Aufgabe 13 (Markierungsalgorithmus). Gegeben ist die Formel F = (A D C) (E A) ( ( B D) E) A B (B D)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Aufgabe 13 (Markierungsalgorithmus). Gegeben ist die Formel F = (A D C) (E A) ( ( B D) E) A B (B D)"

Transkript

1 INTA - Lösungshinweise zum Übungsblatt 4, Version 1.0α. Wenn sie Fehler finden oder Ihnen etwas auch nach dem Gespräch mit ihren Kommilitonen noch unklar ist, dann schicken sie mir bitte eine ! Aufgabe 13 (Markierungsalgorithmus). Gegeben ist die Formel F = (A D C) (E A) ( ( B D) E) A B (B D) Wenden Sie den Markierungsalgorithmus an und bestimmen Sie ein minimales Modell für F (sofern eines existiert). Hinweis: Negieren Sie F und bestimmen Sie die KNF. Bringen Sie diese in Implikationsform und wenden Sie den Markierungsalgo an. Vergessen Sie nicht, anschließend ein minimales Modell anzugeben (wenn eines existiert) oder klar zu sagen, dass es keines gibt! Lösungshinweis: KNF: F = ((A D C) (E A) ( ( B D) E) A B (B D)) (A D C) (E A) ( ( B D) E) A B (B D) ( A D C) ( E A) ( B D E) A B ( B D) Implikationsform: F = (A D C) (E A 0) (B D E) (A 0) (1 B) (B D) Markieren: (1.1) Alle Vorkommen von B markieren (wg. (1 B)) (2.1) Alle Vorkommen von D markieren (weil B markiert und wg. (B D)) (2.2) Alle Vorkommen von E markieren (weil B, D markiert und wg. (B D E)) Weitere Markierungen sind nicht möglich. F ist also erfüllbar. Das minimale Modell A ist A(B) = A(D) = A(E) = 1, A(A) = A(C) = 0. Hinweis: Das Markieren können sie auch in der Kurzform B, D; E angeben sie sollten aber zu ihrer eigenen Sicherheit in der Formel die Vorkommen der Variablen auch wirklich graphisch markieren (damit sie nichts übersehen!). Aufgabe 14. Bringen Sie die folgende Formel in Klauselform: F = (A B C) (A B C). Beachten Sie: Es gibt hier viele mögliche Lösungen, die alle semantisch äquivalent sind. Lösungshinweis: Das ist die DNF zu der DNF/KNF-Aufgabe von Blatt 3 oben, also kann man unmittelbar die dort gefundene KNF in Klauselform bringen und die Aufgabe ist gelöst sie sollten aber die Umformungsmethode ruhig nochmal üben, um Fehler in der Klausur zu vermeiden! {{A, B, C}, {A, B, C}, {A, B, C}, {A, B, C}, { A, B, C}, { A, B, C}}. Aufgabe 15. Bestimmen Sie für die folgende Formel F die Mengen Res 0 (F ), Res 1 (F ) und Res 2 (F ): F = (A B C) (B C) ( A C) (B C) C Übrigens: Ist F unerfüllbar? Lösungshinweise: F kann man direkt in Klauselform bringen: F = { {A, B, C}, {B, C}, { A, C}, {B, C}, { C} }. Dann ergeben sie die Mengen mit den Resolventen wie folgt: 1

2 Res 0 (F ) = F Res 1 (F ) = Res 0 (F ) {{A, C}, { B, C}, {A, C, C}, {A, B, B}, {A, B}, {B}, { A, B}, { A} } (gehen sie hier einfach stur alle möglichen Paare von Klauseln durch, manchmal führt eine Paarung sogar zu zwei Resolventen: {A, B, C} und {B, C} ergeben {A, C, C} und {A, B, B} vereinfachen sie hier nicht, sondern bilden sie gemäß der Definition zu Resolventen zwei Resolventen.) Res 2 (F ) = Res 1 (F ) { {C}, {A, B}, {A}, {B, B}, {C, C}, { B}, {A, B, C}, {A, B, C}, {A, C}, {B, B, C}, {A, A, C}, {B, C, C}, {A, A, B}, {A, A} } (Hier müssen sie jetzt die neuen Resolventen aus der letzten Runde untereinander und mit den Klauseln der letzten Runde vergleichen. Wenn sie Resolventen hier doppelt auftauchen lassen sollten, ist das kein Problem, die Mengennotation sorgt ja dafür, dass eine eventuelle Unachtsamkeit keine Konsequenzen hat). Zum Überprüfen kann es sinnvoll sein, eine Matrix anzulegen (horizontal die neuen Klauseln eintragen, vertikal die neuen und die alten Klauseln und in die Felder dann die Resolventen können auch mehrere sein. Diese kann man dann in einer zweiten Runde ausstreichen, wenn es sie schon gab, oder hervorheben, wenn sie neu sind. Es ist aber auch nicht falsch, einfach alle, eben auch die doppelten, mit in die nächste Runde zu schreiben). In der nächsten Runde käme die leere Klausel hinzu, z.b. über {A}, { A} oder {B}, { B} oder {C}, { C}. Die Formel ist also unerfüllbar (und ihre Negation ist eine Tautologie). HINWEIS für die Klausur: Denken Sie daran, dass sie z.b. aus {A, A} nicht die leere Klausel ableiten dürfen die Klausel {A, A} steht ja für (A A), und die Formel ist das genaue Gegenteil von unerfüllbar, sie ist natürlich eine Tautologie! Ebenso falsch wäre es, z.b. aus {A, B} und { A, B} die leere Klausel abzuleiten (indem man beide Paare, die man bilden kann, auf einmal streicht auch hier handelt es sich um eine Tautologie! Wir erlauben hingegen das folgende: Wenn eine Klausel für eine Tautologie steht (also ein Paar aus positivem und negativem Literal zur gleichen atomaren Aussage enthält, z.b. {A,..., A}), dann kann sie nicht sinnvoll zur Ableitung der leeren Klausel beitragen, sie brauchen mit dieser Klausel keine weiteren Resolventen bilden. Aufgabe 16. Zeigen Sie mit der Resolutionsmethode, dass A B C eine Folgerung (s. oben) aus der Klauselmenge {{ A, B}, { B, C}, {A, C}, {A, B, C}} ist. Beachten Sie: Sie können den Algorithmus aus der Vorlesung anwenden oder direkt eine Deduktion angeben. Hinweis: Schauen Sie sich die Aufgabe zur Folgerung vom letzten Übungsblatt noch mal genau an (das ist übrigens sogar eine Äquivalenz) dort steht schon sehr schön, welche Formel sie auf Unerfüllbarkeit untersuchen müssen, um die Gültigkeit der obigen Aussage überprüfen zu können. Prägen sie sich dieses Vorgehen ein, es ist wichtig! Lösungshinweis: A B C ist eine Folgerung aus der angegebene Formel, wenn eine Konjunktion aus der angegebenen Formel und der Negation von A B C unerfüllbar ist, zu prüfen ist also {{ A, B}, { B, C}, {A, C}, {A, B, C}, { A, B, C}} Eine Herleitung der leeren Klausel kann man wie folgt finden (und angeben): K 1 = { A, B} K 2 = { B, C} K 3 = { A, C} (Resolvent aus K 1, K 2 ) K 4 = {A, C} K 5 = {A, B} (Resolvent aus K 2, K 4 ) K 6 = {A, B, C} 2

