Klausur zur Vorlesung Logik für Informatiker Sommersemester 2017

Größe: px
Ab Seite anzeigen:

Download "Klausur zur Vorlesung Logik für Informatiker Sommersemester 2017"

Transkript

1 Prof. Dr. Viorica Sofronie-Stokkermans Dipl.-Inform. Markus Bender AG Formale Methoden und Theoretische Informatik Fachbereich Informatik Universität Koblenz-Landau Klausur zur Vorlesung Logik für Informatiker Sommersemester Name..... Vorname..... Matrikelnummer..... Studiengang..... Hinweise Stellen Sie sicher, dass sich neben Schreibutensilien, Ihrem Lichtbildausweis und Verpflegung keine weiteren Gegenstände in Ihrem Zugriffsbereich befinden. Dies gilt insbesondere für Mobiltelefone / -geräte jeglicher Art. Legen Sie Ihren Lichtbildausweis (Personalausweis, Pass, Führerschein) auf den Tisch. Prüfen Sie Ihr Exemplar der Klausur auf Vollständigkeit (11 Aufgaben). Schreiben Sie mit einem dokumentenechten, schwarzen oder blauen Stift. Es sind keine Hilfsmittel erlaubt. Weitere leere Blätter sind bei der Aufsicht erhältlich. Diese werden bei Ausgabe an die Klausur geheftet. Viel Erfolg! Aufgabe Σ Punkte erreicht von möglichen Note Unterschrift

2 Aufgabe 1 ( = 16 Punkte) Seien Π = {P, Q, R} eine Menge von Aussagenvariablen und F die folgende Formel über Π ( ( ( ) ) ( ) ) F = P P Q P Q a) Geben Sie eine Wahrheitstabelle an, in der Sie die Wahrheitswerte für sämtliche Teilformeln von F angeben. Bedenken Sie, dass auch F eine Teilformel von F ist. P Q /3 P b) Vervollständigen Sie die folgenden beiden Definitionen Eine aussagenlogische Formel ist erfüllbar (und somit nicht unerfüllbar) genau dann, wenn Eine aussagenlogische Formel ist allgemeingültig genau dann, wenn 1

3 c) Die folgende Tabelle zeigt die Wahrheitswerte für die beiden Formeln G und H P Q R G H /3 P /1 P /1 P c.1) Kreuzen Sie in der folgenden Tabelle an, welche Eigenschaften G hat. erfüllbar unerfüllbar allgemeingültig ja nein c.2) Kreuzen Sie in der folgenden Tabelle an, welche Beziehungen zwischen G und H gelten. G = H H = G H G ja nein c.3) Geben Sie mit Hilfe der Wahrheitstabelle von G in c) eine disjunktive Normalform von G an. c.4) Geben Sie mit Hilfe der Wahrheitstabelle von G in c) eine konjunktive Normalform von G an. 2

4 d) Kreuzen Sie an, welche der folgenden Aussagen zutreffen oder nicht zutreffen. Punktevergabe Pro korrektem Kreuz werden 0.5 Punkte vergeben. Pro inkorrektem Kreuz werden 0.5 Punkte abgezogen. Für diese Aufgabe werden insgesamt mindestens 0 Punkte vergeben. Seien F und G zwei beliebige Formeln. F = G genau dann, wenn... wahr F G allgemeingültig ist. G F unerfüllbar ist. ein Tableau für F G geschlossen werden kann. mit Resolution die leere Klausel für F G hergeleitet werden kann. falsch /4 P Sei F eine beliebige Formel. F ist allgemeingültig genau dann, wenn... wahr falsch es eine allgemeingültige Formel G gibt mit F = G. mit Resolution nicht die leere Klausel für F hergeleitet werden kann. F F unerfüllbar ist. F = F. /16 P 3

5 4

6 Aufgabe 2 ( = 8 Punkte) Seien Π = {P, Q, R, S, U, W } eine Menge von Aussagenvariablen und F die folgende Formel über Π in der Schreibweise als Konjunktion von Implikationen F = (1) P (2) Q (3) P, R S (4) S R (5) P U (6) P, U W (7) U, W S (8) U, S Q /1 P a) Vervollständigen Sie die folgende Definition Eine Formel ist eine Horn-Formel genau dann, wenn b) Verwenden Sie den Markierungsalgorithmus, um die Erfüllbarkeit von F zu untersuchen. Geben Sie explizit für jeden Schritt an, welche Atome markiert werden, und wieso die Markierung zustande kommt. Achten Sie darauf, dass bei der Ausführung in jeder Zeile nur genau eine neue Markierung hinzukommt. /5 P Markiert Erklärung

7 c) Verwenden Sie das Ergebnis aus b), um eine begründete Aussage zur Erfüllbarkeit von F zu machen. Geben Sie im Falle der Erfüllbarkeit das Modell an, dass in b) hergeleitet wurde. Erfüllbar Ja Nein Begründung Modell /8 P 6

8 Aufgabe 3 (4+1 = 5 Punkte) Seien Π = {P, Q, R, S, T, U, W } eine Menge von Aussagenvariablen und N die folgende Klauselmenge über Π N = {{S, U}, {P, W }, {R, U}, {T, Q}, {T, S}, {W, P }, { R, U}, { S, T }} a) Verwenden Sie den Resolutionskalkül (in Mengennotation), um die Erfüllbarkeit von N zu untersuchen. /4 P (1) {S, U} (2) {P, W } (3) {R, U} (4) {T, Q} (5) {T, S} (6) {W, P } (7) { R, U} (8) { S, T } b) Verwenden Sie das Ergebnis aus a), um eine begründete Aussage zur Erfüllbarkeit von N zu machen. Erfüllbar Ja Nein /1 P /5 P Begründung

9 Aufgabe 4 (5+2 = 7 Punkte) Seien Π = {P, Q} eine Menge von Aussagenvariablen und F die folgende Formel über Π ( ) ( ) ( ) P (Q P ) P Q a) Bilden Sie ein vollexpandiertes Tableau, um die Erfüllbarkeit von F zu untersuchen. Führen Sie keine Vereinfachungen an der gegebenen Formel durch. /5 P b) Verwenden Sie das Ergebnis aus a), um eine begründete Aussage zur Erfüllbarkeit von F zu machen. Erfüllbar Ja Nein /7 P Begründung

