungen zu Übungsblatt 7

Formale Systeme, WS 2015/2016. Lösungen zu Übungsblatt 7 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Bernhard Beckert Dr. Thorsten Bormer, Dr. Vladimir Klebanov, Dr. Mattias Ulbrich Formale Systeme, WS 2015/2016 Lösungen

Mehr

Aussagenlogik Prädikatenlogik erster Stufe. Logik. Logik

Aussagenlogik Prädikatenlogik erster Stufe. Logik. Logik Grundzeichen Aussagenlogik Aussagenvariablen P, Q, R,... Junktoren nicht und oder Runde Klammern (, ) Formeln Aussagenlogik Formeln sind spezielle Zeichenreihen aus Grundzeichen, und zwar 1 Jede Aussagenvariable

Mehr

Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser

Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser Informatik A Prof. Dr. Norbert Fuhr fuhr@uni-duisburg.de auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser 1 Teil I Logik 2 Geschichte R. Descartes (17. Jhdt): klassische

Mehr

die Lehre des vernünftigen Schlussfolgerns.

die Lehre des vernünftigen Schlussfolgerns. Was ist Logik? Logik (nach dem Altgriechischen Logos : Vernunft ) ist die Lehre des vernünftigen Schlussfolgerns. Die für die Logik zentrale Frage: Wie kann man Aussagen miteinander verknüpfen, und auf

Mehr

Wiederholung: Resolution in der Aussagenlo. Resolution in der Prädikatenlogik. Definition von Res(F) (Wiederholung)

Wiederholung: Resolution in der Aussagenlo. Resolution in der Prädikatenlogik. Definition von Res(F) (Wiederholung) Resolution in der Prädikatenlogik Wiederholung: Resolution in der Aussagenlo Der Algorithmus von Gilmore funktioniert zwar, ist in der Praxis aber unbrauchbar. Daher ist unser Programm der nächsten Stunden:

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker Vorlesung 5: Normalformen Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 2. November 2017 1/37 MOTIVATION FÜR AUSSAGENLOGIK Aussagenlogik

Mehr

Logik für Informatiker Logic for computer scientists

Logik für Informatiker Logic for computer scientists Logik für Informatiker Logic for computer scientists Till Mossakowski Wintersemester 2014/15 Till Mossakowski Logik 1/ 24 Die Booleschen Junktoren Till Mossakowski Logik 2/ 24 Die Negation Wahrheitstafel

Mehr