3 K 7 = {A, C} (Resolvent aus K 5, K 7 ) K 8 = {C} (Resolvent aus K 7, K 4 ) K 9 = { A, B, C} K 10 = { A, C} (Resolvent aus K 9, K 1 ) K 11 = { C} (Resolvent aus K 10, K 4 ) K 12 = (Resolvent aus K 11, K 8 ) HINWEIS für die Klausur: In der Klausur werden sie dies sicher graphisch lösen, das ist überhaupt kein Problem! Aufgabe 17. Zeigen Sie mit der Resolutionsmethode (s. auch vorstehende Erläuterung), dass F = ( B C D) ( B D) (C D) B eine Tautologie ist. Lösungshinweis: Wir testen, ob die Negation der Formel F unerfüllbar ist, also bestimmen wir zunächst die KNF von F : F = (( B C D) ( B D) (C D) B) (B C D) (B D) ( C D) B. Das führt zu der Klauselform: {{B, C, D}, {B, D}, { C, D}, { B}} Eine Herleitung der leeren Klausel lässt sich wie folgt finden (Ziel hier: ein einzelnes B erzeugen, weil wir B schon haben): K 1 = {B, C, D} K 2 = { C, D} K 3 = {B, D} (Resolvent aus K 1, K 2 ) K 4 = {B, D} K 5 = {B} (Resolvent aus K 3, K 4 ) K 6 = { B} K 7 = (Resolvent aus K 5, K 6 ) Sie können das in dieser Form angeben oder auch graphisch wie in der Vorlesung gezeigt (es sollte natürlich trotz aller Striche erkennbar bleiben, welche Klauseln sie in einem Resolutionsschritt paaren). Anmerkung: Wenn etwas erfüllbar ist, aber keine Tautologie, dann können sie natürlich für die Negation keine Herleitung der leeren Klausel finden. Dann hilft aber der Resolutionsalgorithmus weiter: irgendwann kommen keine neuen Klauseln mehr hinzu, dann ist die Formel erfüllbar! Schauen Sie auch, ob sie ev. die Formel in Implikationsform darstellen können und dann mit dem Markierungsalgorithmus Erfüllbarkeit/Unerfüllbarkeit prüfen können, das kann Arbeit sparen. Aufgabe 18. Zeigen oder widerlegen Sie mit der Resolutionsmethode (also mit Algo oder Herleitung/Deduktion), dass die folgende Formel eine Tautologie ist: ( (A B) (B C)) ((C A) (A C) (C A)) Hinweis: Vorsicht, das kann ein bißchen aufwändig werden, ist aber zum Üben nicht verkehrt. Denken Sie daran, dass man den Doppelpfeil auf zwei Arten ersetzen kann (eine ist hier recht gut, eine nicht so toll). Lösungshinweise: Hinweise: Vermuten wir einmal, dass die Formel eine Tautologie ist. Dann muss die Negation der Formel unerfüllbar sein; diese bringen wir in KNF: (( (A B) (B C)) ((C A) (A C) (C A))) 3

4 ( (A B) (B C)) (C A) (A C) (C A) ((A B) ((B C) ( B C))) ( C A) ( A C) ( C A) ((A B) ( (B C) ( B C))) ( C A) ( A C) ( C A) ((A B) (( B C) (B C))) ( C A) ( A C) ( C A) ((A B) ( B C)) ((A B) (B C)) ( C A) ( A C) ( C A) (das ist, von einigen überflüssigen Klammern abgesehen, eine Formel in KNF jetzt könnte man loslegen, allerdings kann man auch noch per Tautologieregel und Idempotenz vereinfachen) (A B C) ( C A) ( A C) ( C A) Daraus ergibt sich die Klauseldarstellung {{A, B, C}, { A, C}, { A, C}, { C, A}}. Man findet insgesamt keine Herleitung, denn die Formel ist erfüllbar! Also muss man die Resolventenmengen bilden, um dies nachzuweisen, wenn man, wie in dieser Aufgabe, auf die Resolution beschränkt ist. Res 0 ( F ) = F. Die Bildung der Resolventen, die in Res 1 ( F ), Res 2 ( F ) und Res 3 ( F ) hinzukommen, ist unten abgebildet. Dort sehen sie auch ein Beispiel für den Einsatz der Matrix zur systematischen Bildung der Resolventen. ABC -A-C -AC -CA ABC - BC-C BC AB BA-A -A-C - -A -C -AC - A-A C-C -CA - Resolventen: BC-C, BA-A, BC, AB, -A, -C, A-A, C-C Streichen der Tautologien BC-C, BA-A, A-A, C-C ABC -A-C -AC -CA BC AB -A -C BC - -AB - AB B AB - B-C BC - - B - -A BC - - -C - - -C AB - -A - - Neue Resolventen: -AB, B, B-C ABC -A-C -AC -CA BC AB -A -C -AB B B-C AB BC - - B-C - B B B-C AB - -A - B Neue Resolventen: Keine! Also fertig -- erfüllbar. In der letzten Runde kam kein neuer Resolvent hinzu, also ist die Klauselmenge, also F, nicht unerfüllbar, d.h., F ist keine Tautologie. Sie wird z.b. durch A(A) = A(C) = 0, A(B) = 1 nicht erfüllt (und F wird natürlich durch diese Belegung erfüllt). Anmerkung: Um eine KNF zu bestimmen, könnte man natürlich auch eine Wahrheitstafel aufstellen und dann 4