10 Aufgabe 5 (3+7 = 10 Punkte) /3 P a) Geben Sie die allgemeinste Struktur eines Beweises mit struktureller Induktion über den Aufbau der Formeln in der Aussagenlogik an b) Sei Π eine Menge von Aussagenvariablen und sei For {,, } Π die Menge der aussagenlogischen Formeln über Π die als Operatoren nur, und enthalten, d.h. die Operatoren, kommen in Formeln aus For {,, } Π nicht vor. Sei ferner die die Funktion α über Formeln aus For {,, } Π wie folgt definiert Für jede aussagenlogische Formel F For {,, } Π wenn F = wenn F = P wenn F = P Π α(f ) = α(f 1 ) wenn F = F 1 α(f 1 ) α(f 2 ) wenn F = F 1 F 2 α(f 1 ) α(f 2 ) wenn F = F 1 F 2 Zeigen Sie mit Hilfe der strukturellen Induktion über den Aufbau von aussagenlogischen Formeln, dass für jede aussagenlogische Formel F For {,, } Π gilt α(f ) F 9

11 /7 P /10 P 10

12 Aufgabe 6 ( = 10 Punkte) Sei Σ = (Ω, Π) eine Signatur, wobei Ω = {a/0, b/0}, und Π = {q/2, p/3, r/4}. Ferner seien X eine Menge von Variablen und u, w, x, y, z X. /1 P a) Geben Sie für die folgende Formel über Σ und X eine äquivalente Formel in Negationsnormalform an. ( ) x p(x, y, b) r(x, y, z, a) b) Geben Sie für die folgende Formel über Σ und X eine äquivalente Formel in bereinigter Form an. ( ) ) w x ( y z r(x, z, y, b) r(x, y, z, a) q(w, y) c) Geben Sie für die folgende Formel über Σ und X eine äquivalente Formel in Pränexnormalform an. ( ) ( ( ) ) u w r(a, w, b, u) x y q(y, x) q(x, y)

13 d) Bringen Sie die folgende Formel über Σ und X in Skolemnormalform ( ( ) ) x y u w z r(a, x, w, u) p(x, y, a) p(y, a, z) /1 P e) Geben Sie für die folgende Formel über Σ und X eine äquivalente Formel mit Matrix in konjunktiver Normalform an. ( ( ( ) ( ) )) x y q(x, y) q(x, a) q(x, x) q(a, y) q(b, x) f) Stellen Sie die folgende Formel über Σ und X als Klauselmenge dar. x y ( ( q(y, a) ) ( ) ( ) ) q(a, y) p(a, x, x) q(x, a) q(x, a) /10 P 12

14 Aufgabe 7 (2+3+3 = 8 Punkte) Sei Σ = (Ω, Π) eine Signatur, wobei Ω = {1/0, f/2, g/2, h/2}, und Π = { /2}. Ferner seien X eine Menge von Variablen und x, y, z X. Gegeben sind die Struktur A und die Belegung β A = (Q, mit { 1 A Q, f A Q Q Q, g A Q Q Q, h A Q Q Q }, { A }) 1 A = 4 Q f A (q 1, q 2 ) = q 1 q 2 Q für alle q 1, q 2 Q g A (q 1, q 2 ) = q 1 + q 2 Q für alle q 1, q 2 Q h A (q 1, q 2 ) = q 1 q 2 Q für alle q 1, q 2 Q A = {(q, q) q Q} β X Q, definiert durch β(x) = 1, β(y) = 0, β(z) = 3 Evaluieren Sie die folgenden Terme und Formeln in klaren und leicht nachvollziehbaren Schritten. I) A(β) ( ( g h ( f(x, y), g(y, x) ) ) ),

15 /3 P /3 P ( II) A(β) x y ( g ( f(y, y), h(x, x) ) ) ) ( III) A(β) y z ( ) ) h(f(y, z), g(y, z)) g(x, x) /8 P 14

16 Aufgabe 8 ( = 8 Punkte) Seien Ω = {a/0, h/1, f/2, g/3} eine Menge von Funktionssymbolen, X eine Menge von Variablen und u, w, x, y X. a) Verwenden Sie den Martelli-Montanari-Algorithmus, um die Unifizierbarkeit der beiden gegebenen Unifikationsprobleme über Ω und X zu untersuchen. Jeder Schritt soll der Anwendung genau einer Instanz einer Regel entsprechen. I) {g(f(x, y), h(w), a)? = g(u, h(f(a, u)), y), u? = f(w, a)} II) {g(f(x, y), h(x), y)? = g(u, h(h(a)), a), f(w, a)? = f(f(u, a), a)} 15

17 b) Verwenden Sie die Ergebnisse aus a), um eine begründete Aussage zur Unifizierbarkeit der beiden Unifikationsprobleme zu machen. Geben Sie im Falle der Unifizierbarkeit den Unifikator an, der in a) hergeleitet wurde. I) Unifizierbar Ja Nein /8 P Begründung Unifikator II) Unifizierbar Ja Nein Begründung Unifikator 16

18 Aufgabe 9 ( = 15 Punkte) Sei Σ = (Ω, Π) eine Signatur, wobei Ω = {a/0, Π = {p/2, f/1}, und q/3}. Ferner seien X eine Menge von Variablen und x, y, z X. a) Geben Sie die allgemeine Form der prädikatenlogischen Faktorisierungsregel (für Klauseln in Mengennotation) an. /3 P b) Geben Sie die allgemeine Form der prädikatenlogischen Resolutionsregel (für Klauseln in Mengennotation) an. /4 P 17

19 c) Untersuchen Sie, welche der folgenden Klauseln über Σ und X faktorisierbar sind. Ist eine Klausel faktorisierbar, geben Sie sämtliche Faktoren und die verwendeten Unifikatoren an. Führen Sie dabei die Substitution im Ergebnis explizit aus. Ist eine Klausel nicht faktorisierbar, oder ist die Faktorisierung bestimmter Literale nicht möglich begründen Sie, warum dem so ist. Dass eine Faktorisierung nicht möglich ist, weil Literale verschiedene Prädikatensymbole haben, brauchen Sie nicht zu erwähnen. I) { p(f(x), y), p(f(y), f(x)), q(x, y, z) } II) { p(f(x), x), p(f(f(y)), z), p(z, z), q(x, y, z) } /4 P 18

20 d) Seien die folgenden Klauseln gegeben (1) { p(f(x), x), q(f(y), y, a) } (2) { p(x, y), q(y, y, x) } (3) { p(y, y), p(f(y), z), q(y, f(y), a) } Bilden Sie sämtliche Resolventen, die sich mit der Resolutionsregel aus den folgenden Klauseln über Σ und X bilden lassen (1) und (2), (2) und (3), (1) und (3) geben Sie dabei explizit verwendeten Unifikatoren und durchgeführten Umbenennungen an. Verwenden Sie dafür die vorgegebenen Antwortschablonen. Führen Sie dabei die Substitution im Ergebnis explizt aus. Hinweis Die Anzahl der vorgegebenen Antwortschablonen muss nicht der Anzahl der herleitbaren Resolventen entsprechen. Umbenennungen ( ) { } ( ) { } mit mgu = Umbenennungen ( ) { } ( ) { } mit mgu = Umbenennungen ( ) { } ( ) { } mit mgu = 19

21 Umbenennungen ( ) { } ( ) { } mit mgu = Umbenennungen ( ) { } ( ) { } mit mgu = Umbenennungen ( ) { } ( ) { } /4 P mit mgu = /15 P 20

22 Aufgabe 10 (5+2 = 7 Punkte) Sei Σ = (Ω, Π) eine Signatur, wobei Ω = {f/1}, und Π = {p/1}. Ferner seien X eine Menge von Variablen und x, y, z X und sei F die folgenden Formel über Σ und X ( ( ) ) F = x p(x) y p(y) p(f(y)) p(f(f(x))) a) Verwenden Sie den Tableaukalkül mit freien Variablen, um die Erfüllbarkeit von F zu untersuchen. Führen Sie keine Vereinfachungen an der gegebenen Formel durch. Hinweis Beachten Sie, dass es möglich ist, eine Regel mehrmals auf einen Knoten anzuwenden. /5 P 21

23 b) Verwenden Sie das Ergebnis aus a), um eine begründete Aussage zur Erfüllbarkeit von F zu machen. Erfüllbar Ja Nein Begründung /7 P 22

24 Aufgabe 11 (6 Punkte) Schreiben Sie das Prologprädikat ver(l,l1,l2) (verteilen), das als Argument drei beliebig lange Listen von Atomen erwartet. ver(l,l1,l2) ist genau dann wahr, wenn 1.) die Länge von L ungerade ist und 2.) es in L nicht zwei gleiche Atome gibt, die direkt nebeneinander liegen und 3.) L1 alle Atome (in gleicher Reihenfolge) enthält, die in L an ungerader Stelle stehen und 4.) L2 alle Atome (in gleicher Reihenfolge) enthält, die in L an gerader Stelle stehen. Sie müssen die folgenden Arten von Eingaben beachten L, L1 und L2 sind Listen von Atomen mit beliebiger Laenge, L, L1 und L2 sind Variablen Beim Aufruf mit Variablen sollen diese entsprechend mit konkreten Werten belegt werden, sodass das Prädikat wahr ergibt. Prolog soll für jeden Aufruf exakt eine Antwort zurück geben, es gibt also keine Möglichkeit nach weiteren Antworten zu fragen. Bis auf die folgenden Ausnahmen dürfen Sie keine built-in Prädikate verwenden den Cut-Operator!, das Prädikat fail, das immer falsch ist, Verwendung von Arithmetik ist nicht gestattet. Zur Verdeutlichung der Funktion von ver einige korrekte Beispielaufrufe /6 P Eingabe Ausgabe Eingabe Ausgabe ver([a], [a], []). true ver([a,b,a,b,a], [a,a,a], [b,b]). true ver([b,a,c], [b,c], [a]). true ver([a,b,c,b,d], [a,c,d], [b,b]). true ver([a,b], [a], [b]). false ver([a,a,c,d,e], [a,c,e], [a,d]). false ver([a,b,c], [c,a], [b]). false ver([a,b,b,d,e], [a,b,e], [b,d]). false ver([a,b,c], [b], [c,a]). false ver([a,b,c,c,e], [a,c,e], [b,c]). false ver([a,b,c], [a,b,c], [a,b,c]). false ver([a,b,c,d,d], [a,c,d], [b,d]). false /6 P 23

25

Hauptklausur zur Vorlesung Logik für Informatiker im Sommersemester 2012 Lösung

Hauptklausur zur Vorlesung Logik für Informatiker im Sommersemester 2012 Lösung Universität Koblenz-Landau FB 4 Informatik Prof. Dr. Viorica Sofronie-Stokkermans 23.07.2012 Dipl.-Inform. Markus Bender Hauptklausur zur Vorlesung Logik für Informatiker im Sommersemester 2012 Lösung

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 12. Prädikatenlogik Resolution Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Zur Erinnerung Definition: Aussagenlogische

Mehr

Musterlösung der Klausur zur Vorlesung Logik für Informatiker

Musterlösung der Klausur zur Vorlesung Logik für Informatiker Musterlösung der Klausur zur Vorlesung Logik für Informatiker Bernhard Beckert Christoph Gladisch Claudia Obermaier Arbeitsgruppe Künstliche Intelligenz Fachbereich Informatik, Universität Koblenz-Landau

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 5 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Normalformen Atome, Literale, Klauseln Konjunktive

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 6 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 5. Aussagenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Normalformen Definition: Literal Atom (aussagenlogische

Mehr

Klausur Formale Systeme Fakultät für Informatik 2. Klausur zum WS 2010/2011

Klausur Formale Systeme Fakultät für Informatik 2. Klausur zum WS 2010/2011 Fakultät für Informatik 2. Klausur zum WS 2010/2011 Prof. Dr. Bernhard Beckert 08. April 2011 Vorname: Matrikel-Nr.: Platz: Klausur-ID: **Platz** **Id** Die Bearbeitungszeit beträgt 60 Minuten. A1 (17)

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 06.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax (Formeln) Semantik Wertebelegungen/Valuationen/Modelle

Mehr

Klausur Formale Systeme Fakultät für Informatik SS Prof. Dr. Bernhard Beckert. 3. August Die Bearbeitungszeit beträgt 60 Minuten.