5 die KNF aus dieser ablesen zudem hätte man dann natürlich die Frage der Erfüllbarkeit bereits beantwortet (wie sieht übrigens eine aus einer Wahrheitstafel erzeugte KNF für eine Tautologie aus richtig, es gibt dann gar keine Zeile mit einer 0, dann könnte man z.b. eine kleinere Tautologie, wie etwa (A A), verwenden). Bei Formeln mit 4, 5 oder gar 6 atomaren Formeln wird das aber *sehr* mühsam! Noch eine Anmerkung: Diese Aufgabe sollte vor Augen führen, dass auch das Umformen in eine KNF gehörige Mühe bereiten kann üben Sie das also, bis sie es drauf haben, es kommt recht häufig vor, weil es Voraussetzung für die Anwendung von Markierungsalgorithmus (mit der zusätzlichen Bedingung, dass es nur ein positives Literal pro Disjunktion gibt) und Resolution ist. 5

Hat KAI also die Uhr gestohlen oder nicht? (Mit Begründung, natürlich!) 1

Hat KAI also die Uhr gestohlen oder nicht? (Mit Begründung, natürlich!) 1 INTA - Lösungshinweise zum Übungsblatt 3, Version 1.0α. Aufgabe 13 (Meta-Logik, die Zweite). Nachdem sie erfolgreich den Zauberer identifiziert haben (hatten sie doch, oder?), werden sie kurzzeitig als

Mehr

Resolutionskalkül. wird t als eine Menge K t von Klauseln geschrieben, welche die einzelnen Maxterme repräsentieren:

Resolutionskalkül. wird t als eine Menge K t von Klauseln geschrieben, welche die einzelnen Maxterme repräsentieren: Resolutionskalkül Ein Kalkül ist eine Kollektion von syntaktischen Umformungsregeln, die unter gegebenen Voraussetzungen aus bereits vorhandenen Formeln neue Formeln erzeugen. Der Resolutionskalkül besteht

Mehr

Aufgabe. Gelten die folgenden Äquivalenzen?. 2/??

Aufgabe. Gelten die folgenden Äquivalenzen?. 2/?? Äquivalenz Zwei Formeln F und G heißen (semantisch) äquivalent, falls für alle Belegungen A, die sowohl für F als auch für G passend sind, gilt A(F ) = A(G). Hierfür schreiben wir F G.. 1/?? Aufgabe Gelten

Mehr

Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln

Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Frank Heitmann heitmann@informatik.uni-hamburg.de 9. Juni 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/36 Ersetzbarkeitstheorem

Mehr

Einiges zu Resolutionen anhand der Aufgaben 6 und 7

Einiges zu Resolutionen anhand der Aufgaben 6 und 7 Einiges zu Resolutionen anhand der Aufgaben 6 und 7 Es gibt eine Fülle von verschiedenen Resolutionen. Die bis jetzt behandelten möchte ich hier noch ein Mal kurz erläutern. Ferner möchte ich noch auf

Mehr

Resolution (Idee) Aus der Herleitung der leeren Disjunktion (= leere Klausel) folgt Unerfüllbarkeit.

Resolution (Idee) Aus der Herleitung der leeren Disjunktion (= leere Klausel) folgt Unerfüllbarkeit. Resolution (Idee) (F A) (F A) (F A) (F A) (F F ) Aus der Herleitung der leeren Disjunktion (= leere Klausel) folgt Unerfüllbarkeit. Zwei Fragen: Kann man aus einer unerfüllbaren Formel immer die leere

Mehr

Deduktion in der Aussagenlogik

Deduktion in der Aussagenlogik Deduktion in der Aussagenlogik Menge von Ausdrücken der Aussagenlogik beschreibt einen bestimmten Sachverhalt, eine "Theorie" des Anwendungsbereiches. Was folgt logisch aus dieser Theorie? Deduktion: aus

Mehr

Theoretische Informatik: Logik

Theoretische Informatik: Logik Theoretische Informatik: Logik Vorlesung mit Übungen im WS 2006/2007 Vorlesung: Montag Montag 9-10 Uhr, Raum 1603 WAneu 14-16 Uhr, Raum 1603 WAneu Beginn: Montag, den 23.10.2006, 9 15 Uhr. Übungen in 3

Mehr

Erfüllbarkeitstests. Im folgenden: Ein sehr effizienter Erfüllbarkeitstest für eine spezielle Klasse von Formeln in KNF, sogenannte Hornformeln (vgl.

Erfüllbarkeitstests. Im folgenden: Ein sehr effizienter Erfüllbarkeitstest für eine spezielle Klasse von Formeln in KNF, sogenannte Hornformeln (vgl. Erfüllbarkeitstests Im folgenden: Ein sehr effizienter Erfüllbarkeitstest für eine spezielle Klasse von Formeln in KNF, sogenannte Hornformeln (vgl. Grundlagen und diskrete Strukturen ) Ein für Formeln

Mehr

Formale Grundlagen der Informatik 1 Kapitel 15 Normalformen und Hornformeln

Formale Grundlagen der Informatik 1 Kapitel 15 Normalformen und Hornformeln Formale Grundlagen der Informatik 1 Kapitel 15 Normalformen und Frank Heitmann heitmann@informatik.uni-hamburg.de 30. Mai 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/42 Zusammenfassung Syntax

Mehr

Deduktion in der Aussagenlogik. Semantische Folgerungsbeziehung. Zusammenhang zwischen semantischer und syntaktischer Folgerung

Deduktion in der Aussagenlogik. Semantische Folgerungsbeziehung. Zusammenhang zwischen semantischer und syntaktischer Folgerung Deduktion in der Aussagenlogik Menge von Ausdrücken der Aussagenlogik beschreibt einen bestimmten Sachverhalt, eine "Theorie" des Anwendungsbereiches Was folgt logisch aus dieser Theorie? Deduktion: aus

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 6 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