Klausur Formale Systeme Fakultät für Informatik SS Prof. Dr. Bernhard Beckert. 3. August Die Bearbeitungszeit beträgt 60 Minuten. Name: Vorname: Klausur Formale Systeme Fakultät für Informatik Matrikel-Nr.: SS 2017 Prof. Dr. Bernhard Beckert 3. August 2017 Die Bearbeitungszeit beträgt 60 Minuten. A1 (14) A2 (6) A3 (6) A4 (8) A5 (11)

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 6. Aussagenlogik Resolution Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Der aussagenlogische Resolutionkalkül Wesentliche

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 11. Prädikatenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Negationsnormalform Definition: Negationsnormalform

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 3. Prädikatenlogik Teil 7 26.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Unser Ziel Kalküle zur systematischen Überprüfung von

Mehr

Klausur Formale Systeme Fakultät für Informatik SS Prof. Dr. Bernhard Beckert. 31. Juli Die Bearbeitungszeit beträgt 60 Minuten.

Klausur Formale Systeme Fakultät für Informatik SS Prof. Dr. Bernhard Beckert. 31. Juli Die Bearbeitungszeit beträgt 60 Minuten. Name: Vorname: Klausur Formale Systeme Fakultät für Informatik Matrikel-Nr.: SS 2015 Prof. Dr. Bernhard Beckert 31. Juli 2015 Die Bearbeitungszeit beträgt 60 Minuten. A1 (10) A2 (8) A3 (6) A4 (7) A5 (9)

Mehr

Einführung in die Logik, Übungsklausur 2016/07/11

Einführung in die Logik, Übungsklausur 2016/07/11 Institut für Theoretische Informatik ITI Dr. Jürgen Koslowski Einführung in die Logik, Übungsklausur 2016/07/11 Diese Aufgaben werden in der Extra-Übung am Freitag, 2016-07-15, 13:15, im SN 19.4 besprochen,

Mehr

Ralf Möller, TUHH. Beim vorigen Mal: Heute: Prädikatenlogik: Algorithmus für Erfüllbarkeitsproblem. Lernziele: Beweisverfahren für Prädikatenlogik

Ralf Möller, TUHH. Beim vorigen Mal: Heute: Prädikatenlogik: Algorithmus für Erfüllbarkeitsproblem. Lernziele: Beweisverfahren für Prädikatenlogik Ralf Möller, TUHH Beim vorigen Mal: Heute: Prädikatenlogik: Algorithmus für Erfüllbarkeitsproblem Lernziele: Beweisverfahren für Prädikatenlogik Danksagung Bildmaterial: S. Russell, P. Norvig, Artificial

Mehr

Modellierungsmethoden der Informatik Kapitel 2: Logikkalküle

Modellierungsmethoden der Informatik Kapitel 2: Logikkalküle smethoden der Informatik Kapitel 2: Logikkalküle Prädikatenlogik 1. Stufe Norbert Fuhr Gudrun Fischer 29.11.2005 Organisatorisches Organisatorisches Klausur Termin: 20.2.2006, 13-15 Uhr, Audimax Anmeldung

Mehr

Modellierungsmethoden der Informatik Kapitel 2: Logikkalküle

Modellierungsmethoden der Informatik Kapitel 2: Logikkalküle smethoden der Informatik Kapitel 2: Logikkalküle Prädikatenlogik 1. Stufe Norbert Fuhr Gudrun Fischer 29.11.2005 Organisatorisches Organisatorisches Klausur Termin: 20.2.2006, 13-15 Uhr, Audimax Anmeldung

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 4 7.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

Klausur Formale Systeme Fakultät für Informatik WS 2015/2016. Prof. Dr. Bernhard Beckert. 4. März **Vorname** **Familienname** **Matr.-Nr.

Klausur Formale Systeme Fakultät für Informatik WS 2015/2016. Prof. Dr. Bernhard Beckert. 4. März **Vorname** **Familienname** **Matr.-Nr. Klausur Formale Systeme Fakultät für Informatik WS 2015/2016 Prof. Dr. Bernhard Beckert Vorname: Name: Matrikel-Nr.: Platz-Nr.: Code: 4. März 2016 **Vorname** **Familienname** **Matr.-Nr.** **Hörsaal**

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 4 07.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Gestern Normalformen Atome, Literale, Klauseln Konjunktive

Mehr

Formale Systeme, WS 2012/2013. Lösungen zu Übungsblatt 7

Formale Systeme, WS 2012/2013. Lösungen zu Übungsblatt 7 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter H. Schmitt David Faragó, Christoph Scheben, Mattias Ulbrich Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt

Mehr

SLD-Ableitungsbäume. G = B 1... B m. G die Menge aller SLD-Resolventen von G und definiten. G einen Nachfolger, der mit G markiert ist.

SLD-Ableitungsbäume. G = B 1... B m. G die Menge aller SLD-Resolventen von G und definiten. G einen Nachfolger, der mit G markiert ist. SLD-Ableitungsbäume Definition 5.48 Sei P ein definites Programm und G ein definites Ziel. Ein SLD-Ableitungsbaum ist ein Baum, der die folgenden Bedingungen erfüllt: 1. Jeder Knoten des Baums ist mit

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 4. Aussagenlogik Syntax und Semantik der Aussagenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der Aussagenlogik:

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 3. Prädikatenlogik Teil 6 25.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letzte Vorlesungen Prädikatenlogik: Syntax Semantik

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 5 8.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

Resolution für die Aussagenlogik

Resolution für die Aussagenlogik Resolution für die Aussagenlogik Der Resolutionskakül ist ein Beweiskalkül, der auf Klauselmengen, d.h. Formeln in KNF arbeitet und nur eine Schlußregel besitzt. Der Resolution liegt die folgende Vorstellung

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 10 4.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Organisatorisches Hauptklausur: Montag, 23.07.2012, 16:00-18:00,

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 13. Prädikatenlogik Der Satz von Herbrand Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Semantische Bäume Eine klassische

Mehr

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/37

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/37 Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/37 Modellierungsaufgabe Es gibt drei Tauben und zwei Löcher. Jede Taube soll in

Mehr

Beweisen mit Semantischen Tableaux

Beweisen mit Semantischen Tableaux Beweisen mit Semantischen Tableaux Semantische Tableaux geben ein Beweisverfahren, mit dem ähnlich wie mit Resolution eine Formel dadurch bewiesen wird, dass ihre Negation als widersprüchlich abgeleitet

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 3. Aussagenlogik Syntax und Semantik der Aussagenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.16 Syntax der Aussagenlogik:

Mehr

Prädikatenlogische Entscheidbarkeitsprobleme

Prädikatenlogische Entscheidbarkeitsprobleme Prädikatenlogische Entscheidbarkeitsprobleme Erfüllbarkeitsproblem: Gegeben: prädikatenlogischer Ausdruck A über einer Signatur S Frage: Ist A erfüllbar? Gültigkeitsproblem: Gegeben: prädikatenlogischer

Mehr

Logik für Informatiker Musterlösung Aufgabenblatt 11

Logik für Informatiker Musterlösung Aufgabenblatt 11 Universität Koblenz-Landau SS 06 Institut für Informatik Bernhard Beckert www.uni-koblenz.de/~beckert Christoph Gladisch www.uni-koblenz.de/~gladisch Claudia Obermaier www.uni-koblenz.de/~obermaie Übung

Mehr

Klauselmengen. Definition Sei

Klauselmengen. Definition Sei Klauselmengen Definition 2.38 Sei α = (p 11... p 1k1 )... (p n1... p nkn ) eine in aussagenlogische Formel in KNF. Dann heißen die Mengen {p i1,..., p iki }, 1 i n, der jeweils disjunktiv verknüpften Literale

Mehr

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25 Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/25 Einführendes Beispiel Falls Lisa Peter trifft, dann trifft Lisa auch Gregor.

Mehr

TU5 Aussagenlogik II

TU5 Aussagenlogik II TU5 Aussagenlogik II Daniela Andrade daniela.andrade@tum.de 21.11.2016 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;)

Mehr

Übung 4: Aussagenlogik II

Übung 4: Aussagenlogik II Übung 4: Aussagenlogik II Diskrete Strukturen im Wintersemester 2013/2014 Markus Kaiser 8. Januar 2014 1/10 Äquivalenzregeln Identität F true F Dominanz F true true Idempotenz F F F Doppelte Negation F

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 3. Prädikatenlogik Teil 3 12.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Semantik Semantik geben bedeutet für logische Systeme,

Mehr

TU9 Aussagenlogik. Daniela Andrade

TU9 Aussagenlogik. Daniela Andrade TU9 Aussagenlogik Daniela Andrade daniela.andrade@tum.de 18.12.2017 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;) 2 /

Mehr

Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln

Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Frank Heitmann heitmann@informatik.uni-hamburg.de 9. Juni 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/36 Ersetzbarkeitstheorem

Mehr

Diskrete Strukturen Wiederholungsklausur

Diskrete Strukturen Wiederholungsklausur Technische Universität München (I7) Winter 2013/14 Prof. J. Esparza / Dr. M. Luttenberger LÖSUNG Diskrete Strukturen Wiederholungsklausur Beachten Sie: Soweit nicht anders angegeben, ist stets eine Begründung

Mehr

Aufgabe 13 (Markierungsalgorithmus). Gegeben ist die Formel F = (A D C) (E A) ( ( B D) E) A B (B D)

Aufgabe 13 (Markierungsalgorithmus). Gegeben ist die Formel F = (A D C) (E A) ( ( B D) E) A B (B D) INTA - Lösungshinweise zum Übungsblatt 4, Version 1.0α. Wenn sie Fehler finden oder Ihnen etwas auch nach dem Gespräch mit ihren Kommilitonen noch unklar ist, dann schicken sie mir bitte eine Email! Aufgabe

Mehr

Logik für Informatiker Logic for Computer Scientists

Logik für Informatiker Logic for Computer Scientists Logik für Informatiker Logic for Computer Scientists Till Mossakowski Wintersemester 2014/15 Till Mossakowski Logik 1/ 18 Vollständigkeit der Aussagenlogik Till Mossakowski Logik 2/ 18 Objekt- und Metatheorie

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 2 28.04.2015 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Organisatorisches Termine Donnerstags: 30.04.2015 nicht

Mehr

Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen. notwendig: Existenz- und Allaussagen

Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen. notwendig: Existenz- und Allaussagen Prädikatenlogik 1. Stufe (kurz: PL1) Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen notwendig: Existenz- und Allaussagen Beispiel: 54 Syntax der Prädikatenlogik erster Stufe (in der

Mehr

Allgemeingültige Aussagen

Allgemeingültige Aussagen Allgemeingültige Aussagen Definition 19 Eine (aussagenlogische) Formel p heißt allgemeingültig (oder auch eine Tautologie), falls p unter jeder Belegung wahr ist. Eine (aussagenlogische) Formel p heißt

Mehr

Zusammenfassung des Stoffes zur Vorlesung Formale Systeme

Zusammenfassung des Stoffes zur Vorlesung Formale Systeme Zusammenfassung des Stoffes zur Vorlesung Formale Systeme Max Kramer 13. Februar 2009 Diese Zusammenfassung entstand als persönliche Vorbereitung auf die Klausur zur Vorlesung Formale Systeme von Prof.

Mehr

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2.

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2. Theorie der Informatik 24. Februar 2014 2. Aussagenlogik II Theorie der Informatik 2. Aussagenlogik II 2.1 Äquivalenzen Malte Helmert Gabriele Röger 2.2 Vereinfachte Schreibweise Universität Basel 24.

Mehr

7. Prädikatenlogik. Aussagenlogik hat wünschenswerte Eigenschaften wie Korrektheit, Vollständigkeit, Entscheidbarkeit.

7. Prädikatenlogik. Aussagenlogik hat wünschenswerte Eigenschaften wie Korrektheit, Vollständigkeit, Entscheidbarkeit. 7. Prädikatenlogik Aussagenlogik hat wünschenswerte Eigenschaften wie Korrektheit, Vollständigkeit, Entscheidbarkeit. Aber: Aussagenlogik ist sehr beschränkt in der Ausdrucksmächtigkeit. Wissen kann nur

Mehr

4.0 VU Theoretische Informatik und Logik Teil 2 zum SS

4.0 VU Theoretische Informatik und Logik Teil 2 zum SS 4.0 VU Theoretische Informatik und Logik Teil 2 zum SS 2011 11.1.2012 Matrikelnummer Familienname Vorname Gruppe Lösung A 6.) Es gelten folgende Aussagen: (a) Wenn Ada groß ist, dann ist Berta klein, aber

Mehr

Klausur zur Vorlesung Mathematische Logik

Klausur zur Vorlesung Mathematische Logik Universität Heidelberg 13. Februar 2014 Institut für Informatik Prof. Dr. Klaus Ambos-Spies Dipl.-Math. Thorsten Kräling Klausur zur Vorlesung Mathematische Logik Musterlösung Aufgabe 1 (Aussagenlogik