TU9 Aussagenlogik. Daniela Andrade

TU9 Aussagenlogik. Daniela Andrade TU9 Aussagenlogik Daniela Andrade daniela.andrade@tum.de 18.12.2017 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;) 2 /

Mehr

Ersetzbarkeitstheorem

Ersetzbarkeitstheorem Ersetzbarkeitstheorem Die Abgeschlossenheit läßt sich auch folgendermaßen formulieren: Ersetzbarkeitstheorem Seien F und G Formeln mit F G. SeienH und H Formeln, so daß H aus H hervorgeht, indem ein Vorkommen

Mehr

Zusammenfassung Syntax: Formale Grundlagen der Informatik 1 Kapitel 15 Normalformen und Hornformeln. Zusammenfassung

Zusammenfassung Syntax: Formale Grundlagen der Informatik 1 Kapitel 15 Normalformen und Hornformeln. Zusammenfassung Formale der Informatik 1 Kapitel 15 und Frank Heitmann heitmann@informatik.uni-hamburg.de 30. Mai 2016 Zusammenfassung Syntax Zusammenfassung Syntax: Motivation Definition der Syntax: Alphabet, Junktor

Mehr

Syntax der Aussagenlogik. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Formel als Syntaxbaum. Teilformel A 3 A 1 A 4

Syntax der Aussagenlogik. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Formel als Syntaxbaum. Teilformel A 3 A 1 A 4 Syntax der Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume Eine atomare Formel hat die Form A i (wobei i = 1, 2, 3,...). Definition (Formel)

Mehr

Resolutionsalgorithmus

Resolutionsalgorithmus 112 Resolutionskalkül Mit dem Begriff Kalkül bezeichnet man eine Menge von syntaktischen Umformungsregeln, mit denen man semantische Eigenschaften der Eingabeformel herleiten kann. Für den Resolutionskalkül:

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 06.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax (Formeln) Semantik Wertebelegungen/Valuationen/Modelle

Mehr

1 Aussagenlogik AL: Verknüpfung von Aussagen

1 Aussagenlogik AL: Verknüpfung von Aussagen 1 Aussagenlogik AL: Verknüpfung von Aussagen Syntax atomare Formeln A,B,C sind AL-Formeln F und G AL-Formeln (F G),(F G) und F AL-Formeln müssen in endlich vielen Schritten gebildet werden können echtes

Mehr

Computational Logic Algorithmische Logik Boolesche Algebra und Resolution

Computational Logic Algorithmische Logik Boolesche Algebra und Resolution Computational Logic Algorithmische Logik Boolesche Algebra und Resolution Ralf Moeller Hamburg Univ. of Technology Boole'sche Algebra Äquivalenzen als "Transformationsgesetze" Ersetzbarkeitstheorem Zentrale

Mehr

Aussagenlogik. Formale Methoden der Informatik WiSe 2012/2013 teil 6, folie 1

Aussagenlogik. Formale Methoden der Informatik WiSe 2012/2013 teil 6, folie 1 Aussagenlogik Formale Methoden der Informatik WiSe 22/23 teil 6, folie Teil VI: Aussagenlogik. Einführung 2. Boolesche Funktionen 3. Boolesche Schaltungen Franz-Josef Radermacher & Uwe Schöning, Fakultät

Mehr

FORMALE SYSTEME. 23. Vorlesung: Logisches Schließen. TU Dresden, 15. Januar Markus Krötzsch Professur für Wissensbasierte Systeme

FORMALE SYSTEME. 23. Vorlesung: Logisches Schließen. TU Dresden, 15. Januar Markus Krötzsch Professur für Wissensbasierte Systeme FORMALE SYSTEME 23. Vorlesung: Logisches Schließen Markus Krötzsch Professur für Wissensbasierte Systeme TU Dresden, 15. Januar 2018 Rückblick Markus Krötzsch, 15. Januar 2018 Formale Systeme Folie 2 von

Mehr

FORMALE SYSTEME. 23. Vorlesung: Logisches Schließen. TU Dresden, 16. Januar Markus Krötzsch Lehrstuhl Wissensbasierte Systeme

FORMALE SYSTEME. 23. Vorlesung: Logisches Schließen. TU Dresden, 16. Januar Markus Krötzsch Lehrstuhl Wissensbasierte Systeme FORMALE SYSTEME 23. Vorlesung: Logisches Schließen Markus Krötzsch Lehrstuhl Wissensbasierte Systeme TU Dresden, 16. Januar 2017 Rückblick Markus Krötzsch, 16. Januar 2017 Formale Systeme Folie 2 von 31

Mehr

Beispiel Aussagenlogik nach Schöning: Logik...

Beispiel Aussagenlogik nach Schöning: Logik... Beispiel Aussagenlogik nach Schöning: Logik... Worin besteht das Geheimnis Ihres langen Lebens? wurde ein 100-jähriger gefragt. Ich halte mich streng an die Diätregeln: Wenn ich kein Bier zu einer Mahlzeit

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 5 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Normalformen Atome, Literale, Klauseln Konjunktive

Mehr

Klauselmengen. Definition Sei

Klauselmengen. Definition Sei Klauselmengen Definition 2.38 Sei α = (p 11... p 1k1 )... (p n1... p nkn ) eine in aussagenlogische Formel in KNF. Dann heißen die Mengen {p i1,..., p iki }, 1 i n, der jeweils disjunktiv verknüpften Literale

Mehr

Vorlesung Logik Wintersemester 2017/18 Universität Duisburg-Essen

Vorlesung Logik Wintersemester 2017/18 Universität Duisburg-Essen Vorlesung Logik Wintersemester 2017/18 Universität Duisburg-Essen Barbara König Übungsleitung: Dennis Nolte, Harsh Beohar Barbara König Logik 1 Mengen, Relationen und Funktionen Menge: Menge X von Elementen,

Mehr

23. Vorlesung: Logisches Schließen Markus Kr otzsch Professur f ur Wissensbasierte Systeme Normalformen

23. Vorlesung: Logisches Schließen Markus Kr otzsch Professur f ur Wissensbasierte Systeme Normalformen Logik: Glossar FORMALE SYSTEME 23. Vorlesung: Logisches Schließen Markus Krötzsch Professur für Wissensbasierte Systeme TU Dresden, 15. Januar 2018 Atom kleinste mögliche Formel p P Teilformel Unterausdruck,

Mehr

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25 Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/25 Einführendes Beispiel Falls Lisa Peter trifft, dann trifft Lisa auch Gregor.