Mehr

Resolution und Regeln

Resolution und Regeln Resolution und Regeln Hans Kleine Büning University of Paderborn Institute for Computer Science Group Paderborn, 18. Juli 2013 Resolution und Regeln Hans Kleine Büning 1/9 Resolution Theorem Resolution:

Mehr

Resolutionskalkül. wird t als eine Menge K t von Klauseln geschrieben, welche die einzelnen Maxterme repräsentieren:

Resolutionskalkül. wird t als eine Menge K t von Klauseln geschrieben, welche die einzelnen Maxterme repräsentieren: Resolutionskalkül Ein Kalkül ist eine Kollektion von syntaktischen Umformungsregeln, die unter gegebenen Voraussetzungen aus bereits vorhandenen Formeln neue Formeln erzeugen. Der Resolutionskalkül besteht

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 9. Prädikatenlogik Syntax und Semantik der Prädikatenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der

Mehr

Aussagenlogik. Formale Methoden der Informatik WiSe 2012/2013 teil 6, folie 1

Aussagenlogik. Formale Methoden der Informatik WiSe 2012/2013 teil 6, folie 1 Aussagenlogik Formale Methoden der Informatik WiSe 22/23 teil 6, folie Teil VI: Aussagenlogik. Einführung 2. Boolesche Funktionen 3. Boolesche Schaltungen Franz-Josef Radermacher & Uwe Schöning, Fakultät

Mehr

Beispiel Aussagenlogik nach Schöning: Logik...

Beispiel Aussagenlogik nach Schöning: Logik... Beispiel Aussagenlogik nach Schöning: Logik... Worin besteht das Geheimnis Ihres langen Lebens? wurde ein 100-jähriger gefragt. Ich halte mich streng an die Diätregeln: Wenn ich kein Bier zu einer Mahlzeit

Mehr

Aufgabe Bonus.1. Aufgabe Bonus.2. Aufgabe Bonus.3. Aufgabe Bonus.4. HTWK Leipzig, Fakultät IMN Prof. Dr. Sibylle Schwarz

Aufgabe Bonus.1. Aufgabe Bonus.2. Aufgabe Bonus.3. Aufgabe Bonus.4. HTWK Leipzig, Fakultät IMN Prof. Dr. Sibylle Schwarz HTWK Leipzig, Fakultät IMN Prof. Dr. Sibylle Schwarz sibylle.schwarz@htwk-leipzig.de Bonus. Übung zur Vorlesung Modellierung Wintersemester 2017/18 Lösungen bis 3. Januar 2018 einzusenden im Opal-Kurs

Mehr

Klausur Formale Systeme Fakultät für Informatik WS 2009/2010. Prof. Dr. Bernhard Beckert. 18. Februar 2010

Klausur Formale Systeme Fakultät für Informatik WS 2009/2010. Prof. Dr. Bernhard Beckert. 18. Februar 2010 Klausur Formale Systeme Fakultät für Informatik Name: Mustermann Vorname: Peter Matrikel-Nr.: 0000000 Klausur-ID: 0000 WS 2009/2010 Prof. Dr. Bernhard Beckert 18. Februar 2010 A1 (15) A2 (10) A3 (10) A4

Mehr

Fakultät für Informatik Universität Magdeburg Jürgen Dassow. Vorbemerkungen

Fakultät für Informatik Universität Magdeburg Jürgen Dassow. Vorbemerkungen Vorbemerkungen if (x > y) z = x; else z = y; Wenn es blaue Tiger regnet, dann fressen alle Kirschbäume schwarze Tomaten. q(1) = 1, q(i) = q(i 1) + 2i 1 für i 2 Welchen Wert hat q(6)? 24 ist durch 2 teilbar.

Mehr

Erfüllbarkeitstests. Im folgenden: Ein sehr effizienter Erfüllbarkeitstest für eine spezielle Klasse von Formeln in KNF, sogenannte Hornformeln (vgl.

Erfüllbarkeitstests. Im folgenden: Ein sehr effizienter Erfüllbarkeitstest für eine spezielle Klasse von Formeln in KNF, sogenannte Hornformeln (vgl. Erfüllbarkeitstests Im folgenden: Ein sehr effizienter Erfüllbarkeitstest für eine spezielle Klasse von Formeln in KNF, sogenannte Hornformeln (vgl. Grundlagen und diskrete Strukturen ) Ein für Formeln

Mehr

Formale Systeme, WS 2013/2014. Lösungen zu Übungsblatt 5

Formale Systeme, WS 2013/2014. Lösungen zu Übungsblatt 5 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter H. Schmitt Dr. V. Klebanov, Dr. M. Ulbrich, C. Scheben Formale Systeme, WS 2013/2014 Lösungen zu Übungsblatt 5 Dieses

Mehr

Formale Systeme. Prof. Dr. Bernhard Beckert. Winter 2008/2009. Fakultät für Informatik Universität Karlsruhe (TH)

Formale Systeme. Prof. Dr. Bernhard Beckert. Winter 2008/2009. Fakultät für Informatik Universität Karlsruhe (TH) Formale Systeme Prof. Dr. Bernhard Beckert Fakultät für Informatik Universität Karlsruhe (TH) Winter 2008/2009 Prof. Dr. Bernhard Beckert Formale Systeme Winter 2008/2009 1 / 22 Kalküle für die Aussagenlogik

Mehr

1 Aussagenlogik. 1.1 Aussagen. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage) Aussage = Behauptung Beispiele: Es regnet.

1 Aussagenlogik. 1.1 Aussagen. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage) Aussage = Behauptung Beispiele: Es regnet. Grundlagen der Mathematik für Informatiker 1 1 Aussagenlogik 1.1 Aussagen Aussage = Behauptung Beispiele: Es regnet. Die Straße ist naß. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage)

Mehr

Logische Äquivalenz. Definition Beispiel 2.23

Logische Äquivalenz. Definition Beispiel 2.23 Logische Äquivalenz Definition 2.22 Zwei aussagenlogische Formeln α, β A heißen logisch äquivalent, falls für jede Belegung I von α und β gilt: Schreibweise: α β. Beispiel 2.23 Aus Folgerung 2.6 ergibt

Mehr

Formale Systeme. Tableaukalku l (ohne Gleichheit) Prof. Dr. Bernhard Beckert, WS 2015/ KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK

Formale Systeme. Tableaukalku l (ohne Gleichheit) Prof. Dr. Bernhard Beckert, WS 2015/ KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert, WS 2015/2016 Tableaukalku l (ohne Gleichheit) KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK KIT Universita t des Landes Baden-Wu rttemberg und nationales Forschungszentrum

Mehr

Diskrete Modellierung (SS 08) Klausur (Modulabschlussprüfung)

Diskrete Modellierung (SS 08) Klausur (Modulabschlussprüfung) Johann Wolfgang Goethe-Universität Frankfurt am Main 8. September 2008 Institut für Informatik Theorie komplexer Systeme Prof. Dr. Nicole Schweikardt Diskrete Modellierung (SS 08) Klausur (Modulabschlussprüfung)

Mehr

Formale Systeme. Prof. Dr. Bernhard Beckert, WS 2016/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Formale Systeme. Prof. Dr. Bernhard Beckert, WS 2016/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft Formale Systeme Prof. Dr. Bernhard Beckert, WS 2016/2017 Aussagenlogik: Tableaukalku l KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Mehr

Jeder Aussage p kann ein Wahrheitswert W(p) {0, 1} zugeordnet werden. Beispiele: W(Es regnet.) =? (je nach Lage der Dinge) W(Die Straße ist naß.) =?

Jeder Aussage p kann ein Wahrheitswert W(p) {0, 1} zugeordnet werden. Beispiele: W(Es regnet.) =? (je nach Lage der Dinge) W(Die Straße ist naß.) =? Grundlagen der Mathematik für Informatiker 1 Grundlagen der Mathematik für Informatiker 2 1 Aussagenlogik 1.1 Aussagen Aussage = Behauptung Beispiele: Es regnet. Die Straße ist naß. 15 ist eine Primzahl.

Mehr

Formale Grundlagen der Informatik 1 Kapitel 15 Normalformen und Hornformeln

Formale Grundlagen der Informatik 1 Kapitel 15 Normalformen und Hornformeln Formale Grundlagen der Informatik 1 Kapitel 15 Normalformen und Frank Heitmann heitmann@informatik.uni-hamburg.de 30. Mai 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/42 Zusammenfassung Syntax

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 3. Prädikatenlogik Teil 1 5.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Rückblick: Vor- und Nachteile von Aussagenlogik + Aussagenlogik

Mehr

Logik Vorlesung 3: Äquivalenz und Normalformen

Logik Vorlesung 3: Äquivalenz und Normalformen Logik Vorlesung 3: Äquivalenz und Normalformen Andreas Maletti 7. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen

Mehr

Grundlagen der Logik

Grundlagen der Logik Grundlagen der Logik Denken Menschen logisch? Selektionsaufgabe nach Watson (1966): Gegeben sind vier Karten von denen jede auf der einen Seite mit einem Buchstaben, auf der anderen Seite mit einer Zahl

Mehr

Tableaukalkül für Aussagenlogik

Tableaukalkül für Aussagenlogik Tableaukalkül für Aussagenlogik Tableau: Test einer Formel auf Widersprüchlichkeit Fallunterscheidung baumförmig organisiert Keine Normalisierung, d.h. alle Formeln sind erlaubt Struktur der Formel wird

Mehr

Logik Vorlesung 9: Normalformen

Logik Vorlesung 9: Normalformen Logik Vorlesung 9: Normalformen Andreas Maletti 19. Dezember 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere Eigenschaften

Mehr

Prädikatenlogik: Syntax

Prädikatenlogik: Syntax Prädikatenlogik: Syntax Signatur : Welche Zeichen gibt es? Funktionssymbole Prädikatensymbol (Eigenschaften) Terme: Variablen f(t 1,... t n ) wenn t i Terme und f Funktionssymbol Formeln: P (t 1,... t

Mehr

Einführung in die Logik (Vorkurs)

Einführung in die Logik (Vorkurs) Einführung in die Logik (Vorkurs) Jürgen Koslowski 2014-04-07 Ein Beispiel Familie A will im kommenden Jahr eine Waschmaschine, ein Auto und ein Moped anschaffen. Aber falls Herr A seinen üblichen Bonus

Mehr

Formale Systeme. Prädikatenlogik: Tableaukalkül (ohne Gleichheit) Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Prädikatenlogik: Tableaukalkül (ohne Gleichheit) Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz

Mehr

1 Übersicht Induktion

1 Übersicht Induktion Universität Koblenz-Landau FB 4 Informatik Prof. Dr. Viorica Sofronie-Stokkermans Dipl.-Inform. Markus Bender 0.11.01 (v1.3) 1 Übersicht Induktion 1.1 Allgemeines Unter einem induktiven Vorgehen versteht

Mehr

Terme. Dann ist auch f(t 1. Terme. Dann ist P (t 1

Terme. Dann ist auch f(t 1. Terme. Dann ist P (t 1 Prädikatenlogik 1. Syntax und Semantik Man kann die Prädikatenlogik unter einem syntaktischen und einem semantischen Gesichtspunkt sehen. Bei der Behandlung syntaktischer Aspekte macht man sich Gedanken

Mehr

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise:

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise: Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 192 Beispiel Bsp.: Betrachte Schlussweise in: 1 Wenn es regnet, dann wird die Straße nass. R N

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 3. Prädikatenlogik Teil 1 9.06.2015 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Rückblick: Vor- und Nachteile von Aussagenlogik + Aussagenlogik

Mehr

Ablauf. Formale Grundlagen der Informatik 1 Kapitel 21 Prädikatenlogische Resolution. Eine besondere Formel. Eine besondere Formel

Ablauf. Formale Grundlagen der Informatik 1 Kapitel 21 Prädikatenlogische Resolution. Eine besondere Formel. Eine besondere Formel Ablauf Formale Grundlagen der Informatik 1 Kapitel 21 Prädikatenlogische Frank Heitmann heitmann@informatik.uni-hamburg.de 30. Juni 2015 Wir werden heute die Themen aus den Kapitel 2.3, 2.4 und 2.5 aus

Mehr

Universität Heidelberg 12. April 2018 Institut für Informatik Klaus Ambos-Spies Nadine Losert. 2. Klausur zur Vorlesung Mathematische Logik

Universität Heidelberg 12. April 2018 Institut für Informatik Klaus Ambos-Spies Nadine Losert. 2. Klausur zur Vorlesung Mathematische Logik Universität Heidelberg 12. April 2018 Institut für Informatik Klaus Ambos-Spies Nadine Losert 2. Klausur zur Vorlesung Mathematische Logik Es können maximal 48 Punkte erworben werden. Die Klausur ist bestanden,

Mehr

Formale Grundlagen der Informatik 3 Kapitel 4 Prädikatenlogik Resolution

Formale Grundlagen der Informatik 3 Kapitel 4 Prädikatenlogik Resolution Formale Grundlagen der Informatik 3 Kapitel 4 Prädikatenlogik Frank Heitmann heitmann@informatik.uni-hamburg.de 30. November 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/43 Eine besondere Formel

Mehr

KLAUSURDECKBLATT Studienhalbjahr: 1. Semester. Datum: 5. März 2015 Bearbeitungszeit: 90 Minuten. Modul: TINF1002 Dozent: Jan Hladik

KLAUSURDECKBLATT Studienhalbjahr: 1. Semester. Datum: 5. März 2015 Bearbeitungszeit: 90 Minuten. Modul: TINF1002 Dozent: Jan Hladik Student/in: Unterschrift: Fakultät Studiengang: Jahrgang / Kurs : Technik Angewandte Informatik 2014 / 14K KLAUSURDECKBLATT Studienhalbjahr: 1. Semester Datum: 5. März 2015 Bearbeitungszeit: 90 Minuten

Mehr

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14 Logik Logik Vorkurs Informatik Theoretischer Teil WS 2013/14 30. September 2013 Logik > Logik > logische Aussagen Logik Logik > Logik > logische Aussagen Motivation Logik spielt in der Informatik eine

Mehr

Prädikatenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Normalformen und Grenzen der Prädikatenlogik 1. Stufe

Prädikatenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Normalformen und Grenzen der Prädikatenlogik 1. Stufe Prädikatenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Normalformen und Grenzen der Prädikatenlogik 1. Stufe 3 Teil 3: Modellierung und Beweise 4 Teil 4: Substitution, Unifikation und Resolution

Mehr

1 Aussagenlogischer Kalkül

1 Aussagenlogischer Kalkül 1 Aussagenlogischer Kalkül Ein Kalkül in der Aussagenlogik soll die Wahrheit oder Algemeingültigkeit von Aussageformen allein auf syntaktischer Ebene zeigen. Die Wahrheit soll durch Umformung von Formeln

Mehr

Formale Systeme. Das Erfu llbarkeitsproblem. Prof. Dr. Bernhard Beckert, WS 2017/2018

Formale Systeme. Das Erfu llbarkeitsproblem. Prof. Dr. Bernhard Beckert, WS 2017/2018 Formale Systeme Prof. Dr. Bernhard Beckert, WS 2017/2018 Das Erfu llbarkeitsproblem KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Mehr

Kurseinheit 1 Einführung und mathematische Grundlagen Aussagenlogik

Kurseinheit 1 Einführung und mathematische Grundlagen Aussagenlogik Kurseinheit 1 Einführung und mathematische Grundlagen Aussagenlogik Fragen Seite Punkte 1. Was ist die Mathematische Logik? 3 2 2. Was sind die Aussagenlogik und die Prädikatenlogik? 5 4 3. Was sind Formeln,

Mehr

Theoretische Informatik: Logik

Theoretische Informatik: Logik Theoretische Informatik: Logik Vorlesung mit Übungen im WS 2006/2007 Vorlesung: Montag Montag 9-10 Uhr, Raum 1603 WAneu 14-16 Uhr, Raum 1603 WAneu Beginn: Montag, den 23.10.2006, 9 15 Uhr. Übungen in 3

Mehr

Universität Koblenz-Landau Fachbereich Informatik Klausur Einführung in die Künstliche Intelligenz / WS 2003/2004. Jun.-Prof. Dr. B.

Universität Koblenz-Landau Fachbereich Informatik Klausur Einführung in die Künstliche Intelligenz / WS 2003/2004. Jun.-Prof. Dr. B. Universität Koblenz-Landau Fachbereich Informatik Klausur Einführung in die Künstliche Intelligenz / Künstliche Intelligenz für IM Name, Vorname: Matrikel-Nr.: Studiengang: WS 2003/2004 Jun.-Prof. Dr.

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 1 25.04.2017 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Grundlegende Beweisstrategien Induktion über

Mehr

Logik-Grundlagen. Syntax der Prädikatenlogik

Logik-Grundlagen. Syntax der Prädikatenlogik Logik-Grundlagen X 1 :...: X k : ( A 1 A 2... A m B 1 B 2... B n ) Logische und funktionale Programmierung - Universität Potsdam - M. Thomas - Prädikatenlogik III.1 Syntax der Prädikatenlogik Prädikat:

Mehr

Logik und Grundlagen Martin Goldstern, WS 2017/18 1

Logik und Grundlagen Martin Goldstern, WS 2017/18 1 Logik und Grundlagen Martin Goldstern, WS 2017/18 1 Hinweis: Manche (sehr wenige) der folgenden Beispiele sind falsch, manche enthalten offene Fragen, manche sind besonders schwierig. Die Lösung eines

Mehr

Formale Grundlagen der Informatik 1 Kapitel 21 Prädikatenlogische Resolution

Formale Grundlagen der Informatik 1 Kapitel 21 Prädikatenlogische Resolution Formale Grundlagen der Informatik 1 Kapitel 21 Prädikatenlogische Frank Heitmann heitmann@informatik.uni-hamburg.de 30. Juni 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/41 Ablauf Unendliche

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 3. Prädikatenlogik Teil 4 18.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letzte Vorlesung Sematik: Σ-Strukturen = (U, (f : U

Mehr

Was bisher geschah. wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min Disjunktion 2 max Negation 1 x 1 x Implikation 2 Äquivalenz 2 =

Was bisher geschah. wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min Disjunktion 2 max Negation 1 x 1 x Implikation 2 Äquivalenz 2 = Was bisher geschah (Klassische) Aussagenlogik: Aussage Wahrheitswerte 0 (falsch) und 1 (wahr) Junktoren Syntax Semantik Stelligkeit Symbol Wahrheitswertfunktion wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min

Mehr

Formale Systeme. Wiederholung. Prof. Dr. Bernhard Beckert, WS 2017/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Formale Systeme. Wiederholung. Prof. Dr. Bernhard Beckert, WS 2017/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft Formale Systeme Prof. Dr. Bernhard Beckert, WS 2017/2018 Wiederholung KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft Themen Aussagenlogik

Mehr