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 4 7.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 5. Aussagenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Normalformen Definition: Literal Atom (aussagenlogische

Mehr

TU5 Aussagenlogik II

TU5 Aussagenlogik II TU5 Aussagenlogik II Daniela Andrade daniela.andrade@tum.de 21.11.2016 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;)

Mehr

DisMod-Repetitorium Tag 1

DisMod-Repetitorium Tag 1 DisMod-Repetitorium Tag 1 Aussagenlogik, Mengen 19. März 2018 1 Organisatorisches 2 Tipps zur Klausur 3 Aussagenlogik Was gehört in die Aussagenlogik, was nicht? Notationen für viele Terme Belegungen,

Mehr

Syntax. 1 Jedes A AS AL ist eine (atomare) Formel. 2 Ist F eine Formel, so ist auch F eine Formel. 3 Sind F und G Formeln, so sind auch

Syntax. 1 Jedes A AS AL ist eine (atomare) Formel. 2 Ist F eine Formel, so ist auch F eine Formel. 3 Sind F und G Formeln, so sind auch Formale der Informatik 1 Kapitel 15 Folgerbarkeit, Äquivalenzen und Normalformen Frank Heitmann heitmann@informatik.uni-hamburg.de 8. Juni 2015 Syntax Definition (Syntax der Aussagenlogik) Mit AS AL sei

Mehr

HA-Lösung TA-Lösung Diskrete Strukturen Tutoraufgabenblatt 10. Besprechung in KW02/2019

HA-Lösung TA-Lösung Diskrete Strukturen Tutoraufgabenblatt 10. Besprechung in KW02/2019 Technische Universität München Winter 2018/19 Prof. J. Esparza / Dr. M. Luttenberger, C. Welzel 2019/01/11 HA-Lösung TA-Lösung Diskrete Strukturen Tutoraufgabenblatt 10 Besprechung in KW02/2019 Beachten

Mehr

Übung 4: Aussagenlogik II

Übung 4: Aussagenlogik II Übung 4: Aussagenlogik II Diskrete Strukturen im Wintersemester 2013/2014 Markus Kaiser 8. Januar 2014 1/10 Äquivalenzregeln Identität F true F Dominanz F true true Idempotenz F F F Doppelte Negation F

Mehr

Einführung in die Logik, Übungsklausur 2016/07/11

Einführung in die Logik, Übungsklausur 2016/07/11 Institut für Theoretische Informatik ITI Dr. Jürgen Koslowski Einführung in die Logik, Übungsklausur 2016/07/11 Diese Aufgaben werden in der Extra-Übung am Freitag, 2016-07-15, 13:15, im SN 19.4 besprochen,

Mehr

Logik. Gabriele Kern-Isberner LS 1 Information Engineering. TU Dortmund Wintersemester 2014/15 WS 2014/15

Logik. Gabriele Kern-Isberner LS 1 Information Engineering. TU Dortmund Wintersemester 2014/15 WS 2014/15 Logik Gabriele Kern-Isberner LS 1 Information Engineering TU Dortmund Wintersemester 2014/15 WS 2014/15 G. Kern-Isberner (TU Dortmund) Logik WS 2014/15 1 / 125 Übersicht Modallogik 5. Grundlagen 6. Erfüllbarkeit

Mehr

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/37

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/37 Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/37 Modellierungsaufgabe Es gibt drei Tauben und zwei Löcher. Jede Taube soll in

Mehr

Logik Vorlesung 5: Grundlagen Resolution

Logik Vorlesung 5: Grundlagen Resolution Logik Vorlesung 5: Grundlagen Resolution Andreas Maletti 21. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere

Mehr

Logische Äquivalenz. Definition Beispiel 2.23

Logische Äquivalenz. Definition Beispiel 2.23 Logische Äquivalenz Definition 2.22 Zwei aussagenlogische Formeln α, β A heißen logisch äquivalent, falls für jede Belegung I von α und β gilt: Schreibweise: α β. Beispiel 2.23 Aus Folgerung 2.6 ergibt

Mehr

Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen

Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen Einführung in die Logik - 4 Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen Widerlegungsverfahren zum Aufwärmen: Bestimmung von Tautologien mittels Quick Falsification

Mehr

Aussagenlogik: Syntax von Aussagen

Aussagenlogik: Syntax von Aussagen Aussagenlogik: Syntax von Aussagen A ::= X (A A) (A A) ( A) (A A) (A A) 0 1 Prioritätsreihenfolge :,,,,. A B: Konjunktion (Verundung). A B: Disjunktion (Veroderung). A B: Implikation. A B: Äquivalenz.

Mehr

Motivation. Formale Grundlagen der Informatik 1 Kapitel 16. Resolution. Motivation. Beispiel

Motivation. Formale Grundlagen der Informatik 1 Kapitel 16. Resolution. Motivation. Beispiel rundlagen und Motivation Formale rundlagen der Informatik 1 Kapitel 16 Frank Heitmann heitmann@informatik.uni-hamburg.de 31. Mai 2016 Motivation Wir benötigen einen (Un-)Erfüllbarkeitstest für aussagenlogische

Mehr

Künstliche Intelligenz Logische Agenten & Resolution

Künstliche Intelligenz Logische Agenten & Resolution Künstliche Intelligenz Logische Agenten & Resolution Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Inferenz-Algorithmus Wie könnte ein

Mehr

Resolution (Motivation) Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Resolution (Idee) Resolution (Idee)

Resolution (Motivation) Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Resolution (Idee) Resolution (Idee) (Motivation) Vorlesung Logik Sommersemester 0 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume Wir benötigen Algorithmen für Erfüllbarkeitstests, die zumindest in vielen Fällen gutartiges

Mehr

Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen

Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume & Dr. Sander Bruggink Barbara König Logik 1 (Motivation) Wir benötigen Algorithmen für Erfüllbarkeitstests,

Mehr

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2.

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2. Theorie der Informatik 24. Februar 2014 2. Aussagenlogik II Theorie der Informatik 2. Aussagenlogik II 2.1 Äquivalenzen Malte Helmert Gabriele Röger 2.2 Vereinfachte Schreibweise Universität Basel 24.

Mehr

Logik Vorlesung 3: Äquivalenz und Normalformen

Logik Vorlesung 3: Äquivalenz und Normalformen Logik Vorlesung 3: Äquivalenz und Normalformen Andreas Maletti 7. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen

Mehr

Resolution für die Aussagenlogik

Resolution für die Aussagenlogik Resolution für die Aussagenlogik Der Resolutionskakül ist ein Beweiskalkül, der auf Klauselmengen, d.h. Formeln in KNF arbeitet und nur eine Schlußregel besitzt. Der Resolution liegt die folgende Vorstellung

Mehr

Logische und funktionale Programmierung

Logische und funktionale Programmierung Logische und funktionale Programmierung Vorlesung 2 und 3: Resolution Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 3. November 2017 1/43 HERBRAND-STRUKTUR Sei

Mehr

5.1 Inferenz. Theorie der Informatik. Theorie der Informatik. 5.1 Inferenz. 5.2 Resolutionskalkül. 5.3 Zusammenfassung. Inferenz: Motivation

5.1 Inferenz. Theorie der Informatik. Theorie der Informatik. 5.1 Inferenz. 5.2 Resolutionskalkül. 5.3 Zusammenfassung. Inferenz: Motivation Theorie der Informatik 9. März 2015 5. Aussagenlogik III Theorie der Informatik 5. Aussagenlogik III 5.1 Inferenz Malte Helmert Gabriele Röger 5.2 Resolutionskalkül Universität Basel 9. März 2015 5.3 Zusammenfassung

Mehr

Aussagenlogik. (MAF2) MAF(I, t) = t und MAF(I, f ) = f. Die Semantik aussagenlogischer Formeln ist durch die Funktion

Aussagenlogik. (MAF2) MAF(I, t) = t und MAF(I, f ) = f. Die Semantik aussagenlogischer Formeln ist durch die Funktion 43 Vergleiche mit MBA! (MAF4) MAF(I, (F G)) = MAF(I, F) MAF(I, G), wobei die zum Symbol gehörende Funktion ist. (MAF3) MAF(I, F) = MAF(I, F) (MAF2) MAF(I, t) = t und MAF(I, f ) = f (MAF1) MAF(I, A) = I(A),

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 7 15.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Unser Ziel Kalkül(e) zur systematischen Überprüfung

Mehr

Übung 15. Zeige, dass man jede Formel äquivalent in eine neue Formel umwandeln kann, die nur die Operatoren und! verwendet.

Übung 15. Zeige, dass man jede Formel äquivalent in eine neue Formel umwandeln kann, die nur die Operatoren und! verwendet. Logik und Diskrete Strukturen (Sommer 28) Übung 5 Zeige, dass man jede Formel äquivalent in eine neue Formel umwandeln kann, die nur die Operatoren und! verwendet. Zum Beweis muss man nur prüfen, dass

Mehr

Grundlagen der Logik

Grundlagen der Logik Grundlagen der Logik Denken Menschen logisch? Selektionsaufgabe nach Watson (1966): Gegeben sind vier Karten von denen jede auf der einen Seite mit einem Buchstaben, auf der anderen Seite mit einer Zahl

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker Wintersemester 2007/08 Thomas Schwentick Teil A: Aussagenlogik 3. Erfüllbarkeit Version von: 23. Januar 2008(16:11) Inhalt 3.1 Grundbegriffe 3.2 Aussagenlogische Resolution 3.3 Endlichkeitssatz

Mehr

1 Aussagenlogischer Kalkül

1 Aussagenlogischer Kalkül 1 Aussagenlogischer Kalkül Ein Kalkül in der Aussagenlogik soll die Wahrheit oder Algemeingültigkeit von Aussageformen allein auf syntaktischer Ebene zeigen. Die Wahrheit soll durch Umformung von Formeln

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung GdP4 Slide 1 Grundlagen der Programmierung Vorlesung 4 vom 04.11.2004 Sebastian Iwanowski FH Wedel Grundlagen der Programmierung 1. Einführung Grundlegende Eigenschaften von Algorithmen und Programmen

Mehr

Formale Grundlagen der Informatik 1 Wiederholung zum Logik-Teil

Formale Grundlagen der Informatik 1 Wiederholung zum Logik-Teil Formale Grundlagen der Informatik 1 zum Logik-Teil Frank Heitmann heitmann@informatik.uni-hamburg.de 20. Juni 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/32 Überblick Im hatten wir Aussagenlogik

Mehr

Formalisierung von Sudoku Formalisieren Sie das Sudoku-Problem:

Formalisierung von Sudoku Formalisieren Sie das Sudoku-Problem: Formalisierung von Sudoku Formalisieren Sie das Sudoku-Problem: 4 4 4 4 4 1 1 1 1 2 2 3 3 5 5 5 5 5 5 6 6 6 7 7 8 8 9 9 9 9 9 8 6 Verwenden Sie dazu eine atomare Formel A[n, x, y] für jedes Tripel (n,

Mehr

Tableaukalkül für Aussagenlogik

Tableaukalkül für Aussagenlogik Tableaukalkül für Aussagenlogik Tableau: Test einer Formel auf Widersprüchlichkeit Fallunterscheidung baumförmig organisiert Keine Normalisierung, d.h. alle Formeln sind erlaubt Struktur der Formel wird

Mehr

Logik Vorlesung 4: Horn-Logik und Kompaktheit

Logik Vorlesung 4: Horn-Logik und Kompaktheit Logik Vorlesung 4: Horn-Logik und Kompaktheit Andreas Maletti 14. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen

Mehr

Diskrete Strukturen Nachholklausur

Diskrete Strukturen Nachholklausur Technische Universität München Winter 0/7 Prof. H. J. Bungartz / Dr. M. Luttenberger, J. Bräckle, K. Röhner HA- Diskrete Strukturen Nachholklausur.04.07 Beachten Sie: Soweit nicht anders angegeben, ist

Mehr

Einführung in die Logik (Vorkurs)

Einführung in die Logik (Vorkurs) Einführung in die Logik (Vorkurs) Jürgen Koslowski 2014-04-07 Ein Beispiel Familie A will im kommenden Jahr eine Waschmaschine, ein Auto und ein Moped anschaffen. Aber falls Herr A seinen üblichen Bonus

Mehr

Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser

Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser Informatik A Prof. Dr. Norbert Fuhr fuhr@uni-duisburg.de auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser 1 Teil I Logik 2 Geschichte R. Descartes (17. Jhdt): klassische

Mehr

Problem der Resolution: Kombinatorische Explosion Ziel: Einschränkung der Möglichkeiten

Problem der Resolution: Kombinatorische Explosion Ziel: Einschränkung der Möglichkeiten 2.6 Verfeinerung der Resolution Problem der Resolution: Kombinatorische Explosion Ziel: Einschränkung der Möglichkeiten Resolutions-Strategien: heuristische Regeln für die Auswahl der Resolventen Resolutions-Restriktionen:

Mehr

Fakultät für Informatik Universität Magdeburg Jürgen Dassow. Vorbemerkungen

Fakultät für Informatik Universität Magdeburg Jürgen Dassow. Vorbemerkungen Vorbemerkungen if (x > y) z = x; else z = y; Wenn es blaue Tiger regnet, dann fressen alle Kirschbäume schwarze Tomaten. q(1) = 1, q(i) = q(i 1) + 2i 1 für i 2 Welchen Wert hat q(6)? 24 ist durch 2 teilbar.

Mehr

Wozu formale Logik? Programmiersprachen Logik im Fingerhut. Formeln. Logik im Fingerhut (24. Januar 2005) Belegung und Interpretation

Wozu formale Logik? Programmiersprachen Logik im Fingerhut. Formeln. Logik im Fingerhut (24. Januar 2005) Belegung und Interpretation Wozu formale Logik? Logik im Fingerhut Studiengang Informatik Universität Bremen präzise Beschreibung von Aussagen über die Welt bzw. über verschiedene Welten Ziehen und Überprüfen von Schlussfolgerungen

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 6. Aussagenlogik Resolution Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Der aussagenlogische Resolutionkalkül Wesentliche

Mehr

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie und, oder, nicht, wenn... dann zwischen atomaren und komplexen Sätzen. I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten

Mehr

Hochschule Darmstadt Alte Logik-Klausur

Hochschule Darmstadt Alte Logik-Klausur Bernd Baumgarten Logik-Klausur, Datum, Seite 1 Hochschule Darmstadt Alte Logik-Klausur Name:... Vorname:... Matrikelnummer:... 1 (6) 2 (8) 3 (8) 4 (8) 5 (10) 6 (9) 7 (12) 8 (10) 9 (11) Σ (82) Note 14 WICHTIG

Mehr

Formale Systeme, WS 2015/2016. Lösungen zu Übungsblatt 7

Formale Systeme, WS 2015/2016. Lösungen zu Übungsblatt 7 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Bernhard Beckert Dr. Thorsten Bormer, Dr. Vladimir Klebanov, Dr. Mattias Ulbrich Formale Systeme, WS 2015/2016 Lösungen

Mehr

Formale Systeme, WS 2008/2009 Lösungen zum Übungsblatt 2

Formale Systeme, WS 2008/2009 Lösungen zum Übungsblatt 2 UNIVERSITÄT KARLSRUHE (TH) Institut für Theoretische Informatik Prof. Dr. B. Beckert M. Ulbrich Formale Systeme, WS 2008/2009 Lösungen zum Übungsblatt 2 Dieses Blatt wurde in der Übung am 14.11.2008 besprochen.

Mehr

Logic in a Nutshell. Christian Liguda

Logic in a Nutshell. Christian Liguda Logic in a Nutshell Christian Liguda Quelle: Kastens, Uwe und Büning, Hans K., Modellierung: Grundlagen und formale Methoden, 2009, Carl Hanser Verlag Übersicht Logik - Allgemein Aussagenlogik Modellierung

Mehr

Logische und funktionale Programmierung

Logische und funktionale Programmierung Logische und funktionale Programmierung Vorlesung 11: Logikprogramme Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 19. Dezember 2016 1/55 WIEDERHOLUNG: HORN-KLAUSELN

Mehr

Allgemeingültige Aussagen

Allgemeingültige Aussagen Allgemeingültige Aussagen Definition 19 Eine (aussagenlogische) Formel p heißt allgemeingültig (oder auch eine Tautologie), falls p unter jeder Belegung wahr ist. Eine (aussagenlogische) Formel p heißt

Mehr

Logik Grundvorlesung WS 17/18 Ergänzende Folien Teil 1

Logik Grundvorlesung WS 17/18 Ergänzende Folien Teil 1 Logik Grundvorlesung WS 17/18 Ergänzende Folien Teil 1 Gerhard Brewka Institut für Informatik Universität Leipzig brewka@informatik.uni-leipzig.de G. Brewka (Leipzig) WS 17/18 1 / 46 Über diese Vorlesung

Mehr

Modellierungsmethoden der Informatik Kapitel 2: Logikkalküle

Modellierungsmethoden der Informatik Kapitel 2: Logikkalküle smethoden der Informatik Kapitel 2: Logikkalküle Prädikatenlogik 1. Stufe Norbert Fuhr Gudrun Fischer 29.11.2005 Organisatorisches Organisatorisches Klausur Termin: 20.2.2006, 13-15 Uhr, Audimax Anmeldung

Mehr

Aussagenlogik. Formale Methoden der Informatik WiSe 2010/2011 teil 7, folie 1 (von 50)

Aussagenlogik. Formale Methoden der Informatik WiSe 2010/2011 teil 7, folie 1 (von 50) Aussagenlogik Formale Methoden der Informatik WiSe 2/2 teil 7, folie (von 5) Teil VII: Aussagenlogik. Einführung 2. Boolesche Funktionen 3. Boolesche Schaltungen Franz-Josef Radermacher & Uwe Schöning,

Mehr

b= NaN

b= NaN 42 Beispiel: IEEE single precision: 0 10000000 00000000000000000000000 b= + 2 128 127 1.0 2 = 2 0 10000001 10100000000000000000000 b= + 2 129 127 1.101 2 = 6.5 1 10000001 10100000000000000000000 b= 2 129

Mehr

Modellierungsmethoden der Informatik Kapitel 2: Logikkalküle

Modellierungsmethoden der Informatik Kapitel 2: Logikkalküle smethoden der Informatik Kapitel 2: Logikkalküle Prädikatenlogik 1. Stufe Norbert Fuhr Gudrun Fischer 29.11.2005 Organisatorisches Organisatorisches Klausur Termin: 20.2.2006, 13-15 Uhr, Audimax Anmeldung

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 4 07.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Gestern Normalformen Atome, Literale, Klauseln Konjunktive

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik FH Wedel Prof. Dr. Sebastian Iwanowski GTI22 Folie 1 Grundlagen der Theoretischen Informatik Sebastian Iwanowski FH Wedel Kap. 2: Logik, Teil 2.2: Prädikatenlogik FH Wedel Prof. Dr. Sebastian Iwanowski

Mehr

3. Logik 3.1 Aussagenlogik

3. Logik 3.1 Aussagenlogik 3. Logik 3.1 Aussagenlogik WS 06/07 mod 301 Kalkül zum logischen Schließen. Grundlagen: Aristoteles 384-322 v. Chr. Aussagen: Sätze, die prinzipiell als ahr oder falsch angesehen erden können. z. B.: Es

Mehr

Das SAT Problem oder Erfüllbarkeitsproblem. Formale Systeme. Teilklassen. Satz von Cook. SAT Instanz: Eine aussagenlogische Formel F For 0

Das SAT Problem oder Erfüllbarkeitsproblem. Formale Systeme. Teilklassen. Satz von Cook. SAT Instanz: Eine aussagenlogische Formel F For 0 Das SAT Problem oder Erfüllbarkeitsproblem Formale Systeme Prof. Dr. Bernhard Beckert Fakultät für Informatik Universität Karlsruhe TH SAT Instanz: Eine aussagenlogische Formel F For 0 Frage: Ist F erfüllbar?

Mehr

Algorithmischer Aufbau der Aussagenlogik

Algorithmischer Aufbau der Aussagenlogik Algorithmischer Aufbau der Aussagenlogik In diesem Abschnitt betrachten wir Verfahren die bei gegebener endlichen Menge Σ und A-Form A entscheiden ob Σ = A gilt. Die bisher betrachteten Verfahren prüfen

Mehr

Logik für Informatiker Logic for computer scientists

Logik für Informatiker Logic for computer scientists Logik für Informatiker Logic for computer scientists Till Mossakowski Wintersemester 2014/15 Till Mossakowski Logik 1/ 24 Die Booleschen Junktoren Till Mossakowski Logik 2/ 24 Die Negation Wahrheitstafel

Mehr

Klausur zur Vorlesung Logik für Informatiker Sommersemester 2017

Klausur zur Vorlesung Logik für Informatiker Sommersemester 2017 Prof. Dr. Viorica Sofronie-Stokkermans Dipl.-Inform. Markus Bender AG Formale Methoden und Theoretische Informatik Fachbereich Informatik Universität Koblenz-Landau Klausur zur Vorlesung Logik für Informatiker

Mehr

ÜBUNGSKLAUSUR Studienhalbjahr: 1. Semester. Modul: TINF1002 Dozent: Stephan Schulz. Zwei Texte, z.b. Vorlesungsskript, eigene Notizen

ÜBUNGSKLAUSUR Studienhalbjahr: 1. Semester. Modul: TINF1002 Dozent: Stephan Schulz. Zwei Texte, z.b. Vorlesungsskript, eigene Notizen Matrikelnummer: Fakultät Studiengang: Technik Angewandte Informatik Jahrgang / Kurs : 2016 / 16C&16ITA ÜBUNGSKLAUSUR Studienhalbjahr: 1. Semester Datum: 23/24. Februar 2017 Bearbeitungszeit: 90 Minuten

Mehr

Normalformen. Aussagenlogik. Aussagenlogik

Normalformen. Aussagenlogik. Aussagenlogik Literale Normalformen Definition Ein Literal ist eine Aussagenvariable oder die Negation einer Aussagenvariablen. Literale Normalformen Prolog-Programm p03.pl (Anfang) :- op(550,fx,p). %Aussagenvariable

Mehr

wenn es regnet ist die Straße nass:

wenn es regnet ist die Straße nass: Aussagenlogik 2 In der Aussagenlogik werden, wie der Name schon sagt, Aussagen über logische Operatoren verknüpft. Der Satz die Straße ist nass ist eine Aussage, genauso wie es regnet. Diese beiden Aussagen

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Teil 2: Logik 1 Prädikatenlogik (Einleitung) 2 Aussagenlogik Motivation Grundlagen Eigenschaften Eigenschaften Normalformen

Mehr

Formale Systeme. Das Erfu llbarkeitsproblem. Prof. Dr. Bernhard Beckert, WS 2017/2018

Formale Systeme. Das Erfu llbarkeitsproblem. Prof. Dr. Bernhard Beckert, WS 2017/2018 Formale Systeme Prof. Dr. Bernhard Beckert, WS 2017/2018 Das Erfu llbarkeitsproblem KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Mehr

Logik für Informatiker Logic for Computer Scientists

Logik für Informatiker Logic for Computer Scientists Logik für Informatiker Logic for Computer Scientists Till Mossakowski Wintersemester 2014/15 Till Mossakowski Logik 1/ 18 Vollständigkeit der Aussagenlogik Till Mossakowski Logik 2/ 18 Objekt- und Metatheorie

Mehr

1.1 Grundbegriffe. Logik und Diskrete Strukturen (Sommer 2018) Prof. Dr. Ulrich Hertrampf

1.1 Grundbegriffe. Logik und Diskrete Strukturen (Sommer 2018) Prof. Dr. Ulrich Hertrampf . Grundbegriffe Beispiele: Paris und Mäuse / Otto und der Arzt /... Definition: Syntax der Aussagenlogik ) Atomare Formeln (A i, i =, 2, 3,...)sindFormeln. 2) Falls F und G Formeln, dann auch (F ^ G) und

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Prof. Dr. Peter Becker Fachbereich Informatik Mathematische Grundlagen Klausur Wintersemester 2015/16 16. März 2015 Name: Vorname: Matrikelnr.: Aufgabe 1 2 4 5 6 Summe Punkte 10 10 10 10 10 10 60 erreicht

Mehr